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Abstract
In this paper we study a multi-arm bandit prob-
lem in which the quality of each arm is measured
by the Conditional Value at Risk (CVaR) at some
level α of the reward distribution. While existing
works in this setting mainly focus on Upper Con-
fidence Bound algorithms, we introduce a new
Thompson Sampling approach for CVaR bandits
on bounded rewards that is flexible enough to
solve a variety of problems grounded on physical
resources. Building on a recent work by Riou and
Honda (2020), we introduce B-CVTS for contin-
uous bounded rewards and M-CVTS for multi-
nomial distributions. On the theoretical side, we
provide a non-trivial extension of their analysis
that enables to theoretically bound their CVaR
regret minimization performance. Strikingly, our
results show that these strategies are the first to
provably achieve asymptotic optimality in CVaR
bandits, matching the corresponding asymptotic
lower bounds for this setting. Further, we illus-
trate empirically the benefit of Thompson Sam-
pling approaches both in a realistic environment
simulating a use-case in agriculture and on vari-
ous synthetic examples.

1. Introduction
Over the past few years, a number of works have focused on
adapting multi-armed bandit strategies (see e.g. Lattimore
and Szepesvari (2019)) to optimize an other criterion than
the expected cumulative reward. Sani et al. (2012), Vak-
ili and Zhao (2015), Vakili and Zhao (2016), Zimin et al.
(2014) consider a mean-variance criterion, (Szorenyi et al.,
2015) studies a quantile (Value-at-Risk) criterion, (Maillard,
2013) focuses on Entropic-value-at-risk. The Conditional
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Value at Risk (CVaR) as well as more generic coherent spec-
tral risk measures (Acerbi and Tasche, 2002) have received
specific attention from the bandit community (Galichet et al.
(2013); Galichet (2015); Cassel et al. (2018); Zhu and Tan
(2020); Tamkin et al. (2020); Prashanth et al. (2020) to cite
a few). Indeed, in a large number of application domains
(healthcare, agriculture, marketing,...), one needs to take
into account personalized preferences of the practitioner
that are not captured by the expected reward. We consider
an illustrative use-case in agriculture in section 4, where an
algorithm recommends planting dates to farmers.

The Conditional Value at Risk (CVaR) at level α ∈ [0, 1]
(see Mandelbrot (1997), Artzner et al. (1999)) is easily in-
terpretable as the expected reward in the worst α-fraction
of the outcomes, and hence captures different preferences,
from being neutral to the shape of the distribution (α = 1,
mean criterion) to trying to maximize the reward in the
worst-case scenarios (α close to 0, typically in finance or
insurance). It is further a coherent spectral measure in the
sense of Rockafellar et al. (2000), see Acerbi and Tasche
(2002)). Several definitions of the CVaR exist in the litera-
ture, depending on whether the samples are considered as
losses or as rewards. Brown (2007), Thomas and Learned-
Miller (2019) and Agrawal et al. (2020) consider the loss
version of CVaR. We here follow Galichet et al. (2013) and
Tamkin et al. (2020) who use the reward version, defined
for arm k with distribution νk as

CVaRα(νk) = sup
x∈R

{
x− 1

α
EX∼νk

[
(x−X)

+
]}

. (1)

This implies that the best arm is the one with the largest
CVaR. To simplify the notation we write cαk = CVaRα(νk)
in the sequel. Following e.g. Tamkin et al. (2020), for un-
known arm distributions ν = (ν1, . . . , νK) we measure the
CVaR regret at time T for some risk-level α of a sequential
sampling strategy A = (At)t∈N as

Rαν(T )=Eν

[
T∑
t=1

(
max
k

cαk−cαAt

)]
=

K∑
k=1

∆α
kEν [Nk(T )],(2)

where ∆α
k = maxk′ c

α
k′ − cαk is the gap in CVaR between

arm k and the best arm, and Nk(t) =
∑t
s=1 1(As = k) is

the number of selections of arm k up to round t. Other no-
tions of regret have been studied for risk-averse bandits, e.g.
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computing the risk metric of the full trajectory of observed
rewards (Sani et al. (2012); Cassel et al. (2018); Maillard
(2013)), but are less interpretable.

Related work At a high level, the multi-armed bandit
literature on the CVaR is largely inspired from adapting
the popular Upper Confidence Bounds (UCB) algorithms
(Auer et al. (2002)) for bounded distributions to work un-
der this criterion, hence rely on concentration tools for the
CVaR. Two main approaches can be distinguished: using an
empirical CVaR estimate plus a confidence bound as con-
sidered in MaRaB (Galichet et al. (2013); Galichet (2015),
U-UCB (Cassel et al., 2018), or exploiting the link between
the CVaR and the CDF to build an optimistic CDF as in
CVaR-UCB (Tamkin et al., 2020), resorting to the cele-
brated Dvoretzky–Kiefer–Wolfowitz (DKW) concentration
inequality (see Massart (1990)). Indeed DKW inequality
has been used for example by Brown (2007) and Thomas
and Learned-Miller (2019) to develop concentration inequal-
ities for the empirical CVaR of bounded distributions. These
strategies provably achieve a logarithmic CVaR regret in
bandit models with bounded distributions1, with a scaling
in K log T

α2∆ where ∆ is the smallest (positive) CVaR gap ∆α
k .

However, the asymptotic optimality of these strategies is not
established. Strikingly, few works have tried to adapt to the
CVaR setting the asymptotically optimal bandit strategies
for the mean criterion that provably match the lower bound
on the regret given by (Lai and Robbins, 1985), such as
KL-UCB (Cappé et al., 2013), Thompson Sampling (TS)
(Thompson, 1933; Agrawal and Goyal, 2013; Kaufmann
et al., 2012) or IMED (Honda and Takemura, 2015). We
note that Zhu and Tan (2020) adapts TS to the slightly dif-
ferent risk-constrained setting introduced by Kagrecha et al.
(2020) for which the goal is to maximize the mean rewards
under the constraint that arms with a small CVaR are not
played too often. Unfortunately the analysis is limited to
Gaussian distributions and does not target optimality. (A TS
algorithm was also proposed by Zhu and Tan (2020) for the
mean-variance criterion.)

We believe the reason is two-fold: First, despite asymptotic
optimal strategies being appealing to improve practical per-
formances, such strategies were, until recently, relying on
assuming known parametric family (Honda and Takemura
(2010; 2015); Korda et al. (2013); Cappé et al. (2013) to
name a few), such as one-parameter exponential families,
deriving one specific algorithm for each family. Unfor-
tunately, assuming a simple parametric distributions may
not be meaningful to model complex, realistic situations.
Rather, the most accessible information to the practitioner

1Cassel et al. (2018) gives an upper bound on the proxy regret
of U-UCB, which is also valid for the smaller CVaR regret. For
completeness, we provide in Appendix F an analysis of U-UCB
specifically tailored to the CVaR regret.

is often whether or not the distribution is discrete, and for
the continuous case how it is bounded. That is typically
the case in applications such as agriculture, healthcare, or
resource management, when the reward distributions are
grounded on physical realities. Indeed the practitioner can
realistically assume that the support of the distributions is
known and bounded, with bounds that can be either natural
or provided by experts. For instance, in the use-case we
consider in section 4 the algorithm recommends planting
dates to farmers to maximize the yield of a maize field, that
is naturally bounded. Further, distributions in these settings
can have shapes that are not well captured by standard para-
metric families of distributions, as for instance they can be
multi-modal with an unknown number of modes that depend
on external factors unknown at the decision time (weather
conditions, illness, pests, . . . ). This suggests one may prefer
algorithms that can cover a variety of possible shapes for the
distributions, rather than targeting a specific known family.
UCB-type strategies assuming only boundedness are thus
handy even though not optimal.

Second, targeting asymptotic optimality for CVaR bandits
is challenging: Massart’s bound for DKW-inequality was
already a non-trivial result, solving a long-lasting open ques-
tion back at the time, and yet only provides a “Hoeffding
version" of the CDF concentration. Adapting this to work
e.g. with Kullback-Leibler, plus considering that the CVaR
writes as an optimization problem, makes the quest for a
tight analysis even more challenging, and providing regret
guarantees for a CVaR equivalent of kl-ucb and empirical
KL-UCB (Cappé et al., 2013) is an interesting direction
for future work. Looking at the CVaR community, recent
works (Kagrecha et al., 2019; Holland and Haress, 2020;
Prashanth et al., 2020) have developed new tools for CVaR
concentration. Unfortunately, they may not be adapted for
this purpose since they aim at capturing properties of heavy-
tail distributions in a highly risk-averse setup. The setting
considered in this paper is different, and applying the op-
timistic principle for CVaR bandits to achieve asymptotic
optimality may be a daunting task. This suggests the idea to
turn towards alternative methods, such as e.g. TS strategies.

As it turns out, two powerful variants of TS were introduced
recently by Riou and Honda (2020) for the mean criterion,
that enable to overcome the “parametric" limitation, in the
sense that these approaches reach the minimal achievable
regret given by the lower bound of Burnetas and Katehakis
(1996), respectively for discrete and bounded distributions.
This timely contribution opens the room to overcome the
two previous limitations and achieve the first provably opti-
mal strategy for CVaR bandit for such practitioner-friendly
assumptions.

Remark 1. In finance CVaR is often associated to heavy-
tail distributions. Other variants of bandits have been con-
sidered to deal with possibly heavy-tail distributions, or
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weak moment conditions: In (Carpentier and Valko, 2014),
the authors study regret minimization for extreme statistics
(the maximum), for Weibull of Frechet-like distributions. In
(Lattimore, 2017), a median-of-mean estimator is studied
to minimize regret for distributions with bounded kurtosis.
A CVaR strategy has been proposed for the different pure
exploration setting (Kagrecha et al., 2019; Agrawal et al.,
2020), under weak moment conditions. These works con-
sider a different setup and objective.

Contributions In this paper, we purposely focus on mini-
mizing the CVaR regret considering either distributions with
discrete, finite support, or with continuous and bounded sup-
port, as we believe this has great practical relevance and is
still a relatively unexplored topic in the literature. More pre-
cisely, we target first-order asymptotic optimality for these
(sometimes called “non-parametric") families and first de-
rive in Theorem 1 a lower-bound on the CVaR regret, adapt-
ing that of (Lai and Robbins, 1985; Burnetas and Katehakis,
1996) to the CVaR criterion. This simple result highlights
the right complexity term that should appear when deriv-
ing regret upper bounds. We then introduce in Section 2
B-CVTS for CVaR bandits with bounded support, and M-
CVTS for CVaR bandits with multinomial arms, adapting
the strategies proposed by Riou and Honda (2020) for the
CVaR. We provide in Theorem 2 and Theorem 3 the regret
bound of each algorithm, proving asymptotic optimality
of these strategies. Up to our knowledge, these are the
first results showing asymptotic optimality of a Thompson
Sampling based CVaR regret minimization strategy. As ex-
pected, adapting the regret analysis from Riou and Honda
(2020) is non-trivial; we highlight the main challenges of
this adaption in section 3.3. For instance, one of the key
challenge was to handle boundary crossing probability for
the CVaR, and another difficulty comes in the analysis of the
non-parametric B-CVTS due to regularity properties of the
Kulback-Leibler projection. In Section 4, we provide a case
study in agriculture, making the well-established DSSAT
agriculture simulator (Hoogenboom et al., 2019) available
to the bandit community, and highlight the benefits of using
strategies based on Thompson Sampling in this CVaR ban-
dit setting against state-of-the-art baselines: We compare
to U-UCB and CVaR-UCB2 as they showcase two funda-
mentally different approaches to build a UCB strategy for a
non-linear utility function. The first one is closely related to
UCB, the second one exploits properties of the underlying
CDF, which may generalize to different risk metrics. As
claimed in Tamkin et al. (2020), our experiments confirm
that CVaR-UCB generally performs better than U-UCB.
However, both TS strategies outperform UCB algorithms
that tend to suffer from non-optimized confidence bounds.
We complete this study with more classical experiments on

2MaRaB is similar to U-UCB but enjoys weaker guarantees.

synthetic data that also confirm the benefit of TS.

2. Thompson Sampling Algorithms
We present two novel algorithms based on Thompson Sam-
pling and targeting the lower bound of Theorem 1 on the
CVaR-regret, for any specified value of α ∈ (0, 1]. These
algorithms are inspired by the first algorithms based on
Thompson Sampling matching the Burnetas and Katehakis
lower bound for bounded distributions in the expectation
setting, recently proposed by Riou and Honda (2020).

Notations We introduce the notation Cα(X , p) for the
CVaR of the distribution of support X and probability
p ∈ P |X |, where Pn denotes the probability simplex of
size n. For a multinomial arm k we denote its known sup-
port Xk = (x1

k, . . . , x
Mk

k ) for some Mk ∈ N, and its true
probability vector pk. We also define N i

k(t) as the number
of times the algorithm has observed xik for arm k before
the time t. For general bounded distributions we denote νk
the distribution of arm k and introduce Xk,t the set of its
observed rewards before time t, augmented with a known
upper bound Bk for the support of νk. We further intro-
duce Dn as the uniform distribution on the simplex Pn,
corresponding to the Dirichlet distribution Dir((1, ..., 1)).

M-CVTS Thompson Sampling (or posterior sampling) is
a general Bayesian principle that can be traced back to the
work of Thompson (1933), and that is now investigated for
many sequential decision making problems (see Russo et al.
(2018) for a survey). Given a prior distribution on the ban-
dit model, Thompson Sampling is a randomized algorithm
that selects each arm according to its posterior probability
of being optimal. This can be implemented by drawing a
possible model from the posterior distribution, and acting
optimally in the sampled model. For multinomial distribu-
tion M-CVTS (Multinomial-CVaR-Thompson-Sampling),
described in Algorithm 1, follows this principle. For each
arm k, pk is assumed to be drawn from DMk

, the uniform
prior on PMk . The posterior distribution at a time t is
Dir(βk,t), with βk,t = (N i

k(t) + 1)i∈{1,...,Mk}. At time
t, M-CVTS draws a sample wk,t ∼ Dir(βk,t) for each
arm k and computes cαk,t = Cα(Xk, wk,t). Then, it selects
At = argmaxkc

α
k,t. For α = 1, this algorithm coincides

with the Multinomial Thompson Sampling algorithm of
Riou and Honda (2020).

B-CVTS We further introduce the B-CVTS algorithm (for
Bounded-CVaR-Thompson-Sampling) for general bounded
distributions. B-CVTS, stated as Algorithm 2, bears some
similarity with a Thompson Sampling algorithm, although
it does not explicitly use a prior distribution. The algorithm
retains the idea of using a noisy version of νk, obtained by
a random re-weighting of the previous observations. Hence,
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Algorithm 1 M-CVTS
Input: Level α, horizon T , K, supports X1, . . . ,XK
Init.: t← 1, ∀k ∈ {1, ...,K}, βk = (1, . . . , 1)︸ ︷︷ ︸

Mk
for t ∈ {2, . . . , T} do

for k ∈ {1, . . . ,K} do
Draw wk ∼ Dir(βk).

Compute ck,t = Cα(Xk, wk).
Pull arm At = argmaxk∈{1,...,K}ck,t.

Receive reward rt,At .
Update βAt(j) = βAt(j) + 1, for j as rt,At = xjk

at a time t the index used by the algorithm for an arm k
is simply ck,t = Cα(Xk,t, wk,t), where wk,t ∼ DNk(t) is
drawn uniformly at random in the simplex P |Xk,t|. B-CVTS
then selects the arm At = argmaxkck,t. For α = 1, this
algorithm coincides with the Non Parametric Thompson
Sampling of Riou and Honda (2020) (NPTS). NPTS can
be seen as an algorithm that computes for each arm a ran-
dom average of the past observations. Our extension to
CVAR-bandits required to interpret this operation as the
computation of the expectation of a random perturbation
of the empirical distribution, which can be replaced by the
computation of the CVaR of this new distribution. Note that
this idea generalizes beyond using the CVaR, that can be
replaced with any criterion.

Algorithm 2 B-CVTS
Input: Level α, horizon T , K, upper bounds B1, . . . , BK
Init.: t = 1, ∀k ∈ {1, ...,K}, Xk = {Bk}, Nk = 1
for t ∈ {2, . . . , T} do

for k ∈ {1, . . . ,K} do
Draw wk ∼ DNk

Compute ck,t = Cα(Xk, wk)

Pull arm At = argmaxk∈{1,...,K}ck,t.
Receive reward rt,At .
Update XAt = XAt ∪ {rt,At}, NAt = NAt + 1.

Remark 2. Interestingly, B-CVTS also applies to multino-
mial distributions (that are bounded). The resulting strategy
differs from M-CVTS due to the initialization step using the
knowledge of the support in M-CVTS.

3. Regret Analysis
In this section we prove, after defining this notion, that M-
CVTS and B-CVTS are asymptotically optimal in terms of
the CVaR regret for the distributions they cover.

3.1. Asymptotic Optimality in CVaR bandits

Lai and Robbins (1985) first gave an asymptotic lower
bound on the regret for parameteric distribution, that was
later extended by Burnetas and Katehakis (1996) to more

general classes of distributions. We present below an intu-
itive generalization of this result for CVaR bandits.

Definition 1. Let C be a class of probability distributions,
α ∈ (0, 1], and KL(ν, ν′) be the KL-divergence between
ν ∈ C and ν′ ∈ C. For any ν ∈ C and c ∈ R, we define

Kα,Cinf (ν, c) := inf
ν′∈C,ν′ 6=ν

{KL(ν, ν′) : CVaRα(ν′) ≥ c} .

Theorem 1 (Regret Lower Bound in CVaR bandits). Let
α ∈ (0, 1]. Let F = F1 × · · · × FK be a set of bandit
models ν = (ν1, . . . , νK) where each νk belongs to the
class of distribution Fk. Let A be a strategy satisfying
Rαν(A, T ) = o(T β) for any β > 0 and ν ∈ F . Then for
any ν ∈ D, for any sub-optimal arm k, under the strategy
A it holds that

lim
T→+∞

Eν [Nk(T )]

log T
≥ 1

Kα,Fkinf (νk, c?)
,

where c? = maxi∈[K] CVaRα(νi).

Using (2), this result directly yields an asymptotic lower
bound on the regret. The proof of Theorem 1 follows from
a classical change-of-distribution argument, as that of any
lower bound proof in the bandit literature. We detail it in
Appendix D.1, following the proof of Theorem 1 in Garivier
et al. (2019) originally stated for α = 1. We discuss in
Appendix D.2 how this lower bound yields a weaker regret
bound expressed in terms of the CVaR gaps (by Pinsker).

In the next section we prove that M-CVTS matches the
lower bound for the set of multinomial distribution when
the support is known, and that B-CVTS matches the lower
bound for the set of continuous bounded distribution with a
known upper bound. Hence, under these hypotheses, the two
algorithms are asymptotically optimal. Despite the recent
development in CVaR bandits literature, to our knowledge
no algorithm has been able to match this lower bound yet.
These results are of particular interest because they show
that this bound is attainable for CVaR bandit algorithms, at
least for bounded distributions.

3.2. Regret Guarantees for M-CVTS and B-CVTS

Our main result is the following regret bound for M-CVTS,
showing that it is matching the lower bound of Theorem 1
for multinomial distributions.

Theorem 2 (Asymptotic Optimality of M-CVTS). Let ν be
a bandit model with K arms, where the distribution of each
arm k ∈ {1, . . . ,K} is multinomial with known support
Xk ⊂ RMk for some Mk ∈ N. The regret of M-CVTS
satisfies

Rν(T ) ≤
∑

k:∆α
k>0

∆α
k log T

Kα,Xkinf (νk, cα1 )
+ o(log T ) .
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We then provide a similar result for B-CVTS, for bounded
and continuous distributions with a known upper bound.

Theorem 3 (Asymptotic Optimality of B-CVTS). Let ν
be a bandit model with K arms, where for each arm
k ∈ {1, . . . ,K} its distribution νk belongs to Bk, the set
of continuous bounded distributions, and its supports Xk
satisfies Xk ⊂ [0, Bk] for some known Bk > 0. Then the
regret of B-CVTS on ν satisfies

Rν(T ) ≤
∑

k:∆α
k>0

∆α
k log T

Kα,Bkinf (νk, cα1 )
+ o(log T ) .

We postpone the detailed proofs of Theorem 2 and Theo-
rem 3 respectively to Appendix B and Appendix C, and we
highlight their main ingredients in this section. First, using
Equation (2) it is sufficient to upper bound E[Nk(T )] for
each sub-optimal arm k. To ease the notation we assume
that arm 1 is optimal. Our analysis follows the general out-
line of that of Riou and Honda (2020), but requires several
novel elements that are specific to CVaR bandits. First, the
proof leverages some properties of the function Kαinf for the
sets of distributions we consider. Secondly, it requires novel
boundary crossing bounds for Dirichlet distributions that
we detail in Section 3.3.

The first step of the analysis is almost identical for the two
algorithms and consists in upper bounding the number of
selections of a sub-optimal arm by a post-convergence term
(Post-CV) and a pre-convergence term (Pre-CV). The first
term controls the probability that a sub-optimal arm over-
performs when its empirical distribution is “close" to the
true distribution of the arm, while the second term considers
the alternative case. To measure how close two distributions
are we use the L∞ distance for multinomial distributions,
while for general continuous arms we use the Levy distance
(See Appendix A for definitions and details). We state the
decomposition in Equation 3 below for a generic distance
d(Fk,t, Fk) between the empirical cdf of the arm at a time t
and its true cdf. As in Section 2 we write cαk,t for the index
assigned to arm k by the algorithm at time t. Then, for any
ε1 > 0 and ε2 > 0 we define the events

C+
t,k = {At = k, ck,t ≥ cα1 − ε1, d(Fk,t, Fk) ≤ ε2} ,
C−t,k = {At = k, ck,t < cα1 − ε1}

∪ {At = k, d(Fk,t, Fk) ≥ ε2} .

As {ck,t ≥ cα1−ε1, d(Fk,t, Fk) ≤ ε2} is the complementary
set of {ck,t < cα1 − ε1} ∪ {d(Fk,t, Fk) > ε2} we obtain

E[Nk(T )] ≤ E

[
T∑
t=1

1(C+
t,k)

]
︸ ︷︷ ︸

(Post-CV)

+E

[
T∑
t=1

1(C−t,k)

]
︸ ︷︷ ︸

(Pre-CV)

. (3)

For an arm k satisfying the hypothesis of Theorem 2, for all
ε > 0 we show that the corresponding Post-Convergence
term of M-CVTS satisfies

(Post-CV) ≤ (1 + ε) log T

Kα,Xkinf (νk, cα1 )
+O(1) , (4)

while for an arm k satisfying the hypothesis of Theorem 3,
for all ε > 0 the corresponding Post-Convergence term of
B-CVTS satisfies

(Post-CV) ≤ log T

Kα,Bkinf (νk, cα1 )− ε
+O(1) . (5)

Finally, for both algorithms the Pre-Convergence term is
asymptotically negligible for the families of distribution
they cover, namely

(Pre-CV) = O(1) . (6)

We detail these results in Appendix B and Appendix C. In
the next section we present some novel technical tools that
we introduced in order to prove these results.

3.3. Technical challenges and tools

The proofs of (4), (5) and (6) follow the outline of Riou
and Honda (2020), respectively for Multinomial Thompson
Sampling and Non Parametric Thompson Sampling. How-
ever, replacing the linear expectation by the CVaR that is
non-linear, causes several technical challenges that make
the adaptation non-trivial. This is particularly true for the
boundary crossing probabilities for Dirichlet random vari-
ables, that we define and analyze in this section. Our results
aim at replacing the Lemma 13, 14, 15 and 17 of Riou and
Honda (2020) in the proofs of Theorem 2 and Theorem 3.

Boundary crossing probabilities In this paragraph we
highlight the construction of boundary crossing probabilities
for Dirichlet random variables, which consists in providing
upper and lower bounds of some terms of the form

Pw∼Dir(β) (Cα(X , w) ≥ c) ,

for some known support X = (x1, . . . , xn), parameter β ∈
Rn+ of the Dirichlet distribution, and some real value c that
will be defined in context. We introduce the set

SαX (c) = {p ∈ Pn : Cα(X , p) ≥ c} ,

following the notations of Section 2 for Cα(X , p). Thanks
to the expression of the CVaR in Equation (1) we have

SαX (c) = ∪nm=1Sαm,X (c) , (7)
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where we defined for all m ∈ {1, . . . , n} the sets

Sαm,X (c)=

{
p ∈ Pn, xm−

1

α

n∑
i=1

pi (xm − xi)+ ≥ c

}
.

This set is closed and convex, hence SαX (c) is closed, and
is the finite union of convex sets (but is not convex). These
properties are crucial to prove the results of this section.

Bounded support size We first study the case when the
size of the support is |X | = M , for some known M ∈ N
and when the considered distributions are the frequency of
each observation in X out of n ∈ N many observations,
which we represent by the set

QMn =

{
(β, p) ∈ N∗n × PM : p =

β

n

}
.

We then express bounds for boundary crossing probabilities
on this set, in terms of n and M , where n should be con-
sidered much larger than M . Lemma 1 and 2 respectively
provide an upper and lower bound on such probabilities.

Lemma 1 (Upper Bound). For any (β, p) ∈ QMn , for any
c > Cα(X , p), it holds that

Pw∼Dir(β)(w∈SαX (c)) ≤ C1MnM/2 exp(−nKα,Xinf (p, c)) ,

for some constant C1.

Lemma 2 (Lower Bound). For any (M,n) ∈ N2 and
(β, p) ∈ QMn , if n is large enough it holds that

Pw∼Dir(β) (w ∈ SαX (c)) ≥ C2

exp
(
−nKα,Xinf (p, c)

)
n

3M
2 +1

,

for some constant C2 =
(

1√
2π

)M
e−(M+1)/12.

The details of the proofs of these two results are to be found
in Appendix E. Lemma 1 hinges on the Lemma 13 of Riou
and Honda (2020) (see Appendix E), while the proof of
Lemma 2 shares the core idea of the proof sketch of their
Lemma 14. For both results we exploit the convexity of the
sets Sαm,X (c) (equation (7)). Lemma 2 is used in the proof
of M-CVTS only. On the other hand, Lemma 1 is a core
component of the proof of both M-CVTS and B-CVTS due
to the quantization arguments used in the latter.

General support size We now detail some results that are
specifically designed for the regret analysis of B-CVTS. For
this reason, we consider a support X = (x1, . . . , xn) and
the Dirichlet distribution Dn defined in Section 2. Here
we focus on the Dirichlet sample, hence the support X is
known. We further denote uX the uniform distribution on
X , and Cα(X ) its CVaR. We first establish an upper bound.

Lemma 3. Let X = (x0, . . . , xn) ⊂ [0, B]n+1 for some
known B > 0 and n ∈ N, assuming that x0 = B. For any
c > Cα(X ), and any η > 0 small enough it holds that

Pw∼Dn(Cα(X , w) ≥ c) ≤ B

η
exp−N(Kαinf (uX ,c)−ηC(B,α,c)) ,

for some constant C(B,α, c).

We prove this result in Appendix E. It relies on deriving the
dual form of the functional Kαinf for discrete distributions,
that is a result of independent interest.

Lemma 4. If a discrete distribution F supported on X
satisfies EF

[
(y−c)α
(y−X)+

]
< 1, then for any c > CVaRα(F ) it

holds that

Kαinf(F, c) = inf
y∈X

max
λ∈[0, 1

α(y−c) )
g(y, λ,X) ,

with g(y, λ,X) = EF [log(1− λ((y − c)α)− (y −X)+)].

If EF
[

(y−c)α
(y−X)+

]
≥ 1, then for any c > CVaRα(F )

Kαinf(F, c) = inf
y∈X

EF
(

(y −X)+

(y − c)α

)
.

The detailed proof of this result is provided in Appendix D,
where we also show that this expression matches the result
of Honda and Takemura (2010) for α = 1, and is similar
to the one obtained by (Agrawal et al., 2020)[Theorem 6]
for a more complex set of distributions (which is hence less
explicit). Furthermore, Agrawal et al. (2020)[Lemma 4]
prove the continuity of Kα,Xinf under this condition, which
is required in several part of our proofs. We propose a
simplified proof of this result for the restriction to bounded
distribution in Appendix D.

The last result we report in this section is a lower bound on
the probability that a noisy CVaR in B-CVTS exceeds the
CVaR of the empirical distribution.

Lemma 5. Assume that X = (x1, . . . , xn) and x1 < · · · <
xn, then xdnαe is the empirical α quantile of the set and x1

its minimum, and it holds that

Pw∼Dn (Cα(X , w) ≥ Cα(X )) ≥ 1

25n3
(xdnαe − x1) .

This result is proved in Appendix E. Let us remark that in
all the results presented in this section we consider a fixed
support X , while in B-CVTS the support is random and
evolves with the time. This causes several challenges in the
proof. In particular, the use of Lemma 5 in Appendix C.2.2
is not sufficient in itself to conclude and additional work is
required to handle the random support.
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Remark 3. The results presented in this section contains
most of the difficulty induced by the replacement of the ex-
pectation by the CVaR in the proofs. Extending these results
to other criterion is an interesting future work and may
help generalize the Non Parametric Thompson Sampling
algorithms to broader settings.

4. Experiments
In this section we report the results of experiments on the
algorithms presented in the previous sections, first on syn-
thetic examples, and then on a use-case study in agriculture
based on the DSSAT agriculture simulator.

4.1. Preliminary Experiments

We first performed various experiments on synthetic data in
order to check the good practical performance of M-CVTS
and B-CVTS on settings that are simple to implement and
are good illustrative examples of the performance of the
algorithms. Due to space limitation, we report a complete
description of the experiments and and an analysis of the
results in Appendix G. We tested the TS algorithms on speci-
fied difficult instances and on randomly generated problems,
against U-UCB and CVaR-UCB.

As an example of experiment with multinomial arms, we
report in Table 1 the results of an experiment with 103 ran-
domly generated problems with 5 arms drawn uniformly
at random in P |X |, where X = [0, 0.1, 0.2, . . . , 1], for
α ∈ {10%, 50%, 90%} and an horizon 104. These experi-
ments confirm the benefits of TS over UCB approaches, as
M-CVTS significantly outperforms its competitors for all
levels of the parameter α. We also tested the algorithms
with fixed instances (see Tables 5-8), with the same results,
and further illustrated the asymptotic optimality of M-CVTS
in Figures 7 and 8 by representing the lower bound pre-
sented in Section 3 along with the regret of the algorithm in
logarithmic scale.

We also tested B-CVTS on different problems, using trun-
cated gaussian mixtures (TGM). The results are presented
in Tables 9-12, and again show the merits of the TS ap-
proach. We also performed an experiment with a small
level α = 1% (Table 13) and show that B-CVTS keeps the
same level of performance in this case, while the other algo-
rithm stay in the linear regime for the horizon we consider.
Finally, we also experimented more arms (K = 30) and
randomly generated TGM problems and report the results
in Table 2. The means and variance of each arm satisfy
(µk, σk) ∼ U([0.25, 1]10× [0, 0.1]10), and the probabilities
of each mode are drawn uniformly, pk ∼ D19.

These very good results with synthetic data and its theoreti-
cal guarantees motivate using the B-CVTS algorithm in the
real-world application we introduce in the next section.

Table 1: CVaR regret at time T = 104, averaged over 103

random instances with 5 multinomial arms supported on
X = [0.1, 0.2, . . . , 1]

α U-UCB CVAR-UCB M-CVTS

10% 633.1 219.7 38.8
50% 368.8 187.9 48.9
90% 188.5 186.2 42.7

Table 2: Results for TGM arms with 10 modes, at T =
10000 averaged over 400 random instances with K = 30,
α = 5% (results: mean (std)).

T U-UCB CVaR-UCB B-CVTS

10000 2149.9 (263) 2016.0 (265) 210.9 (6.4)
20000 4276.4 (538) 3781.3 (521) 237.1 (15.4)
40000 8493.4 (1085) 6894.1 (985) 263.5 (17.9)

4.2. Bandit application in Agriculture

Motivation Let us consider a farmer who must decide on
a planting date (action) for a rainfed crop. Farmers have
been reported to primarily seek advice that reduces uncer-
tainty in highly uncertain decision making (McCown, 2002;
Hochman and Carberry, 2011; Evans et al., 2017). Planting
date is an example of such a decision as it will influence
the probabilities of favorable meteorologic events during
crop cultivation. These events are highly uncertain due to
the length of crop growing cycles (e.g. 3 to 6 months for
grain maize). For instance, because of the stochastic nature
of the rainfalls and temperatures, a farmer will observe a
range of different crop yields from year to year for the same
planting date, all other technical choices being equal. Thus,
assuming that the environment is stationary, each planting
date corresponds to an underlying, unknown yield distribu-
tion, which can be modeled as an arm in a bandit problem.
Depending on her profile, a farmer may be more or less
risk averse, and the Conditional Value at Risk can be used
to personalize her level of risk-aversion. For instance, a
small-holder farmer looking for food security may seek to
avoid very poor yields compromising auto-consumption (e.g
α ≤ 20%), while a market-oriented farmer may be more
prone to risky choices in order to increase her profit but still
not risk neutral (e.g α = 80%). Yield distributions are sup-
posed to be bounded. Indeed, a finite yield potential can be
defined under non-stressing conditions for a given crop and
environment (Evans and Fischer, 1999; Tollenaar and Lee,
2002). Observed yields can be modeled as following Von
Liebig’s law of minimum (Paris, 1992): limiting factors will
determine how much of the yield potential can be expressed.
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Figure 1: Empirical simulated yields and respective CVaRs
at 20% estimated after 106 samples in DSSAT environment.

Setting Planting date decision-making support requires
extensive testing prior to any real-life application, due the
potential impact of wrong action-making, particularly in
subsistence farming. For this reason, we consider the prob-
lem of facing many times the decision of a planting date
in the DSSAT3 simulator, to make an in silico decision.
DSSAT, standing for Decision Support System for Agrotech-
nology Transfer, is a world-wide crop simulator, supporting
42 different crops, with more than 30 years of development
(Hoogenboom et al., 2019). We specifically address maize
planting date decision, as maize is a crucial crop for global
food security (Shiferaw et al., 2011). Each simulation is
assumed to be realistic, and starts from the same field ini-
tial conditions as ground measured. The simulator takes
as input historical weather data, field soil measures, crop
specific genetic parameters and a given crop management
plan. Modeling is based on simulations of atmospheric, soil
and plants compartments and their interactions. In the con-
sidered experiments, after a decision is made on planting
date in the simulator, daily stochastic meteorologic features
are generated according to historical data (Richardson and
Wright, 1984) and injected in the complex crop model. At
the end of crop cycle, a maize grain yield is measured to eval-
uate decision-making. We parameterized the crop-model
under challenging rainfed conditions on shallow sandy soils,
i.e. with poor water retention and fertility. Such experiment
intends to be representative of realistic conditions faced
by small-holder farmers under heavy environmental con-
straints, such as in Sub-Saharan Africa. Thus, this setting
can help picturing how CVaR bandits may perform in real-
world conditions. For the sake of the experiments, we built
a bandit-oriented Python wrapper to DSSAT that we made
available4 to the bandit community for reproducibility.

3DSSAT is an Open-Source project maintained by the DSSAT
Foundation, see https://dssat.net/.

4https://github.com/rgautron/DssatBanditEnv

Experiments We test bandit performances on the 4 armed
DSSAT environment described in Table 3. To illustrate the
non-parametric nature of these distributions, we report in
Figure 1 estimations of their density obtained with Monte-
Carlo simulations, as well as of their CVaRs. The resulting
distributions are typically multi-modal, with one of their
mode very close to zero (years of bad harvest), and with
upper tails that cannot be properly characterized. However
the practitioner can realistically assume that the distributions
are upper-bounded, due to the physical constraints of crop-
farming. The yield upper-bound is set to 10 t/ha thanks to
expert knowledge for the considered conditions.

Table 3: Empirical yield distribution metrics in kg/ha esti-
mated after 106 samples in DSSAT environment

day (action). CVaRα
5% 20% 80% 100% (mean)

057 0 448 2238 3016
072 46 627 2570 3273
087 287 1059 3074 3629
102 538 1515 3120 3586

The presented DSSAT environment advocates for the use
of algorithms specifically designed for CVaR bandits, as
the optimal arm can change depending on the value of the
parameter α. Our experiment consists in running 64 trajecto-
ries for three algorithms U-UCB, CVaR-UCB and B-CVTS
defined in Section 2. Experiments are carried out with an
horizon of 104 time steps, and we compare the results for
each algorithm for α ∈ {5%, 20%, 80%} to see how the
parameter impacts their performance. Indeed we want a
strategy to perform well on all α choices, allowing to freely
model any farmer’s risk aversion level. As shown in Figure 2
and Table 4, B-CVTS appears to be consistently better than
its UCB counterparts in DSSAT environment for all tested
α values, which is encouraging for real-life applications.

Table 4: Empirical yield regrets at horizon 104 in t/ha in
DSSAT environment, for 1040 replications. Standard devia-
tions in parenthesis.

α U-UCB CVaR-UCB B-CVTS
5% 3128 (3) 760 (14) 192 (11)
20% 4867 (11) 1024 (17) 202 (10)
80% 1411 (13) 888 (13) 287 (12)

Further experiments are reported in Appendix G. In particu-
lar we increase the number of arms, and empirically study
the effect of over-estimating the support upper-bound: our
results show that a "prudent" bound has little effect of the
performance of the algorithms in the settings we consider.
This property is of particular interest for the practitioner,

https://dssat.net/
https://github.com/rgautron/DssatBanditEnv
https://dssat.net/
https://github.com/rgautron/DssatBanditEnv
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as a proper tuning of the support upper bound is the main
limitation of the use of B-CVTS (and all bandit algorithms
available for this problem). In most applications grounded
on physical reality, the availability of such prudent upper-
bound estimate is likely, and sufficient to ensure the practical
performance of the B-CVTS algorithm.
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Figure 2: Regret comparison in DSSAT environment, aver-
aged over 1040 experiment replications.

Perspectives This first set of experiments using a chal-
lenging realistic crop simulator is promising, and motivates
to further investigate the use of B-CVTS algorithm for crop-
management support and other problems that can be mod-
eled as CVaR bandits. B-CVTS enjoys appealing theoretical
guarantees, and thanks to its simplicity and competitive
empirical performances may be a good candidate for prac-
titioners. In order to address real-world crop-management
challenges, many questions remain to be considered, e.g.
how to optimally generate mini-batches of recommenda-
tions to an ensemble of farmers in a semi-sequential proce-
dure (in order to account for the long feedback time), how to
incorporate distribution priors on crop-management options
that could be pre-learnt in silico and refining them adaptively

in the real world (thus, minimizing random exploration in
the real world), how to include contextual information such
as soil characteristics and local weather forecasts, or how
handle non-stationarity, incorporating climate change pro-
gressive impact on an optimal planting date. Furthermore,
the simplicity of the Non-Parametric Thompson Sampling
algorithms make them appealing for generalization to other
risk-aware settings, e.g risk-constrained (maximizing the
mean under a condition on the CVaR) or with other risk met-
rics (mean-variance, entropic risk, etc). All of these open
questions make interesting challenges for future works.
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A. Notations for the proofs
In this section, we introduce for convenience several notations that are used in the regret analysis.

A.1. General Notations

Model for multinomial arms In section B we denote by (X1, . . . ,XK) the supports of (ν1, . . . , νK), where Xk =

(xk1 , . . . , x
k
Mk

) for some integer Mk. We also denote PM = {p ∈ RM : ∀i, pi ≥ 0,
∑M
j=1 pj = 1} the probability simplex

in RM+1. Any multinomial distribution ν is characterized by its support and its probability vector pν : ν = (X , pν) with
pν ∈ P |X |. Each arm νk is associated with a probability vector pk ∈ PM .

Model for continuous bounded distributions In section C we assume that each arm k is supported in [0, Bk] for some
known value Bk > 0. We could assume supports of the form [ak, bk] where only an upper bound on each bk is known
without loss of generality in the result, but we use this formulation for the sake of simplicity. We consider the set of
continuous distributions in [0, Bk], that we write CBk . We still denote PM = {p ∈ RM : ∀i, pi ≥ 0,

∑M
j=1 pj = 1} the

probability simplex in RM . The distribution of an arm k is νk, and its CVaR at a level α is denoted cαk .

Notations for the CVaR In the proofs in section of section B and section C we will encounter three different CVaR
formulations for which we propose convenient notations,

• CVaRα(F ) for the CVaR of a distribution with a specified cumulative distribution function F .

• Cα(X , w) for the CVaR of a discrete random variable of support X ⊂ [0, B] associated with a probability vector
w ∈ P |X |. According to our previous notation, Cα(X , w) = CVaRα (Fw), where for all y ∈ R,

F (y) =
1

|X |
∑
x∈X

wx1(y ≤ x) .

• Cα(X ) the CVaR of the uniform distribution on the discret support X , which shortens the notations for the CVaR of

the empirical distributions: Cα(X ) = Cα(X , 1N ) where 1N =

(
1

N
, . . . ,

1

N

)
︸ ︷︷ ︸

Nterms

.

We also introduce cαk = CVaRα(Fk) the CVaR of each arm’s distribution, further assuming without loss of generality that

cα1 = argmax
k∈{1,...,K}

cαk .

Algorithm Both M-CVTS and B-CVTS can be formulated as an index policy, that is

At = argmax
k∈[K]

cαk,t,

where cαk,t is the index used in round t. We recall that Nk(t) =
∑t
s=1 1(As = k) denotes the number of selections of

arms k. We define the σ-field Ft = {Aτ , rAτ for τ = {1, . . . , t}}. In particular, knowing Ft allows to know Nk(t) and the
history of all arms available up to time t (i.e. all observations drawn before and including t).

Distances We define for multinomial distributions with same support X the distance

d : P |X | × P |X | → R+ : (p, q)→ ||p− q||∞ = sup
m∈{1,...,|X |}

|pm − qm| .

We also introduce the notation DL(F,G) for the Levy distance between two distributions with cdf F , and G. Namely, if
two distributions are supported in [0, B] for some B > 0



Optimal Thompson Sampling strategies for support-aware CVaR bandits

DL(F,G) = inf {ε > 0 : ∀x ∈ [0, B], F (x− ε)− ε ≤ G(x) ≤ F (x+ ε) + ε} .

Furthermore, we recall the result from (Riou and Honda, 2020) stating that for two distributions of cdf F and G,

DL(F,G) ≤ ||F −G||∞

A.2. Specific notations for multinomial arms

We introduce for multinomial arms Nm
k (t) as the number of times an element xm has been observed during these pulls,

so that Nk(t) =
∑Mk

m=1N
m
k (t). The Dirichlet posterior distribution given the observation after t rounds is then Dir(βk,t)

where βk,t = (1 +N1
k (t− 1), 1 +N1

k (t− 1), . . . , 1 +NMk

k (t− 1)). With this notation, the index is

cαk,t = Cα (Xk, wk,t) where wk,t ∼ Dir(βk,t).

We denote by βk,t the parameter of the Dirichlet distribution sampled at round t for arm k, and by pk,t ∈ PMk the mean
of this Dirichlet distribution: pk,t = 1

Nk(t−1)+Mk
βk,t. Observe that this probability vector can also be viewed as a biased

version of the empirical probability distribution of arm k.

To ease the notation, we denote by X = (x1, . . . , xM ) the support of arm 1, while the support of any sub-optimal arm k is
denoted by Xk = (xk1 , . . . , x

k
Mk

).

A.3. Notations for continuous arms

For continuous arms we simply write X kn the history of observations available after n pulls of armk, Xk
0 , X

k
1 , X

k
2 , . . . , X

k
n

in the order they have been collected, including as first term Xk
0 = Bk, the upper bound of the support of k considered by

the strategy. When considering (optimal) arm 1 we omit the exponent k to simplify notations. The Dirichlet distributions
that we consider in this case are always of the form Dir((1, . . . , 1)), where the size of the mean vector depends on the
number of observation. We recall that this distribution is the uniform distribution on a simplex of fixed size N , and its
average is the vector

(
1
N , . . . ,

1
N

)
. We denote this distribution DN to simplify the notations.

B. Proof of Theorem 2 : analysis of M-CVTS with multinomial arms
Thanks to Equation (3) presented in Section 3, the proof of Theorem 2 can be obtained by proving Equation (4) and
Equation (6) for multinomial arms distributions. This consists in upper bounding the pre-convergence (Pre-CV) and
post-convergence (Post-CV) terms presented in section 3. In this section we use the L∞ distance presented in Section A.

B.1. Proof of Equation (4) : Upper Bound on the Post-Convergence term

We upper bound the term (Post-CV) = E
[∑T

t=1 1(At = k, cαk,t ≥ cα1 − ε1, d(pk,t, pk) ≤ ε2)
]
, where pk,t =

βk,t
Nk(t−1) is

the probability vector associated with the empirical distribution of an arm k, i.e the frequency of each item of the support
Xk in the history of arm k. We recall that this former quantity is biased because of the initialization step which set
βk,0 = (1, . . . , 1) and N i

k(0) = 1 (introducing the fictitious time t = 0 just before the algorithms starts). For any constant
n0(T ) we have

(Post-CV) ≤E

[
T∑
t=1

1(At = k, cαk,t ≥ cα1 − ε1, d(pk,t, pk) ≤ ε2)

]

≤
T∑
t=1

E
[
1(At = k,Nk(t− 1) ≤ n0(T ), cαk,t ≥ cα1 − ε1, d(pk,t, pk) ≤ ε2)

]
+

T∑
t=1

E
[
1(At = k,Nk(t− 1) ≥ n0(T ), cαk,t ≥ cα1 − ε1, d(pk,t, pk) ≤ ε2)

]
.
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The first term is upper bounded by n0(T ) as the event (At = k,Nk(t− 1) ≤ n0(T )) can occur at most n0(T ) times. So we
have

(Post-CV) ≤n0(T ) +

T∑
t=1

E
[
1(At = k,Nk(t− 1) ≥ n0(T ), cαk,t ≥ cα1 − ε1, d(pk,t, pk) ≤ ε2)

]
≤n0(T ) +

T∑
t=1

E
[
1(Nk(t− 1) ≥ n0(T ), cαk,t ≥ cα1 − ε1, d(pk,t, pk) ≤ ε2)

]
≤n0(T ) +

T∑
t=1

E
[
1 (Nk(t− 1) ≥ n0(T ), d(pk,t, pk) ≤ ε2)× E

[
1
(
cαk,t ≥ cα1 − ε1

)
|Ft−1

]]
=n0(T ) +

T∑
t=1

E
[
1 (Nk(t− 1) ≥ n0(T ), d(pk,t, pk) ≤ ε2)× Pw∼Dir(βk,t) (Cα(Xk, w) ≥ cα1 − ε1)

]
,

where we upper bounded 1(At = k) by 1, so that 1
(
cαk,t ≥ cα1 − ε1

)
is the only term that is not Ft−1-measurable, and

then used the law of total expectation. Now we can use Lemma 1 to control the probability term inside the expectation by

Pw∼Dir(βk(t)) (Cα(Xk, w) ≥ c
α
1 − ε1) ≤ C1Mk(Nk(t− 1) +Mk)

Mk
2 exp

(
−(Nk(t− 1) +Mk)Kα,Xkinf (pk,t, c

α
1 − ε1)

)
.

At this stage, our objective is to remove the randomness in this upper bound in order to bound uniformly the terms inside the
expectation. To do this, we will use the fact that d(pk,t, pk) ≤ ε2 and Nk(t− 1) ≥ n0(T ) together with the continuity of
the function Kα,Xkinf in its second argument, established in Lemma 6 defined in Appendix D.3.

Let ε3 ∈ (0,Kα,Xkinf (pk,t, c
α
1 )). There exists by continuity small enough values of ε1 and ε2 such that, if d(pk,t, pk) ≤ ε2,

Kα,Xkinf (pk,t, c
α
1 − ε1) ≥ Kα,Xkinf (pk, c

α
1 − ε1)− ε3

4
≥ Kα,Xkinf (pk, c

α
1 )− ε3

2
,

hence

D := (Nk(t− 1) +Mk)
Mk
2 exp

(
−(Nk(t− 1) +Mk)Kα,Xkinf (pk,t, c

α
1 − ε1)

)
≤ (Nk(t− 1) +Mk)

Mk
2 exp

(
−(Nk(t− 1) +Mk)(Kα,Xkinf (pk, c

α
1 )− ε3 /2)

)
.

Using the fact that for any b > 0 and b > ε > 0 there exists a constantC ′ such that ∀t > 0: t exp(−bt) ≤ C ′ exp(−t(b−ε)),
we further get

D ≤ C ′ exp
(
−(Nk(t− 1) +Mk)(Kα,Xkinf (pk, c

α
1 )− ε3)

)
≤ C ′ exp

(
−(n0(T ) +Mk)(Kα,Xkinf (pk, c

α
1 )− ε3)

)
,

provided that Nk(t− 1) ≥ n0(T ).

Putting things together, we proved that for every ε3 ∈ (0,Kα,Xkinf (pk,t, c
α
1 )), if ε1 and ε2 are small enough, then there exists

a constant C ′1 > 0 such that

(Post-CV) ≤n0(T ) +

T∑
t=1

C ′1 exp
(
−(n0(T ) +Mk)(Kα,Xkinf (pk, c

α
1 )− ε3)

)
≤n0(T ) + TC ′1 exp

(
−(n0(T ) +Mk)(Kα,Xkinf (pk, c

α
1 )− ε3)

)
.

Choosing n0(T ) = log T

Kα,Xkinf (νk,cα1−ε1)−ε3
− (Mk + 1) yields the upper bound

(Post-CV) ≤ log T

Kα,Xkinf (pk, cα1 )− ε3

+O(1).
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Finally, we have shown that for any ε0 > 0, if ε1 and ε2 are small enough, then

(Post-CV) ≤ (1 + ε0) log T

Kα,Xkinf (pk, cα1 )
+O(1),

which proves Equation (4).

B.2. Proof of Equation (6): Upper Bound on the Pre-Convergence term for multinomial distributions

In this section, we upper bound the term (Pre-CV) = E
(∑T

t=1 1(At = k, {cαk,t < cα1 − ε1 ∪d(pk,t, pk) > ε2})
)

.

We first decompose this term into

(Pre-CV) ≤ E

(
T∑
t=1

1(At = k, cαk,t < cα1 − ε1)

)
+ E

(
T∑
t=1

1(At = k, d(pk,t, pk) > ε2)

)
.

Let us remark that the second term does not feature any CVaR, hence we can directly use the upper bound derived by (Riou
and Honda, 2020) to get that, for any ε2 > 0,

E

(
T∑
t=1

1(At = k, d(pk,t, pk) > ε2)

)
≤ KM

(
2M

ε2
+

2

ε2
2

)
.

Hence, it remains to upper bound the term

A := E

(
T∑
t=1

1(At = k, cαk,t < cα1 − ε1)

)

We write

A ≤E

[
T∑
t=1

1(cαAt,t < cα1 − ε1)

]

≤
T∑
t=1

T∑
n=1

E
[
1(cαAt,t < cα1 − ε1, N1(t) = n)

]
≤

T∑
m=1

T∑
n=1

E

[
1

(
T∑
t=1

1(cαAt,t < cα1 − ε1, N1(t) = n) ≥ m

)]
,

where we used as in (Riou and Honda, 2020) that for any series of events (Et) it holds that

T∑
t=1

1(Et) ≤
T∑

m=1

1

(
T∑
t=1

1(Et) ≥ m

)
.

We then introduce a random sequence (τni )i∈N where τni ∈ R ∪ {+∞} is the i-th time at which the event {maxj>1 c
α
j,t≤

cα1−ε1, N1(t)=n} holds. In order to ensure that this event occurs at least m times, then we need 1) that τni ≤ +∞ for all
i ≤ m, and 2) cα1,τni ≤ c

α
1 − ε1 for all i ≤ m, otherwise arm 1 would be drawn. Hence, we have the following inclusion of

events {
T∑
t=1

1(cαAt,t < cα1 − ε1, N1(t) = n) ≥ m

}
⊂
{
τni < +∞, cα1,τni ≤ c

α
1 − ε1 ∀i ∈ {1, . . . ,m}

}
.

We then use the following arguments, for a fixed n: 1) since arm 1 has been drawn n times at all (finite) time steps τni , the
random variables β1,τni

for i such that τni <∞ are all equal to some common value βn, which is such that βn − 1 follows a
multinomial distribution Mult(n, p1). 2) the cα1,τni are independent conditionally to βn and follow a Dir(βn) distribution.
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Therefore, we write

A ≤
T∑
n=1

T∑
m=1

E

[
m∏
i=1

1
(
τni < +∞, cα1,τni ≤ c

α
1 − ε1

)]

≤
T∑
n=1

T∑
m=1

Eβ−1∼Mult(n,p1)

[
m∏
i=1

Pwi∼Dir(β) (Cα(X , wi) ≤ cα1 − ε1)

]

≤
T∑
n=1

T∑
m=1

Eβ−1∼Mult(n,p1)

[
Pw∼Dir(β) (Cα(X , w) ≤ cα1 − ε1)

m]
≤

T∑
n=1

Eβ−1∼Mult(n,p1)

[
T∑

m=1

Pw∼Dir(β) (Cα(X , w) ≤ cα1 − ε1)
m

]

≤
T∑
n=1

Eβ−1∼Mult(n,p1)

[ Pw∼Dir(β) (Cα(X , w) ≤ cα1 − ε1)

1− Pw∼Dir(β) (Cα(X , w) ≤ cα1 − ε1)

]
.

Thank to this bound, we have transformed our problem into the study of properties of the Dirichlet distribution. Similarly,
we may now upper bound the last term in the above inequality by considering different regions to which the mean of the
Dirichlet distribution – that is, β

n+M – belongs. However, in order to account for a general risk level α, the analysis is more
intricate as we need to split the simplex into sub-spaces defined by different values of the CVaR, not the mean. This requires
to establish new boundary crossing probabilities involving those sub-spaces, which we provide now.

We decompose the upper-bound on A into A ≤ A1 +A2 +A3, where:

• A1 =
∑T
n=1 Eβ−1∼Mult(n,p1)

[
Pw∼Dir(β)(Cα(X ,w)≤cα1−ε1)

1−Pw∼Dir(β)(Cα(X ,w)≤cα1−ε1)
1
(
Cα

(
X , β

n+M

)
≥ cα1 − ε1 /2

)]
• A2 =

∑T
n=1 Eβ−1∼Mult(n,p1)

[
Pw∼Dir(β)(Cα(X ,w)≤cα1−ε1)

1−Pw∼Dir(β)(Cα(X ,w)≤cα1−ε1)
1
(
cα1 − ε1 ≤ Cα

(
X , β

n+M

)
≤ cα1 − ε1 /2

)]
• A3 =

∑T
n=1 Eβ−1∼Mult(n,p1)

[
Pw∼Dir(β)(Cα(X ,w)≤cα1−ε1)

1−Pw∼Dir(β)(Cα(X ,w)≤cα1−ε1)
1
(
Cα

(
X , β

n+M

)
≤ cα1 − ε1

)]
.

We now upper bound each of these three terms by a constant, for any value of ε1.

B.2.1. UPPER BOUND ON A1

This term is the easiest to control. Indeed the set {p ∈ PM : Cα(X , p) ≤ cα1 − ε1} is closed and convex, hence we can
apply the boundary crossing probability of Lemma 13 in (Riou and Honda, 2020) on this subset and write

Pw∼Dir(β) (Cα(X , w) ≤ cα1 − ε1) ≤ C1(n+M)
M
2 exp

(
−(n+M)KL

(
β

n+M
,p∗β

))
,

with p∗β = argmin
p:Cα(X ,p)≤cα1−ε1

KL( β
n+M , p). Now the quantity

δ = inf
q:Cα(X ,q)≥cα1−ε1 /2
p:Cα(X ,p)≤cα1−ε1

KL(q, p)

satisfies δ > 0 due to the following argument: the infimum of the continuous function (q, p) 7→ KL(q, p) on a compact
set is necessarily achieved in a point (q∗, p∗). Assuming δ = 0 yields q∗ = p∗ while Cα(X , q∗) ≥ cα1 − ε1 /2 and
Cα(X , p∗) ≤ cα1 − ε1 which is not possible as ε1 > 0. Hence, if the event

{
Cα

(
X , β

n+M

)
≥ cα1 − ε1 /2

}
holds, one has

Pw∼Dir(β) (Cα(X , w) ≤ cα1 − ε1) ≤ C1(n+M)
M
2 exp (−(n+M)δ) .
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For n ≥ n1 large enough so that C1(n+M)M/2 exp(−(n+M)δ) < 1 it follows that

A1 ≤ n1 +

T∑
n=n1+1

Eβ−1∼Mult(n,p)

(
1(Cα(X , q) ≥ c1 − ε1 /2)

C1(n+M)
M
2 exp(−(n+M)δ)

1− C1(n+M)
M
2 exp(−(n+M)δ)

)
.

Furthermore, for any γ > 1, there exist some nγ satisfying ∀n ≥ nγ , 1

1−C1(n+M)
M
2 exp(−(n+M)δ)

≤ γ, therefore:

A1 ≤max(n1, nγ) +

T∑
n=max(n1,nγ)+1

Eβ−1∼Mult(n,p1)

(
γ1(Cα(X , q) ≥ c1 − ε1 /2)C1(n+M)

M
2 exp(−(n+M)δ)

)

≤max(n1, nγ) +

T∑
n=max(n1,nγ)+1

γC1(n+M)
M
2 exp(−(n+M)δ),

and the right-hand side can be upper bounded by a constant.

B.2.2. UPPER BOUND ON A2

For the term A2 we ignore the numerator and hence study

A2 ≤
T∑
n=1

Eβ−1∼Mult(n,p)

(
1

(
cα1 − ε1 ≤ Cα

(
X , β

n+M

)
≤ cα1 − ε1 /2

)
1

Pw∼Dir(β)(Cα(X , w) ≥ cα1 − ε1)

)
.

Using Lemma 2 we obtain

Pw∼Dir(β)(Cα(X , w) ≥ cα1 − ε1) ≥ C2

(n+M)
3M
2 +1

exp

(
−(n+M)Kα,Xinf

(
β

n+M
, cα1 − ε1

))
.

Now we note that, by definition, Kα,Xinf

(
β

n+M , cα1 − ε1

)
= 0 if cα1 − ε1 ≤ Cα

(
X , β

n+M

)
, so the exponential term is equal

to 1 in that case, leading to

A2 ≤
T∑
n=1

Eβ−1∼Mult(n,p)

[
1

(
cα1 − ε1 ≤ Cα

(
X , β

n+M

)
≤ cα1 − ε1 /2

)
C−1

2 (n+M)3M/2+1

]

≤
T∑
n=1

C−1
2 (n+M)3M/2+1Pβ−1∼Mult(n,p)

(
Cα

(
X , β

n+M

)
≤ cα1 − ε1 /2

)
.

To conclude, we make use of a concentration inequality for the empirical CVaR derived from Brown’s inequality (Brown,
2007). However, to express the probability in the right-hand side in terms of the CVaR of an empirical distribution, we need
to handle the bias of β induced by the initialization step. For this we use the fact that for any integers nk,M :∣∣∣∣nkn − nk + 1

n+M

∣∣∣∣ =
1

n+M

∣∣∣nk
n
M − 1

∣∣∣ ≤ M

n+M
.

As a direct consequence, when n is large enough the biased empirical distribution β
n+M can be made as close to the empirical

distribution β−1
n as we want. Thanks to Lemma 7 we indeed get∣∣∣∣Cα(X , β

n+M

)
− Cα

(
X , β − 1

n

)∣∣∣∣ ≤ M2xM
α(n+M)

.

So for n ≥ n′ large enough it holds that

Pβ−1∼Mult(n,p)

(
Cα

(
X , β

n+M

)
≤ cα1 − ε1 /2

)
≤ Pβ−1∼Mult(n,p)

(
Cα

(
X , β − 1

n

)
≤ cα1 − ε1 /3

)
.
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We are now ready to apply Lemma 9 (Brown inequality) in Appendix F, which yields

Pβ−1∼Mult(n,p)

(
Cα

(
X , β − 1

n

)
≤ cα1 − ε1 /3

)
≤ exp

(
−n2α2 ε2

1

9

)
.

This entails that we can upper bound A2 by a constant:

A2 ≤
T∑
n=1

C−1
2 (n+M)3M/2+1 exp

(
−n2α2 ε2

1

9

)
.

We remark that the assumption considered by Brown’s inequality requires the random variables to be both positive and
bounded. For instance, Prashanth L et al. (2019)[Theorem 3.3] proved that a similar result (i.e an exponential inequality
with a scaling in nα2 ε2) hold for random variables that are non necessarily positive; their concentration bound is a little
more complicated. Hence, we work with Brown’s inequality in this proof for the sake of simplicity but our algorithm does
not actually require the variables to be positive. Furthermore, note that Brown’s inequality is not used here in order to
control the first order terms of our regret bound, hence we do not focus on obtaining the tightest concentration bounds for
the concentration of the empirical CVaR, as it only affects second order terms.

B.2.3. UPPER BOUND ON A3

Similarly to what we presented in the previous section we write

A3 ≤
T∑
n=1

Eβ−1∼Mult(n,p)

(
1

(
Cα

(
X , β

n+M

)
< cα1 − ε1

)
1

Pw∼Dir(β)(Cα(X , w) ≥ cα1 − ε1)

)
and use Lemma 2 in order to lower bound the probability in the denominator:

A3 ≤
T∑
n=1

C−1
2 (n+M)M/2+MEβ−1∼Mult(n,p)

[
1

(
Cα

(
X , β

n+M

)
< cα1 − ε1

)
× exp

(
(n+M)Kα,Xinf

(
β

n+M
, cα1 − ε1

))]
.

We now have to compute explicitly the term in expectation, using the fact that β − 1 follows a multinomial distribution
Mult(n, p). We upper bound this probability as follows

PX∼Mult(n,p)(X = β − 1) =
n!

(β0 − 1)! . . . (βM − 1)!

M∏
i=1

pβi−1
i

=
n!

(β0 − 1)! . . . (βM − 1)!
exp

(
M∑
i=0

(βi − 1) log(pi)

)

=
n!

(β0 − 1)! . . . (βM − 1)!
exp

(
M∑
i=1

(βi − 1) log

(
βi − 1

n

)
−

M∑
i=1

(βi − 1) log

(
βi − 1

npi

))

=
n!

(β0 − 1)! . . . (βM − 1)!
exp

(
M∑
i=1

(βi − 1) log

(
βi − 1

n

)
− nKL

(
β − 1

n
, p

))

= PY∼Mult( β−1
n ,p)(X = β − 1) exp

(
−nKL

(
β − 1

n
, p

))
≤ exp

(
−nKL

(
β − 1

n
, p

))
.

Using again Lemma 7 and the continuity of the KL divergence, for any ε′ > 0 we can find nε′ large enough such that

nKL

(
β − 1

n
, p

)
≥ (n+M)

(
KL

(
β

n+M
,p

)
− ε′

)
.



Optimal Thompson Sampling strategies for support-aware CVaR bandits

Letting

C =

{
β ∈ {1, ..., n+ 1}M : Cα

(
X , β

n+M

)
< cα1 − ε1

}
,

and combining the previous results one derives

Eβ−1∼Mult(n,p)

[
1

(
Cα

(
X , β

n+M

)
< cα1 − ε1

)
exp

(
(n+M)Kα,Xinf

(
β

n+M
, cα1 − ε1

))]
≤
∑
β∈C

PX−1∼Mult(n,p)(X = β) exp

(
(n+M)Kα,Xinf

(
β

n+M
, cα1 − ε1

))

=
∑
β∈C

exp

(
−(n+M)

(
KL

(
β

n+M
,p1

)
−Kα,Xinf

(
β

n+M
, cα1 − ε1

)
− ε′

))

≤
∑
β∈C

exp

(
−(n+M)

(
Kα,Xinf

(
β

n+M
, cα1

)
−Kα,Xinf

(
β

n+M
, cα1 − ε1

)
− ε′

))
≤
∑
β∈C

exp
(
−(n+M)(δ1 − ε′)

)
,

where we introduced the quantity

δ1 = inf
p:CVaRXα (p)≤cα1−ε1

[
Kα,Xinf (p, cα1 )−Kα,Xinf (p, cα1 − ε1)

]
.

Since Kα,Xinf is continuous in its first argument and we take the infimum over a compact set, this infimum is reached for some
distribution pαinf . That is, we can write

δ1 = Kα,Xinf (pαinf , c
α
1 )−Kα,Xinf (pαinf , c

α
1 − ε1),

and CVaRXα (pαinf) ≤ cα1 − ε1. Thanks to Lemma 6, we know that the mapping c 7→ Kα,Xinf (pαinf , c) is strictly increasing for
c ≥ cα1 − ε1, thus δ1 > 0. Finally, choosing ε′ = δ1

2 and using the fact that |C| = (n+ 1)M yields

A3 ≤ n(δ1/2) +

T∑
n=n(δ1/2)

C−1
2 (n+M)

3M
2 (n+ 1)M exp

(
−(n+M)

δ1
2

)
.

This shows that A3 is upper-bounded by a constant.

C. Proof of Theorem 3 : analysis of B-CVTS for continuous bounded distributions
Similarly to the proof techniques used to analyze M-CVTS, we use Equation (3) presented in Section 3 in the proof of
Theorem 3.

In particular, we first prove Equation (5) (Post-CV term) before proving Equation (6) (Pre-CV term), assuming that the
arms are continuous, bounded, and that an upper bound on their support is known. In this section we use the Levy distance
presented in Appendix A in order to compare the empirical cdf Fk,t with Fk for each arm k.

C.1. Proof of Equation (5): Upper Bound on the Post-Convergence term

We upper bound the term (Post-CV) = E
[∑T

t=1 1(At = k, cαk,t ≥ cα1 − ε1, DL(Fk,t, Fk) ≤ ε2)
]
. The change from using

the L∞ distance to using the Levy metric does not affect any argument in the beginning of the proof used to upper bound
(Post-CV). Hence, following the same steps as in section B.1, for any n0(T ) it holds that

(Post-CV) ≤n0(T ) +

T∑
t=1

E
[
1 (Nk(t− 1) ≥ n0(T ), DL(Fk,t, Fk) ≤ ε2)× Pw∼DNk(t)

(Cα(Xk,t, w) ≥ cα1 − ε1)
]
.

We then use Lemma 3 in order to control the probability term inside the expectation as follows

Pw∼DNk(t)
(Cα(Xk,t, w) ≥ cα1 − ε1) ≤

1

η
exp

(
−Nk(t− 1)

(
Kα,Bkinf (Fk, c

α
1 − ε1)− ηC(α,Bk, c

α
1 − ε1)

))
,
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where Kα,Bkinf (Fk, c
α
1 − ε1) is the functional defined in Section 3, applied on the set of continuous bounded distributions

defined on [0, Bk], Bk.

We then proceed by removing the randomness in this upper bound by bounding uniformly the terms inside the expectation,
using that DL(Fk,t, Fk) ≤ ε2 and Nk(t− 1) ≥ n0(T ). To do so, we now use the continuity of the mapping Kα,Bkinf , which
is proved using Lemma 4 from (Agrawal et al., 2020). Note that this is not a trivial result, as for instance the Levy topology
does not coincide with the one induced by the Kullback-Leibler divergence. Combining these elements it holds that for any
ε0, there exist η > 0 such that

(Post-CV) ≤n0(T ) +

T∑
t=1

1

η
exp

(
−n0(T )

(
Kα,Bkinf (Fk, c1)− ε0

))
≤n0(T ) +

1

η
T exp

(
−n0(T )

(
Kα,Bkinf (Fk, c1)− ε0

))
.

Choosing n0(T ) = log T

Kα,Bkinf (Fk,cα1 )−ε0
we upper bound the post-convergence term as

(Post-CV) ≤ log T

Kα,Bkinf (Fk, cα1 )− ε0

+O(1).

C.2. Pre-Convergence term

In this section, we now focus on providing an upper bound on the remainder term (Pre-CV) =

E
(∑T

t=1 1(At = k, {cαk,t < cα1 − ε1 ∪DL(Fk,t, Fk) > ε2})
)

.

We first decompose this term into

(Pre-CV) ≤ E

(
T∑
t=1

1(At = k, cαk,t < cα1 − ε1)

)
+ E

(
T∑
t=1

1(At = k,DL(Fk,t, Fk) > ε2)

)
.

Again, as the second term does not feature any CVaR, we can again use a result from Riou and Honda (2020) (section D.1)
to get that, for any ε2 > 0,

E

(
T∑
t=1

1(At = k,DL(Fk,t, Fk) > ε2)

)
≤ K(M + 1)

(
1 +

+∞∑
n=2

2(n+ 1) exp

(
−2(n− 1)

(
ε2 −

1

n− 1

)))
.

Hence, if an arm is pulled a lot, its empirical distribution will be with high probability into a Levy ball of size ε2 around its
true distribution. Hence, it remains to upper bound the term

Ā := E

(
T∑
t=1

1(At = k, cαk,t < cα1 − ε1)

)
.

We follow the exact same steps as in section B.2 and obtain again an expression of the form

Ā ≤
T∑
n=1

EX1,...,Xn

[
Pw∼Dn (Cα(Xn, w) ≤ cα1 − ε1)

1− Pw∼Dn (Cα(Xn, w) ≤ cα1 − ε1)

]
,

where we write here Xn as the support of the empirical distribution of arm 1 after receiving n observations. Let us recall that
Dn is the uniform probability on the simplex of size n, namely the Dirichlet distribution with parameter 1n = (1, . . . , 1).
Thanks to the fact that cAt,t < cα1 − ε1 ⇒ c1,t < cα1 − ε we can upper bound this term by the probability that the best arm
under-performs.
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As in section B.2, we split this expectation into different regions depending of the value of the CVaR of the empirical
distribution (that includes the term x0 = B added at the beginning of the history of observations).

We split the upper bound on Ā into three terms

Ā ≤ Ā1 + Ā2 + Ā3 ,

where

• Ā1 =
∑T
n=1 EXn

[
Pw∼Dn (Cα(Xn,w)≤cα1−ε1)

1−Pw∼Dn(Cα(Xn,w)≤cα1−ε1)
1 (Cα(Xn) ≥ cα1 − ε1 /2)

]
,

• Ā2 =
∑T
n=1 EXn

[
Pw∼Dn (Cα(Xn,w)≤cα1−ε1)

1−Pw∼Dn(Cα(Xn,w)≤cα1−ε1)
1 (cα1 − ε1 ≤ Cα(Xn) ≤ cα1 − ε1 /2)

]
,

• Ā3 =
∑T
n=1 EXn

[
Pw∼Dn (Cα(Xn,w)≤cα1−ε1)

1−Pw∼Dn(Cα(Xn,w)≤cα1−ε1)
1 (Cα(Xn) ≤ cα1 − ε1)

]
.

We now upper bound each of these three terms, for any value of ε1.

C.2.1. UPPER BOUND ON Ā1

The first case is again easier than the two others, because in this case the CVaR of arm 1 is greater than cα1 − ε1 /2 and so
we can upper bound the term Ā1 by upper bounding

Pw∼Dn (Cα(Xn, w) ≤ cα1 − ε1) .

This term should be small as the empirical CVaR does not belong to the sub-space defined by this inequality. Furthermore,
we can use a quantization of the random observations X1, . . . , Xn, defining a number of bins M that we will specify later,
and for any i ∈ {0, . . . , n} the random variables X̃i = bMXic

M . Denoting the corresponding set of truncated observations
X̃n, since for all i ∈ {0, . . . , n}, Xi − 1/M ≤ X̃i ≤ Xi we then obtain that

Cα(Xn)− 1

M
≤ Cα(X̃n) ≤ Cα(Xn) .

A similar control holds for Cα(Xn, w) and Cα(X̃n, w). Interestingly, these properties directly follow from the monotonicity
of the CVaR, which is itself a property of any coherent risk measure (see Acerbi and Tasche (2002)).

Using these properties, we first have that

Pw∼Dn (Cα(Xn, w) ≤ cα1 − ε1) ≤ Pw∼Dn
(
Cα(X̃n, w) ≤ cα1 − ε1

)
,

as well as

1 (Cα(Xn) ≥ cα1 − ε1 /2) ≤ 1

(
Cα(X̃n) ≥ cα1 − ε1 /2−

1

M

)
.

Therefore, we have shown that we can upper bound the first term Ā1 by

Ā1 ≤
T∑
n=1

EXn

1(Cα (X̃n, w) ≥ cα1 − ε1

2
− 1

M

) Pw∼Dn(Cα

(
X̃n, w

)
≤ cα1 − ε1)

1− Pw∼Dn(Cα

(
X̃n, w

)
≤ cα1 − ε1)

 .

We then choose the discretization step 1
M . First, we want this step to be small enough in order to preserve the order of the

CVaRs, this in turns can be done by choosing ε1 small enough. Secondly, we want that cα1 − ε1
2 −

1
M > cα1 − ε1. This

condition requires M > 2/ ε1, so we choose (for instance) M = d3/ ε1e.
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We can now resort to Lemma 13 of Riou and Honda (2020) in order to upper bound the probability involving the Dirichlet
distribution, namely

Pw∼Dn(Cα

(
X̃n, w

)
≤ cα1 − ε1) ≤ C1n

M/2 exp

(
−nKX̃ninf

(
F̃k,n, c

α
1 −

ε1

2
− 1

M

))
,

where F̃k,n is the cdf of the empirical distribution corresponding to X̃n. Since we could then transform our problem in order
to consider multinomial random variables, we can use the same steps as in the corresponding part of the regret analysis of
M-CVTS. Hence, following similar steps as in Appendix B.2.1, leads to the bound

Ā1 = O(1) .

C.2.2. UPPER BOUND ON Ā2

In order to control the term A2 in Appendix B.2.2 we ignore the numerator and write

Ā2 ≤
T∑
n=1

EXn
[
1 (cα1 − ε1 ≤ Cα(Xn) ≤ cα1 − ε1 /2)

1

Pw∼Dn(Cα(Xn, w) ≥ cα1 − ε1)

]
.

We then use Lemma 5 in order to upper bound the right hand term, which yields

Ā2 ≤ Ex1,...,xn

(
1 (cα1 − ε1 ≤ Cα(Xn) ≤ cα1 − ε1 /2)

25n31(Y1 < cα1 − ε1)

Ydnαe − Y1

)
.

Here, we have introduced Y1, . . . , Yn to denote the ordered list of (X1, . . . , Xn) (i.e Y1 ≤ Y2 ≤ · · · ≤ Yn), where for any
j ∈ N∗ the variable Xj represents the j-th observation collected from arm 1. We also added the indicator 1(Y1 ≤ cα1 − ε1)
because it is a necessary element of the next steps of the proof that aims at controlling Y1. The inequality holds because if
Y1 ≥ cα1 − ε1 then Cα(Xn, w) ≥ cα1 − ε1 for any w ∈ Pn. Then, under the events we consider it also holds that

Ydnαe ≥ Cα(Xn) ≥ cα1 − ε1 .

Note that it is impossible to conclude at this step in general because the variable Ydnαe − Y1 may be arbitrarily small in
case all the n observations are very concentrated. However, if n is large and the distribution is continuous this event can
only happen with a very low probability. This is a place in the proof where continuity is crucial. To do so, we upper bound
the rest of the terms with a peeling argument on the values of Y1. This is done using the closed-form formulas for the
distribution of the minimum of n random variable that are independent and identically distributed. Indeed, if f1 denotes the
density of arms 1, and we write the cdf and pdf of the minimum of n independent observations of ν1 respectively Ln and ln,
then it holds that ∀x ∈ [0, B]

Ln(x) = 1− (1− F1(x))n .

Now, since ν1 is continuous it follows that in each point the density is ln(x) = nf1(x)(1 − F1(x))n−1. The next step
consists in defining a strictly decreasing sequence (ak)k≥0, and to look at the intervals [cα1 − ak − ε1, c

α
1 − ak+1 − ε1]. On

each of these intervals we obtain by construction that Ydnαe ≥ cα1 − ε1 ≥ Y1 + ak+1, and thus

EXn
[

25n3

Ydnαe − Y1
1 (Y1 ∈ [cα1 − ak − ε1, c

α
1 − ak+1 − ε1])

]
≤ 25n3

ak+1
× P (Y1 ∈ [cα1 − ak − ε1, c

α
1 − ak+1 − ε1]) .

Using the properties of the density ln it holds that

P (y1 ∈ [cα1 − ak − ε1, c
α
1 − ak+1 − ε1]) =

∫ cα1−ε1−ak+1

cα1−ε1−ak
nf1(x)(1− F1(x))n−1dx

≤ sup
x∈[0,B]

f1(x)

∫ cα1−ε1−ak+1

cα1−ε1−ak
n(1− F1(x))n−1dx

≤ sup
x∈[0,B]

f1(x)(ak − ak+1)n(1− F1(cα1 − ε1−ak))n−1 .
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With these results at hand, we can now aim at upper bounding Ā2. To this end, we first introduce

Ā2 ≤ Ex1,...,xn

[
1 (cα1 − ε1 ≤ Cα(Xn) ≤ cα1 − ε1 /2)

25n3

Ydnαe − Y1

]
≤ Ex1,...,xn

[
1 (cα1 − ε1 ≤ Cα(Xn) ≤ cα1 − ε1 /2)

25n3

Ydnαe − Y1
1(y1 ≤ cα1 − ε1−a0)

]
︸ ︷︷ ︸

A21

+ Ex1,...,xn

[
1 (cα1 − ε1 ≤ Cα(Xn) ≤ cα1 − ε1 /2)

25n3

Ydnαe − Y1
1(y1 ≥ cα1 − ε1−a0)

]
︸ ︷︷ ︸

A22

.

The left-hand side term can be handled thanks to Brown’s inequality (Brown, 2007), that we restate in Lemma 9 for
completeness, and discuss in Appendix B.2.2. Using that Ydnαe − Y1 ≥ a0 on the considered interval, we obtain

A21 ≤
25n3

a0
e
−2n

(
α(a0+ε1)

Bk

)2

.

Regarding the second term A22 we have

A22 ≤ sup
x∈[0,B]

nf1(x)×
+∞∑
k=0

ak − ak+1

ak+1
(1− F1(cα1 − ε1−ak))n−1 .

We first use that the cdf is increasing, which enables to upper bound (1 − F1(cα1 − ε1−ak))n−1 by the quantity (1 −
F1(cα1 − ε1−a0))n−1. It remains to choose the sequence (ak) in order to make the sum

∑+∞
k=0

ak−ak+1

ak+1
converge. We

define recursively the sequence as ak+1 = 2k

2k+1
ak, starting from a0 =

cα1−ε1
2 . This way,

∑+∞
k=0

ak−ak+1

ak+1
=
∑+∞
k=0

1
2k

= 2.
This shows that

A22 ≤ 50n4 sup
x∈[0,B]

f1(x) exp (−n log(1− F1(cα1 − ε1))) .

Hence, both terms A21 and A22 are asymptotically negligible, hence we can write that Ā2 = O(1).

C.2.3. UPPER BOUND ON Ā3

We now turn to the last term Ā2, and first upperbound it as

Ā3 ≤
T∑
n=1

EXn
[
1 (Cα(Xn) < cα1 − ε1)

1

Pw∼Dn(Cα(Xn, w) ≥ cα1 − ε1)

]
.

We can use the same discretization arguments as in Appendix C.2.1 to handle this term. More precisely, we introduce a
number of bins M ′ that is specified later in the proof, and for any i ∈ {0, . . . , n} we again define X̃i = bMXic

M and X̃n the
corresponding set of truncated observations. Thanks to these definitions we can upper bound Ā3 as

Ā3 ≤
T∑
n=1

EXn
(
1
(
Cα

(
X̃n, w

)
< cα1 − ε1

) 1

Pw∼Dn(Cα(X̃n, w) ≥ cα1 − ε1−1/M)

)

≤
T∑
n=1

EXn
(
1

(
Cα

(
X̃n, w

)
< cα1 − ε1−

1

M

)
1

Pw∼Dn(Cα(X̃n, w) ≥ cα1 − ε1−1/M)

)
.
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Following Appendix C.2.1, we require ε1 to be small enough in order to keep the same order for the CVaR of the discretized
distributions. To proceed, we then choose M of the same order as 1/ ε1, writing ε1 +1/M = ε′1. Then we remark that this
new formulation is exactly equivalent to the one we got in B.2.3. Hence, introducing

δ2 = inf
p∈PM :Cα(X ,p)≤cα1−ε′1

[
Kα,X̃inf (p, cα1 )−Kα,X̃inf (p, cα1 − ε′1)

]
,

where X̃ is X̃n where each item is only repeated once (the set built from X̃n), the same steps allow us to finally obtain

Ā3 ≤n(δ2/2) +

T∑
n=n(δ1/2)

C−1
2 (n+ 1)

3M
2 (n+ 1)M exp

(
−(n+M)

δ1
2

)

≤n(δ2/2) +

T∑
n=n(δ1/2)

C−1
2 (n+ 1)

5M
2 exp

(
−(n+M)

δ1
2

)
.

Hence, this is again upper bounded by a constant. This final result concludes the proof of Equation (6) for continuous
bounded distribution, which states that for B-CVTS

(Pre-CV) = O(1) .

D. Lower Bound and properties of Kα
inf

In the classical bandit setting, asymptotic optimality is an important notion that has guided the design of algorithms, and we
investigate in this section the optimal (problem-dependent) scaling of the CVaR-regret. We start by proving Theorem 1,
and then investigate some properties of the obtained lower bound that permit to derive concentration inequalities for the
Dirichlet distributions.

D.1. Proof of Theorem 1

In this section, we prove Theorem 1. We rely on the fundamental inequality (6) of (Garivier et al., 2019) which shows that,
if ν and ν′ are two bandit models in D, for any FT -measurable random variable Z ∈ [0, 1],

K∑
k=1

Eπ,ν [Nk(T )]KL(νk, ν
′
k) ≥ kl(Eπ,ν [Z],Eπ,ν′ [Z]) ,

where kl(x, y) = x log
(
x
y

)
+ (1− x) log

(
1−x
1−y

)
denotes the binary relative entropy.

Fix ν = (ν1, . . . , νK) ∈ D and let k be a sub-optimal arm in ν, that is cαk < c?. Assume that there exists ν′k ∈ Dk such that
CVaRα(ν′k) > c? (if this does not hold, Kα,Dkinf (νk, c

?) = +∞ and the lower bound holds trivially). Then considering the
alternative bandit model ν′ in which ν′i = νi for all i 6= k and ν′k is defined above, we obtain

Eπ,ν [Nk(T )]KL(νk, ν
′
k) ≥ kl

(
Eπ,ν

[
Nk(T )

T

]
,Eπ,ν′

[
Nk(T )

T

])
.

Exploiting the fact that the strategy π has its CVaR-regret in o(T β) for any β > 0, one can prove that, for any β,

Eπ,ν [Nk(T )] = o(T β) and T − Eπ,ν′ [Nk(T )] = o(T β)

since arm k is the (unique) optimal arm under ν′. Using the exact same arguments as (Garivier et al., 2019) enables to prove
that

lim inf
T→∞

kl
(
Eπ,ν

[
Nk(T )
T

]
,Eπ,ν′

[
Nk(T )
T

])
log(T )

≥ 1,

which yields

lim inf
T→∞

Eπ,ν [Nk(T )]

log(T )
≥ 1

KL(νk, ν′k)
.

Taking the infimum over ν′k ∈ Dk such that CVaRα(ν′k) > c? yields the result, by definition of Kα,Dkinf .
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D.2. Discussion on the scaling of the minimal regret

Using Lemma A.2 of Tamkin et al. (2020), we can show that for any distributions νF and νG with respective CDFs F and G
that are supported in [0, 1],

|CVaRα(F )− CVaRα(G)| ≤ 1

α
||F −G||∞ .

It follows from Pinsker’s inequality that KL(νF , νG) ≥ α2 (CVaRα(F )− CVaRα(G))
2
/2. Therefore, in a bandit model in

which all νk are supported in [0, 1] (that is, all Dk are equal to P([0, 1]), the set of probability measures on [0, 1]), it follows
that

Kα,Dinf (νk, c
∗) ≥ (α∆α

k )2/2.

Combining this inequality together with the lower bound of Theorem 1, we obtain that the regret of an algorithm matching
the lower bound is upper bounded by O

(∑
k:cαk<c

?
log(T )
α2∆α

k

)
, which is precisely the scaling of the CVaR regret bounds

obtained for the U-UCB (Cassel et al., 2018) and CVaR-UCB (Tamkin et al., 2020). Assuming the above inequalities are
tight for some distributions (which may not be the case), one may qualify these algorithms as "order-optimal", as their CVaR
regret makes appear the good scaling in the gaps (and in α), just like the UCB1 algorithm (Auer et al., 2002) for α = 1. In
this paper we go beyond order-optimality, and we strive to design algorithms that are asymptotically optimal.

D.3. Lemma 6: continuity of Kα,Xinf for multinomial distributions

We state the following result on the continuity of the Kα,Xinf functional for multinomial distributions.

Lemma 6. The mapping Kα,Xinf : PM × [x1, xM ) 7→ R is continuous in its two arguments. Furthermore, for all p ∈ PM

the mapping c 7→ Kα,Xinf (p, c) is increasing on (Cα(X , p), xM ].

Proof. We recall that a multinomial distribution ν is characterized by its finite support X = (x1, . . . , xM ) and a probability
vector p ∈ PM =

{
q ∈ RM : ∀i, qi ≥ 0,

∑M
j=1 qj = 1

}
such that PX∼ν(X = xk) = pk for all k ∈ {1, . . . ,M}. We

assume that x1 ≤ x2 ≤ · · · ≤ xM .

Moreover, by a slight abuse of notation, we use Kα,Xinf (p, c) as a shorthand for Kα,DXinf (ν, c) where DX is the set of
multinomial distribution supported on X . That is, for all p ∈ PM and c ∈ [x1, xM ],

Kα,Xinf (p, c) = inf
q∈PM

{KL(p, q) : Cα(X , q) ≥ c} ,

where KL(p, q) =
∑M
i=1 pi log

(
pi
qi

)
.

More precisely, we use the Berge’s theorem (see, e.g. (Berge, 1997)) to prove the continuity of the mapping Kc : p ∈
PM → Kα,Xinf (p, c) for any c ∈ (0, xM ) and that of Kp : c ∈ [0, xM )→ Kα,Xinf (p, c) for any p ∈ PM . Those functions are
of the form

Kc(p) = inf
q∈Γ(p)

KL(p, q) and Kp(c) = inf
q∈Γ(c)

KL(p, q) ,

where Γ(c) = Γ(p) = {q ∈ PM : Cα(X , q) ≥ c}. As KL(p, q) is continuous in both arguments and the feasible set is
compact, it is sufficient to prove that the correspondences c 7→ Γ(c) and p 7→ Γ(p) are hemicontinuous, i.e that they are
non-empty, lower hemicontinuous and upper hemicontinuous. For Γ(p) the lower and upper hemicontinuity is trivial as the
feasible set does not depend on p. Moreover, this set is non empty as the Dirac in xM (represented by q = (0, . . . , 0, 1))
belongs to Γ(p), for any c ∈ [x0, xM ]. To conclude, it thus remains to prove that c 7→ Γ(c) is both a lower and upper
hemicontinuous correspondence.

We first prove the lower hemicontinuity in every c0 ∈ [x0, xM ). Consider an open set V ∈ PM+1 satisfying V ∩Γ(c0) 6= ∅.
We must prove that there exists ε > 0 such that for all c ∈ (c0 − ε, c0 + ε), V ∩ Γ(c) 6= ∅. Since c 7→ Γ(c) is nonincreasing
in the sense of the set inclusion, it is sufficient to justify that V ∩ Γ(c0 + ε) 6= ∅ for some ε > 0. Let q0 ∈ V ∩ Γ(c0).
It holds that Cα(X , q0) ≥ c0. If the inequality is strict, there exists ε such that q0 ∈ V ∩ Γ(c0 + ε). Assume that
Cα(X , q0) = c0. As V is open, there exists ε′ such that any B(q0, ε

′) ⊆ V . Now there must exist q ∈ B(q0, ε
′) such that

Cα(X , q) > Cα(X , q0) = c0. Indeed, in order to construct such a probability vector, we can take out some mass from the
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components of q corresponding to x0 and assign it to the component corresponding to xM . This increases the CVaR while
staying in the ball provided that the change is small enough. Hence, there exists ε > 0 such that q ∈ V ∩ Γ(c0 + ε).

To prove the upper hemicontinuity, we use the following sequential characterization: if cn is a sequence taking values in
[x0, xM ) that converges to c and qn is a sequence taking values in PM+1 that converges to q, with qn ∈ Γ(cn) for all n,
one has to prove that q ∈ Γ(c). This fact is a simple consequence of the continuity of q 7→ Cα(X , q) on PM+1, which is
obvious as this function is the supremum of affine functions, as can be seen in Equation (8).

We know prove that the mappingKp(c) is strictly increasing on (Cα(X , p), xM ). The fact that this mapping is non-decreasing
is a simple consequence of the fact that for c < c′, Γ(c′) ⊆ Γ(c). In order to prove the strict monotonicity it is sufficient to
prove that the constraints are binding t the optimum. Assume that this is not the case, i.e. for some c ∈ (Cα(X , p), xM ),
∃p∗c : Kα,Xinf (p, c) = KL(p, p∗c) such that Cα(X , p∗c) = c+ δ for some δ > 0. By continuity of the CVaR, there exists some
ε > 0 such that B(p∗c , ε) ⊂ Γ(c+ δ/2) ⊂ Γ(c), where B(p∗c , ε) = {q ∈ PM : d(q, p∗c) = ||q − p∗c ||∞ ≤ ε}. By definition
of p∗c we should have that for any distribution q ∈ B(p∗c , ε), KL(p, q) ≥ KL(p, p∗c). Consider a distribution p̃ satisfying for
some (i, j), p̃i = p∗c,i + ε, p̃j = p∗c,j − ε and p̃` = p∗c,` for ` 6= i, j. Then, it holds that:

KL(p, p∗c)−KL(p, p̃) = pi log

(
p∗c,i + ε

p∗c,i

)
+ pj log

(
p∗c,j − ε
p∗c,j

)
.

By a simple Taylor expansion. we have KL(p, p∗c)−KL(p, p̃) = ε
(
pi
p∗c,i
− pj

p∗c,j

)
+ o(ε2). So, if ε is chosen small enough,

the difference has the same sign as
(
pi
p∗c,i
− pj

p∗c,j

)
. Since p∗c 6= p we are sure to find some coordinates satisfying pi > p∗c,i

and pj < p∗c,j , hence this term can be made positive for an appropriate choice of (i, j). This means that if the constraint is
not binding at the optimum we can necessarily find a distribution in the feasible set with a lower KL-divergence with p,
which is a contradiction. Hence, Kp is strictly increasing on (CXα , xM ).

D.4. Proof of Lemma 4: dual form of the Kα,Dinf of multinomial distributions

In this section we derive the dual form of the function Kα,Xinf , where X is some finite support X = (x1, . . . , xm) ∈ [0, 1]M .
We let PM denote he simplex of dimension M . We rewrite the optimization problem, defined for any p ∈ PM , α ∈ (0, 1]
and c ∈ [0, 1] as

Kα,Dinf (p, c) = inf
q∈PM

{KL(p, q) : Cα(X , q) ≥ c} .

First of all, we recall that Cα(X , q) = supx∈D
{
x− 1

αEX∼q ((x−X)+)
}

. We then introduce the set

PMy,α,c =

{
q ∈ PM : y − 1

α
EX∼q((y −X)+) ≥ c

}
=
{
q ∈ PM : EX∼q((y −X)+) ≤ (y − c)α

}
.

Thanks to this definition we can rewrite the problem as

Kα,Dinf (p, c) = min
y∈D

{
inf

q∈PM

{
KL(p, q) : y − 1

α
EX∼q((y −X)+) ≥ c

}}
,

where we used that {q : Cα(X , q) ≥ c} = ∪y∈D
{
q ∈ PM : y − 1

αEX∼q ((X − y)+) ≥ c
}

.

Now, we can first solve the problem infq∈PMy,α,c KL(p, q) for a fixed value of y, satisfying y > c (else the feasible set is
empty). We write the Lagrangian of this problem:

H(q, λ1, λ2) =

M∑
i=1

pi log

(
pi
qi

)
+ λ1

(
M∑
i=1

qi − 1

)
+ λ2

(
M∑
i=1

qi(y − xi)+ − α(y − c)

)
,
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and want to solve maxλ1>0,λ2>0 minqH(q, λ1, λ2). To this end, we write

∂H

∂qi
= −pi

qi
+ λ1 + (y − xi)+ .

Setting the derivative to 0 yields
qi =

pi
λ1 + λ2(y − xi)+

.

We can check that the inequality constraint is achieved. Moreover, exploiting the two constraints leads to λ1+λ2α(y−c) = 1.
This finally gives

qi =
pi

1− λ2((y − c)α− (y − xi)+)
.

Note that this solution is only valid if λ2 ≤ 1
α(y−c) . We have two possibilities: 1) the maximum is achieved in [0, 1

α(y−c) ),
in this case we have

Kα,Dinf (p, c) = inf
y∈D

max
λ∈[0, 1

α(y−c) )

M∑
i=1

pi log
(
1− λ2((y − c)α− (y − xi)+)

)
= inf
y∈D

max
λ∈[0, 1

α(y−c) )
EX∼p[log

(
1− λ2((y − c)α− (y −X)+)

)
] .

The other possibility is that the function is still increasing in λ2 = 1
α(y−c) . For this case, we check the sign of

∂EX∼F [log(1+λ2((y−c)α−(y−X)+))]

∂λ at point λ = 1
α(y−c) , that is of (y − c)α

(
1− EF

(
(y−c)α
(y−X)+

))
. We see that the

function can only be increasing if EF
(

(y−c)α
(y−X)+

)
< 1, and the solution is then qi = pi(y−c)α

y−xi , which provides

Kα,Dinf (p, c) = infy EF
(

(y−X)+

(y−c)α

)
. This concludes the proof.

We remark that these results coincide with those of Honda and Takemura (2010) with α = 1 and y = 1.

E. Auxiliary results
In this Section we provide some technical tools about the CVaR. In particular, we prove several results that were presented
in Section 3, namely Lemma 1, Lemma 2, Lemma 3, and Lemma 5.

E.1. Some basic CVaR properties

In this section we develop some well-known properties of the CVaR. First, the definition of the CVaR as the solution of
an optimization problem was first introduced by Rockafellar et al. (2000), to formalize previous heuristic definitions of
the CVaR as an average over a certain part of the distribution. The definition (1) is indeed appealing as it applies to any
distribution for which E[(x − X)+] is defined, including both discrete and continuous distributions. To understand the
CVaR it is particularly useful to look at its expression in these two particular cases. First, for any continuous distribution ν
of CDF F it can be shown (see, e.g. Acerbi and Tasche (2002)) that

CVaRα(ν) = EX∼ν
[
X|X ≤ F−1(α)

]
.

This expression provides a good intuition on what the CVaR represents, as the expectation of the distribution after excluding
the best scenarios covering a fraction (1− α) of the total mass. A similar definition exists for real-valued distributions ν
with discrete support X = (x1, x2, . . . ) (either finite or infinite). Assuming that the sequence (xi) is increasing and letting
pi = PX∼ν(X = xi), one has

CVaRα(ν) = sup
xn∈X

{
xn −

1

α

n−1∑
i=1

pi(xn − xi)

}
. (8)
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Indeed, the function to maximize in (1) is piece-wise linear, so the maximum is necessarily achieved in a point of discontinuity.
In particular, we can easily prove that if nα is the first index satisfying

∑nα
i=1 pi ≥ α, then the supremum is achieved in nα

and

CVaRα(ν) = xnα −
1

α

nα−1∑
i=1

pi(xnα − xi)

=
1

α

(
nα−1∑
i=1

pixi +

(
α−

nα−1∑
i=1

pi

)
xnα

)
.

Hence in that case the CVaR can also be seen as an average when we consider the lower part of the distribution before
reaching a total mass α.

From the general definition (1), one can also observe that for α = 1, CVaRα(ν) = EX∼ν(X). Moreover, the mapping
α 7→ CVaRα(ν) is continuous on (0, 1]. Thus, considering CVaR bandits allows to smoothly interpolate between classical
bandits (that correspond to α = 1) and risk-averse problems.

We also prove in this section a technical result needed in the proof of Theorem 2 that relates the CVaR of two distributions
that are close in terms of the L∞ distance defined in Appendix A.

Lemma 7 (CVaR of two discrete distributions in a L∞ ball). Let p and q be the probability vectors of two discrete
distribution of with shared support X = {x1, . . . , xM}, then for any α ∈ (0, 1] and any ε > 0:

Cα(X , p)− M ||p− q||∞
α

xM ≤ Cα(X , q) ≤ Cα(X , p) +
M ||p− q||∞

α
xM .

Proof. For any p ∈ PM and q ∈ PM we write for simplicity ε = supi∈{0,1,...,M} |pi − qi| = ||p − q||∞, so ∀i:
qi − ε ≤ pi ≤ qi + ε. Let’s consider the optimisation problem used to compute the CVaR, ∀x:

x− 1

α

M∑
i=0

pi (x− xm)
+ ≤ x− 1

α

M∑
i=0

(qi − ε) (x− xm)
+

= x− 1

α

M∑
i=0

qi (x− xm)
+

+
ε

α

M∑
i=0

(x− xm)
+

≤ x− 1

α

M∑
i=0

qi (x− xm)
+

+
ε

α
(M + 1)xM .

Taking the supremum on all possible values x on the left side of the inequality and then on the right side ensures the result.
Then, replacing p by q proves the other inequality.

E.2. Proof of Lemma 1

In this section we prove Lemma 1, introduced in Section 3.

Lemma 1 (Upper Bound). For any (β, p) ∈ QMn , for any c > Cα(X , p), it holds that

Pw∼Dir(β)(w∈SαX (c)) ≤ C1MnM/2 exp(−nKα,Xinf (p, c)) ,

for some constant C1.

We recall that the set QMn is defined as

QMn =

{
(β, p) ∈ N∗n × PM : p =

β

n

}
.

The proof relies on Lemma 13 of (Riou and Honda, 2020) that we re-state below for completeness.
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Lemma 8 (Lemma 13 in (Riou and Honda, 2020)). Assume w ∼ Dir(β) a Dirichlet distribution over the probability
simplex PM . We assume that βT 1 = n and ∀j ∈ {1, . . . ,M}, βj ≥ 0. We denote by p = 1

nβ the mean of the Dirichlet
distribution. Let S ⊂ PM+1 a closed convex set included in the probability simplex. The following bound holds:

Pw∼Dir(β) (w ∈ S) ≤ C1n
M
2 exp (−nKL (p, p∗)) ,

where p∗ = argminx∈SKL(p, x).

Using the notation of Section 3, for any w ∈ PM , P(w ∈ SαX (c)) ≤
∑M
m=1 P(w ∈ Sαm,X (c)). Then, using Lemma 8 for

each subset Sαm,X (c), which is closed and convex, we have

P(w ∈ SαX (c)) ≤ C1n
M/2

M∑
m=1

exp

(
−nKL

(
β

n
, p∗m

))
,

where p∗m = argminx∈Sαm,X (c)KL
(
β
n , x

)
.

We conclude by using that there exists some i ∈ {1, . . . ,M} such that Kα,Xinf

(
β
n , c
)

= KL
(
β
n , p
∗
i

)
, and for all m 6= i

KL(q, p∗m) ≥ KL(q, p∗i ).

E.3. Proof of Lemma 2

We prove the Lemma 2 presented in Section 3.

Lemma 2 (Lower Bound). For any (M,n) ∈ N2 and (β, p) ∈ QMn , if n is large enough it holds that

Pw∼Dir(β) (w ∈ SαX (c)) ≥ C2

exp
(
−nKα,Xinf (p, c)

)
n

3M
2 +1

,

for some constant C2 =
(

1√
2π

)M
e−(M+1)/12.

We follow the sketch of the proof of Lemma 14 of (Riou and Honda, 2020) using Equation (8). We start by stating
that there exists some m ∈ {1, . . . ,M} such that Cα

(
X , βn

)
= xm − 1

α

∑m−1
i=1 qi(xm − xi) and some p∗ such that

Kα,Xinf

(
β
n , c
)

= KL
(
β
n , p
∗
)

. The existence of p∗ is ensured by the fact that the function Kα,Xinf is the solution of the
minimization of a continuous function on a compact set. We consider the set

S2 = {w ∈ PM+1 : wi ∈ [0, p∗i ],∀j ∈ {m, . . . ,M} : wj ≥ p∗j}.

Let us remark that ∀p ∈ S2, Cα(X , p) ≥ Cα(X , p∗) ≥ c. Indeed, if we transfer some of the mass from some items of the
support to larger items we can only increase the CVaR. It holds that

Pw∼Dir(β) (Cα(X , w) ≥ Cα(X , w)) ≥ Pw∼Dir(β) (w ∈ S2)

=
Γ(n)∏M
i=1 Γ(βi)

∫
x∈S2

M∏
i=1

xβi−1
i dx

≥ Γ(n)∏M
i=1 Γ(βi)

M∏
i=m

(p∗i )
βi−1

m−1∏
j=1

∫ p∗j

xj=1

x
βj
j dxj

=
Γ(n)∏M
i=1 Γ(βi)

M∏
i=m

(p∗i )
βi−1

m−1∏
j=1

(p∗j )
βj

βj
.
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We then use that the KL-divergence between two multinomial distributions has a simple form to compute:

Pw∼Dir(β) (w ∈ S2) ≥ Γ(n)

nm
∏M
i=0 Γ(βi)

M∏
i=m

βi
np∗i

M∏
j=0

(
p∗jn

βj

)βj M∏
s=1

(
βs
n

)βs−1

≥ Γ(n)

nm

M∏
i=m

βi
np∗i

exp

(
−nKL

(
β

n
, p∗
)) M∏

s=1

(βs/n)βs−1

Γ(βs)
.

We then use the Lemma 12 of (Riou and Honda, 2020), which is an application of the Stirling formula, in order to lower
bound the terms depending on the gamma function:

Pw∼Dir(β) (w ∈ S2) ≥ C2n
−M2 exp

(
−nKL

(
β

n
, p∗
)) M∏

i=m

βi
np∗i

≥ C2n
−M2 exp

(
−nKL

(
β

n
, p∗
))

1

nM

= C2n
−M2 exp

(
−nKα,Xinf

(
β

n
, c

))
1

nM
,

where we used in the second line that βi
np∗i
≥ 1

n and C2 =
(

1√
2π

)M
e−(M+1)/12). This concludes the proof.

E.4. Proof of Lemma 3

We prove Lemma 3 that is introduced in Section 3.

Lemma 3. Let X = (x0, . . . , xn) ⊂ [0, B]n+1 for some known B > 0 and n ∈ N, assuming that x0 = B. For any
c > Cα(X ), and any η > 0 small enough it holds that

Pw∼Dn(Cα(X , w) ≥ c) ≤ B

η
exp−N(Kαinf (uX ,c)−ηC(B,α,c)) ,

for some constant C(B,α, c).

Proof. We first use that {q : Cα(X , q) ≥ c} = ∪y∈[c,B]

{
q ∈ Pn+1 : y − 1

αEX∼q ((X − y)+) ≥ c
}

to write

Pw (Cα(X , w) ≥ c) ≤Pw

(
sup

y∈[c,B]

{
y − 1

α

n∑
i=0

wi(y − xi)+

}
≥ c

)

≤
∫ B

c

Pw

(
y − 1

α

n∑
i=0

wi(y − xi)+ ≥ c

)
Pw

(
y = argsupy∈[c,B]

{
y − 1

α

n∑
i=0

wi(y − xi)+

})
dy

The second term can have an arbitrarily complicated form, but we use the fact that the support is bounded, which enables to
uniformly bound it by 1. We bound the first term by its supremum on [0, B], hence

Pw (Cα(X , w) ≥ c) ≤B sup
y∈[c,B]

Pw

(
y − 1

α

n∑
i=0

wi(y − xi)+ ≥ c

)

≤ B sup
y∈[c,B]

Pw

(
α(y − c)−

n∑
i=0

wi(y − xi)+ ≥ 0

)
.

We then handle P (α(y − c)−
∑n
i=0 wi(y − xi)+ ≥ 0) for a fixed value of y. We here follow the path of Riou and Honda

(2020), using that a Dirichlet random variable w = (w0, . . . , wn) can be written in terms of n + 1 independent random
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variables R0, . . . , Rn following an exponential distribution, as wi = Ri∑n
j=0 Rj

. Using this property and multiplying by∑n
j=0Rj we obtain

P

(
α(y − c)−

n∑
i=0

wi(y − xi)+ ≥ 0

)
≤P

(
n∑
i=0

Ri
(
α(y − c)− (y − xi)+

)
≥ 0

)

≤E

[
exp

(
t

n∑
i=0

Ri
(
α(y − c)− (y − xi)+

))]
,

where we used Markov’s inequality for some t ∈
[
0, 1

(y−c)α

)
. We then isolate the first term, writing

≤
n∏
i=0

E
[
exp

(
Rit

(
α(y − c)− (y − xi)+

))]
≤ exp

(
−

n∑
i=0

log
(
1− t

(
α(y − c)− (y − xi)+

)))

≤ 1

1− tα(y − c)
exp

(
−

n∑
i=1

log
(
1− t

(
α(y − c)− (y − xi)+

)))

≤ 1

1− tα(y − c)
{

exp
(
−NEF̂

[
log
(
1− t

(
α(y − c)− (y −X)+

))])}
.

Since the term 1− tα(y − c) can be arbitrarily small, we have to control the values of t in order to ensure that the constant
before the exponential is not too large. Hence, we choose some constant η > 0, and write that for any t ∈ [0, 1−η

α(y−c) ] we
have

Pw (Cα(X , w) ≥ c) ≤ B

η
exp

(
−NEF̂

[
log
(
1− t

(
α(y − c)− (y −X)+

))])
,

which leads to

Pw (Cα(X , w) ≥ c) ≤B
η

inf
t∈[0, 1−η

(y−c)α ]
exp

(
−NEF̂

[
log
(
1− t

(
α(y − c)− (y −X)+

))])
≤B
η

exp

−N sup
t∈[0, 1−η

(y−c)α ]
EF̂
[
log
(
1− t

(
α(y − c)− (y −X)+

))] .

At this step the dual form of the function Kα,Xinf (F̂ ) start to appear, however, we have to handle the interval on which the

supremum is taken is
[
0, 1−η

α(y−c)

]
instead of

[
0, 1

α(y−c)

]
. As in (Riou and Honda, 2020) we will use the concavity and the

regularity of the function in the expectation in order to conclude. We write

φ(t) =
1

n

n∑
i=1

log
(
1− t(α(y − c)− (y − xi)+)

)
.

As φ is concave it holds that for any t ∈
[

1−η
(y−c)α ,

1
(y−c)α

)
we have

φ(t) ≤ φ
(

1− η
α(y − c)

)
+

η

α(y − c)
φ′
(

1− η
α(y − c)

)
.
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At this step we only need to upper bound φ′
(

1−η
α(y−c)

)
by a constant that would not depend on the values of x1, . . . , xn and

y. To do so, we use that all variables are bounded, and for any t ∈
[

1−η
(y−c)α ,

1
(y−c)α

)
,

φ′ (t) = −EF̂

[
(y − c)α− (y −X)+

1− t [(y − c)α− (y −X)+]

]
≤ −EF̂

[
(y − c)α− y

1− t [(y − c)α− y]

]
=

(1− α)y + αc

1− t(1− α)y − tαc
.

We then replace t by 1−η
(y−c)α , which gives

η

α(y − c)
φ′
(

1− η
(y − c)α

)
≤ η (1− α)y + αc

ηα(y − c) + (1− η)y
.

Then, we use that (1− α)y + αc ≤ B, and that ηα(y − c) + (1− η)y ≥ (1− η)c ≥ c, so finally

η

α(y − c)
φ′
(

1− η
(y − c)α

)
≤ η (1− α)B + αc

c
.

Summarizing these steps, we obtain

sup
t∈[0, 1−η

(y−c)α ]
φ(t) ≤ sup

t∈[0, 1
(y−c)α ]

φ(t) + η
(1− α)B + αc

c
.

Hence, we finally conclude the proof using Lemma 4, to obtain

Pw (Cα(X , w) ≥ c) ≤ B

η
exp

(
−n
(
Kα,Xinf (F̂ , c)− η (1− α)B + αc

c

))
.

E.5. Proof of Lemma 5

In this section we prove Lemma 5 introduced in Section 3.

Lemma 5. Assume that X = (x1, . . . , xn) and x1 < · · · < xn, then xdnαe is the empirical α quantile of the set and x1 its
minimum, and it holds that

Pw∼Dn (Cα(X , w) ≥ Cα(X )) ≥ 1

25n3
(xdnαe − x1) .

Proof. We assume that X is known and ordered, i.e x1 ≤ x2 ≤ · · · ≤ xn. We then write

A = Pw∼Dn (Cα(X , w) ≥ Cα(X )) .

Thanks to the definition of the CVaR provided by Equation (1) it holds that

A = Pw

(
sup
y∈X
{y − 1

α

n∑
i=1

wi(y − xi)+} ≥ sup
z∈X
{z − 1

αn

n∑
i=1

(z − xi)+}

)
.

First, if we know x1, . . . , xn then the second term is deterministic and the sup is actually achieved in xdnαe. Secondly, the
inequality is true if at least one term in the left element satisfies it, so we can write
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A =P

(
sup
z∈X

{
z − 1

α

n∑
i=1

wi(z − xi)+

}
≥ xdnαe −

1

αn

n∑
i=1

(xdnαe − xi)+

)

≥P

(
xdnαe −

1

α

n∑
i=1

wi(xdnαe − xi)+ ≥ xdnαe −
1

αn

n∑
i=1

(xdnαe − xi)+

)

=P

(
n∑
i=1

wi(xdnαe − xi)+ ≤ 1

n

n∑
i=1

(xdnαe − xi)+

)

=P

(
n∑
i=1

wi
B − (xdnαe − xi)+

B
≥ 1

n

n∑
i=1

B − (xdnαe − xi)+

B

)
.

As the variable B−(xdnαe−xi)+

B belongs to [0, 1] we can apply the lemma 17 of Riou & Honda and get

A ≥ 1

25n2B

(
B − 1

n

n∑
i=1

(B − (xdnαe − xi)+)

)
=

1

25n3B

n∑
i=1

(xdnαe − xi)+ .

We conclude by simply omitting all the terms except (xdnαe − x1) in the sum.

F. Brown-UCB a.k.a U-UCB
In this section, we present the instanciation of the U-UCB algorithm of (Cassel et al., 2018) for CVaR bandits, and discuss
its links with the Brown-UCB idea proposed by (Tamkin et al., 2020), which propose to build a UCB strategy based on
concentration inequalities proposed by (Brown, 2007).

F.1. Explicit form of U-UCB

The U-UCB bonus is written as f
(

C log t
Nk(t−1)

)
for some constant C and some function f defined as

f(x) = max

{
2b
(x
a

)1/2

, 2b
(x
a

)q/2}
.

Following the Definition 3 in (Cassel et al., 2018) we can find the values of the constants a, b and q. The DKW inequality
gives a = 1, while b and q are found as the smallest parameters satisfying the following inequality:

|CVaRα(F )− CVaRα(G)| ≤ b(||F −G||∞ + ||F −G||q∞)

If the distributions are upper bounded by some constant U then we have from (Tamkin et al., 2020) that it is sufficient to
choose b = U

2α and q = 1. This yields the following explicit form for the U-UCB stratey:

AU-UCB
t+1 = argmax

k∈[K]

[
CVaRα(ν̂k) +

U

α

√
C log t

2Nk(t)

]
.

In our experimental study, with use the constant C = 2 in the index of U-UCB (and U = 1 as we consider distributions that
are bounded in [0, 1]). This choice is motivated by the fact that (Cassel et al., 2018) show that for C > 2, U-UCB has a
logarithmic proxy regret. As explained by (Tamkin et al., 2020), the proxy regret is an upper bound on the CVaR regret,
hence U-UCB is guaranteed to have logarithmic CVaR regret in our setting.

Interestingly, by following an approach suggest by (Tamkin et al., 2020), we can recover the exact same algorithm as
U-UCB, an propose a simple analysis of this algorithm directly in terms of CVaR regret.
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F.2. Brown-UCB and its analysis

The authors of (Tamkin et al., 2020) propose to build on concentration inequalities for the empirical CVaR given by (Brown,
2007) to derive a UCB strategy in which the index of each arm adds a confidence bonus to the CVaR of its empirical
distribution. However, their derivation of this Brown-UCB algorithm is not correct as they use the concentration inequalities
originally given by (Brown, 2007) for the loss version of the CVaR. We propose a fix in this section, which consists in
adapting the Brown inequalities to the reward version of the CVaR which we consider in this paper.

For bounded distributions there is a clear symmetry between the the two definitions of CVaR. In particular, for any
distribution ν supported in [0, B]

CVaRα(ν) = B − CVaRloss
α (B − ν) ,

where 1− ν denotes the distribution of 1−X with X ∼ ν and we write respectively CVaR and CVaRloss the reward and
loss version of CVaR.

Proof.

CVaRα(ν) = sup
x∈[0,B]

{
x− 1

α
E
(
(x−X)+

)}
= sup
x∈[0,B]

{
x− 1

α
E
(
(B −X − (B − x))+

)}
= sup
y∈[0,1]

{
B − y − 1

α
E
(
(B −X − y)+

)}
= B − inf

y∈[0,1]

{
y +

1

α
E
(
(B −X − y)+

)}
= 1− CVaRloss

α (B − ν)

Remark 4. Applying the same trick to Y = −X provide that for a real random variable X then CVaRα(X) =
−CVaRloss

α (−X).

This observation easily yield the following concentration inequalities, which are the counterpart of the Brown inequalities
for the reward version of the CVaR.
Lemma 9 (Brown’s inequalities for CVaRα). If we write ĉαn the CVAR of an empirical distribution from n variables drawn
from a distribution ν supported in [0, B] and CVARα(ν) = cα, we have:

P(ĉαn ≥ cα + ε) ≤ 3 exp

(
−α

5

( ε
B

)2

n

)
P(ĉαn ≤ cα − ε) ≤ exp

(
−2
(α ε
B

)2

n

)
We note that the upper and lower deviation have their probability bounded by a term whose scaling in α is different. By
interverting the two inequalities, (Tamkin et al., 2020) proposed a “Brown-UCB” algorithm with an confidence bonus
scaling in 1/

√
α instead of 1/α and obtained a regret bound that was actually contradicting the lower bound of Theorem 1.

Expression of Brown-UCB The inequalities in Lemma 9 permit to propose a UCB algorithm of the form

ABrown-UCB
t+1 = argmax

k∈[K]

UCBk(Nk(t), t)

where UCBk(n, t) = ĉαk,n + U
α

√
f(t)
2n , where ĉαk,n is the CVaR of level α of the empirical distribution of the n first

observations from arm k and f(t) is an increasing function of t that will be specified later in the analysis. Indeed, one can
easily check that

P(UCBk(t, n) ≤ cα) = P

(
ĉαk,n ≤ cαk −

U

α

√
f(t)

2n

)
≤ e−f(t),
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which justifies that fact that UCBk(t, n) is an upper confidence bound on the CVaR of arm k.

Interestingly, we observe that for the choice f(t) = C log(t), Brown-UCB coincides with the U-UCB algorithm. We upper
bound below the CVaR regret of Brown-UCB (or U-UCB) for C > 2, and recover that this regret is indeed logarithmic.

We analyze Brown-UCB for distributions supported in [0, U ] and a threshold function f(t) = (2 + ε) log(t) for some ε > 0.
For every sub-optimal arm k, we start with the classical decomposition

E [Nk(T )] =

T−1∑
t=0

E[1(At+1 = k)]

= 1 +

T−1∑
t=K

E[1(At+1 = k,UCB1(N1(t), t) ≤ cα1 )] +

T−1∑
t=K

E[1(At+1 = k,UCBk(Nk(t), t) ≥ cα1 )] .

We analyze separately these two terms. We use a union bound on the values of N1(t) and the second inequality in Lemma 9
to handle the first term:

T−1∑
t=K

E[1(At+1 = k,UCB1(t) ≤ cα1 )] ≤
T∑
t=K

t∑
n=1

P (N1(t) = n,UCB1(n, t) ≤ cα1 )

≤
T∑
t=1

t∑
n=1

P

(
ĉα1,n ≤ cα1 −

1

α

√
f(t)

2n

)

≤
T∑
t=1

t exp(−f(t)) .

With the choice f(t) = (2 + ε) log(t), we get
∑T−1
t=K E[1(At+1 = k,UCB1(t) ≤ cα1 )] = O(1).

To handle the second term, we write the following:

T−1∑
t=K

E[1(At+1 = k,UCBk(t) ≥ cα1 )] ≤
T−1∑
t=K

t∑
n=1

E[1(At+1 = k,Nk(t) = n,UCBk(Nk(t), t) ≥ cα1 )]

≤
T−1∑
t=K

t∑
n=1

E

[
1

(
At+1 = k,Nk(t) = n, ĉαk,n ≥ cα1 −

1

α

√
f(t)

2n

)]

≤
T−1∑
t=K

t∑
n=1

E

[
1

(
At+1 = k,Nk(t) = n, ĉαk,n ≥ cα1 −

1

α

√
f(T )

2n

)]

≤
T∑
n=1

E

[
1

(
ĉαk,n ≥ cα1 −

1

α

√
f(T )

2n

)
T−1∑
t=K

1 (At+1 = k,Nk(t) = n)

]

≤
T∑
n=1

E

[
1

(
ĉαk,n ≥ cα1 −

1

α

√
f(T )

2n

)]

=

T∑
n=1

P

(
ĉαk,n ≥ cαk +

(
∆α
k −

1

α

√
f(T )

2n

))

Let β > 0 to be chosen later. Letting n0(T ) =
⌈

f(T )
2α2(1−β)2(∆α

k )2

⌉
, we have that for all n ≥ n0(T ),

(
∆α
k −

1

α

√
f(T )

2n

)
≥ β∆α

k .
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Therefore, using the first inequality in Lemma 9,

T∑
t=1

E[1(At+1 = k,UCBk(t) ≥ cα1 )] ≤ n0(T ) +

T∑
n=n0(T )+1

P
(
ĉαk,n ≥ cαk + β∆α

k

)
≤ n0(T ) +

T∑
n=1

3 exp
(
−α

5
β2(∆α

k )2n
)

= n0(T ) +O(1).

Choosing for example β = 1−
√

1/2 yields that Brown-UCB with f(t) = (2 + ε) log(T ) satisfies

E[Nk(T )] ≤ (2 + ε) log(T )

α2(∆α
k )2

+Oε(1).

This permits to prove that Brown-UCB has a regret of the same order of magnitude as the CVaR-UCB algorithm proposed
by (Tamkin et al., 2020).

G. Complementary Experiments
In this section we provide a more complete overview of the results of our experiments introduced but not detailed in
Section 4. The first part of this section contains a comprehensive set of experiments on synthetic data in order to illustrate
particular properties of the M-CVTS and B-CVTS algorithms. The second part provides additional experiments performed
with the DSSAT crop-simulator, that complete the first set of experiments provided in Section 4.

G.1. Experiments on synthetic examples

Before testing the algorithms on a real-world use-case we performed experiments on simulated data in order to illustrate
their empirical properties compared to existing UCB-like algorithms. For all the experiments we generally consider α
ranging in {10%, 50%, 90%}.

G.1.1. EXPERIMENTS ON MULTINOMIAL ARMS

We first introduce some experiments with multinomial arms in order to check the empirical performance of the M-CVTS
algorithm. We ackowledge that M-CVTS has some advantage over its competitors as it is aware of the full support of the
multinomial distribution while the UCBs only know an upper bound. For this reason we do not comment extensively on the
performance gaps between the algorithms, but we are more interested in checking the asymptotic optimality of M-CVTS.
Indeed, for multinomial distribution we implemented the lower bound described in Section 3 and illustrated it in Figures 7
and 8 for one of our experiments.

Multinomial Experiments 1 to 4: Choice of the distributions We run M-CVTS on different multinomial bandit
problems in which all arms have the common support (x0, x1, . . . , x10) = {0, 0.1, . . . , 0.9, 1}. In this setting we consider
5 multinomial distributions, that we write (qi)i∈{1,...,5}, and visually represent in Figure 3. Those arms provide different
distributions with interesting shapes and properties, using simple formulas to generate the probabilities.

As the order of arms’ CVaR varies substantially depending on the value of α, a bandit algorithm aiming at minimizing
the CVaR regret is necessary. For instance q1 is the best arm for α ≤ 20%, q3 for α ∈ [30%, 55%], and q5 for α ≥ 55%.
Furthermore, q5 is typically a distribution that a risk-averse practitioner would like to avoid as its expectation is large at
the cost of potential high losses, while q1 is not satisfying for someone maximizing the expected reward due to the high
concentration around 0.5. Interestingly, despite different shapes q2 and q4 are actually close in terms of CVaR, hence a
bandit problem defined over these two distributions only is hard to solve. We illustrate the CVaRs of these different arms as
a function of α in Figure 4.

We implemented four experiments with different subsets of these arms, for α in {10%, 50%, 90%}:

• Experiment 1, Q1 = [q1, q2, q3, q4, q5]
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• Experiment 2 (Hard for risk-averse learner), Q1 = [q4, q5]

• Experiment 3 (Large gaps), Q1 = [q1, q2, q3]

• Experiment 4 (Small gaps), Q1 = [q2, q4]

Experimental setup Each experiment consists in N = 5000 runs of each algorithm (namely U-UCB, CVaR-UCB and
M-CVTS) up to a horizon T = 10000. We report the results in Tables 5, 6, 7 and 8.

Analysis of the results The results reveal that M-CVTS clearly outperforms the baselines for any level of α in all
experiments. Experiment 4 is the only one for which the gap is not very large, because this CVaR bandit problem is a
hard instance, and no algorithm reaches its asymptotic regime after 104 time steps. However, it is interesting to notice that
M-CVTS can be better than the baselines even when it is not in this asymptotic regime.

For Experiment 1 and α ∈ {10%, 90%} we display the regret curves of both M-CVTS, CVaR-UCB and U-UCB in Figure 5
and Figure 6. We also add a 5%− 95% confidence bound around each curve. We see that the regret of U-UCB is linear for
this time horizon with α = 10%, while the regrets of CVaR-UCB and M-CVTS have similar shapes and confidence intervals
for the two values of α, hence they appear to be more robust to the parameter α than U-UCB in this setting. Nonetheless, in
both cases M-CVTS largely outperforms CVaR-UCB. It is also interesting to remark that M-CVTS becomes clearly better
than its competitors very early in the competition, which shows that M-CVTS can be a good choice for practitioners who
would consider shorter horizons.

Optimality of M-CVTS Still on Experiment 1, we illustrate in Figures 7 and 8 the asymptotic optimality of M-CVTS by
representing its regret (in logarithmic scale on the x axis) along with the asymptotic lower bound described in Section 3,
again for α ∈ {10%, 90%}. The fact that M-CVTS matches the asymptotic lower bound is verified in this experiment, as
the regret of M-CVTS converges to a straight line which is parallel to the lower bound (still in logarithmic scale on the x
axis). The small difference of slopes in Figure 7 might be due to the fact that we used a solver to solve the optimization
problem involved in the lower bound, and we noticed that this solver was less precise for small values of α.

q1 q2 q3

0.0 0.2 0.4 0.6 0.8 1.0

q4

0.0 0.2 0.4 0.6 0.8 1.0

q5

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3: Visual representation of multinomial distributions q1, q2, q3, q4, q5
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q2
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Figure 4: CVaR of the distributions (qi)i∈{1,...,5} as a function of α
vertical lines are the thresholds α = {5%, 50%, 90%}.

Table 5: Results for Multinomial Experiment 1 at
T = 10000 for 5000 replications. Standard deviations

in parenthesis. Q = [q1, q2, q3, q4, q5]

α U-UCB CVaR-UCB M-CVTS

10% 549.4 (3.3) 235.9 (19.6) 35.1 (14.7)
50% 283.6 (16.3) 181.5 (17.9) 65.4 (30.6)
90% 221.1 (23.7) 220.5 (23.7) 43.7 (36.3)

Table 6: Results for Multinomial Experiment 2 at
T = 10000 for 5000 replications. for 5000 replications.

Q = [q4, q5]

α U-UCB CVaR-UCB M-CVTS

10% 44.5 (0.4) 26.7 (5.0) 11.9 (7.8)
50% 137.5 (18.9) 55.4 (13.6) 17.7 (23.8)
90% 53.3 (11.0) 54.3 (11.4) 8.0 (5.6)

Table 7: Results for Multinomial Experiment 3 at
T = 10000 for 5000 replications. Q = [q1, q2, q3]

α U-UCB CVaR-UCB M-CVTS

10% 360.1 (3.9) 149 (16.8) 23.0 (13.8)
50% 217.2 (17) 117.6 (18.7) 29.0 (25.6)
90% 124.2 (16.5) 116.6 (16.0) 17.3 (10.8)

Table 8: Results for Multinomial Experiment 4 at
T = 10000 for 5000 replications. Q = [q2, q4]

α U-UCB CVaR-UCB M-CVTS

10% 17.7 (0.2) 16.4 (2.2) 13.6 (8.6)
50% 79 (7.8) 68.3 (14.4) 27.8 (26.4)
90% 27.1 (4.4) 26.0 (4.3) 21.3 (15.6)
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Figure 5: Experiment 1 with Multinomial arms,
all algorithms, α = 10%
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Figure 6: Experiment 1 with Multinomial arms,
all algorithms, α = 90%
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Figure 7: Experiment 1 with Multinomial arms,
regret of M-CVTS and lower bound (abscissa log scale),

α = 10%
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Figure 8: Experiment 1 with Multinomial arms,
regret of M-CVTS and lower bound (abscissa log scale)

α = 90%

G.1.2. EXPERIMENTS ON GENERAL BOUNDED DISTRIBUTIONS: TRUNCATED GAUSSIAN MIXTURES

In this section we consider bounded multi-modal distributions, built by truncated Gaussian Mixture models in [0, 1]. We
simply call these distributions Truncated Gaussian Mixtures (TGM for short). We first remark that these distributions are
not continuous because they can have a positive mass in 0 and 1, but it is still a good illustrative example to check the
performance of B-CVTS. Indeed, we also performed the same exact experiments making the distributions continuous
(instead of truncating, we re-sampled observations until they lied in [0, 1]) and the results were deemed to be exactly the
same.

Continuous Experiments 1 to 4: Bi-modal Gaussian mixtures We first consider experiments with two modes, each
mode being equiprobable and having the same variance for simplicity (σ = 0.1) in all experiments. It is interesting to
compare settings where some arms have modes that are both close to 0.5, and where other arms have a large mass of
probability close to the two support bounds (one mode close to 1 and one close to 0).

We experiment 4 possible configurations of the modes, given by:

• µ1 = (0.2, 0.5)

• µ2 = (0, 1)
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• µ3 = (0.3, 0.6)

• µ4 = (0.1, 0.65)

We indifferently call the arms by their means (saying arm µ1 for the TGM arm with the parameter µ1 along with the
parameters we fixed).

As for the discrete setup in the previous section, we highlight some basic properties of their CVaRs: the distribution with
parameter µ2 has a larger mean than the one with µ1, but the 50% CVaR of µ1 is larger. We represented the CVaR for
each parameter for different values of α ∈ (0, 1] in Figure 9, with the thresholds α ∈ {0%, 10%, 90%} represented by the
vertical lines. Interestingly, with these arms the most difficult problems are not necessarily those with smallest values of α.
Indeed, for α = 80% it may be particularly difficult to choose between µ2 and µ3, or between µ1 and µ4, while µ3 is the
clear winner for α = 10% due to the distribution being very concentrated around 0.5. Furthermore, the distribution µ2 is
very concentrated around the bounds of the support but has a larger mean than the others, hence it becomes the best arm for
values of α that are close to 1.

0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5 1

2

3

4

Figure 9: CVaR of each TGM distribution νi (with centers µi), i = 1, . . . , 4 for different values of α

We run the algorithms for α = 10%, 50% and 90% on four bandit problems with the following respective distributions:

• ν1 = (µ1, µ2)

• ν2 = (µ1, µ3)

• ν3 = (µ1, µ4)

• ν4 = (µi)i∈{1,2,3,4}

Results In Tables 9, 10, 11 and 12 we report the results for the four considered problems (mean regret and standard
deviation at T = 10000). We also provide the regret curves, as for multinomial distributions, in order to check the
logarithmic order of the regret of B-CVTS and its rate when T is large.

Again, the TS approach significantly outperforms the two UCB algorithms, which is a very interesting result: contrarily to
the multinomial case, this time the three algorithms had the same level of information on arms’ distributions. B-CVTS is
consistently the best for all four problems we implemented and for all α levels.

Continuous Experiment 5: Robustness to small α We then check the robustness of B-CVTS to a smaller value of the
parameter α by setting α = 1%, referred as Experiment 5. The bandit of Experiment 5 has six TGM arms with respective
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Table 9: Results for TGM Experiment 1 at T = 10000
for 5000 replications. Standard deviations in parenthesis.

α U-UCB CVaR-UCB B-CVTS

10% 274.9 (1.8) 5.3 (1.5) 1.1 (0.5)
50% 127.0 (19.3) 135.3 (41.1) 29.8 (17.2)
90% 80.5 (10.4) 53.5 (6.7) 10.2 (17.9)

Table 10: Results for TGM Experiment 2 at T = 10000
for 5000 replications.

α U-UCB CVaR-UCB B-CVTS

10% 373.7 (4.1) 72.8 (9.6) 4.1 (2.3)
50% 135.8 (8.9) 37.9 (7.5) 5.5 (2.7)
90% 62.6 (7.1) 43.9 (5.1) 5.0 (1.8)

Table 11: Results for TGM Experiment 3 at T = 10000
for 5000 replications.

α U-UCB CVaR-UCB B-CVTS

10% 269.4 (1.8) 23.2 (4.8) 2.8 (1.5)
50% 138.5 (12.4) 71.8 (19.0) 14.7 (8.3)
90% 53.1 (6.6) 34.5 (6.6) 20.2 (22.4)

Table 12: Results for TGM Experiment 4 at T = 10000
for 5000 replications.

α U-UCB CVaR-UCB B-CVTS

10% 958.9 (4.8) 230.5 (25.3) 10.4 (3.2)
50% 318.4 (12.2) 147.7 (17.9) 21.2 (6.4)
90% 154.3 (11.9) 119.5 (11.7) 25.1 (14.1)

mean and variance parameters µ135 = (0.3, 0.6), µ246 = (0.25, 0.65), σ12 = 0.05, σ34 = 0.06, σ56 = 0.07. This
experiment allows to additionally check if adding different variances to the arms affects the performance of the algorithms.
However, we keep the probability of each mode to 0.5. This problem provides the following CVaR values for each arm at
level 1%, respectively: c0.01

1:6 = [0.18, 0.13, 0.15, 0.10, 0.13, 0.08]. The results are reported in Table 13, in which we observe
a very large performance gap between B-CVTS and UCB algorithms. This is particularly interesting because it shows that
the UCB algorithms are not really able to learn for very small values of α (indeed α = 1% is very small when drawing only
a total number of 104 observations) before the horizon becomes extremely large. We already observed this behavior for
CVaR-UCB in previous experiments, but this time we can see as well that its average regret is even higher than the one of
U-UCB, and its variance spiked. On the other hand, B-CVTS seems to learn smoothly even for α = 1%, as its average
regret only doubles between T = 1000 and T = 5000, and increases even less between T = 5000 and T = 10000.

Table 13: Results for TGM Experiment 5 (α = 1%) at T = 10000 for 5000 replications.

T U-UCB CVaR-UCB B-CVTS

1000 49.1 (0.3) 53.2 (5.6) 18 (37)
5000 245 (1.1) 263.2 (24.7) 35.5 (51)
10000 489.1 (2.2) 518.4 (45.0) 41 (66)

Table 14: Results for TGM Experiment 6, at T = 10000 averaged over 400 random instances with K = 30 truncated
Gaussian mixtures with 10 modes.

T U-UCB CVaR-UCB B-CVTS

10000 2149.9 (263) 2016.0 (265) 210.9 (6.4)
20000 4276.4 (538) 3781.3 (521) 237.1 (15.4)
40000 8493.4 (1085) 6894.1 (985) 263.5 (17.9)

Continuous Experiment 6: Random Problems with more modes and more arms Finally, we further check the
robustness of B-CVTS to more arms and more diverse distribution profiles by increasing the number of possible modes.
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To do so, we implement an experiment with K = 30 arms, with TGM distributions with 10 modes exhibiting different
means and variances, which covers a large variety of shapes of distributions. All of those parameters are drawn uniformly at
random, and we summarize their distributions as (µ, σ) ∼ U([0.25, 1]10 × [0, 0.1]10), and p ∼ D10 (uniform distribution on
the simplex, presented in Section 3). We name this setting TGM Experiment 6. The results of this experiment are reported in
Table 14 for a parameter α = 0.05 averaged over 400 random instances. Again, we choose a smaller value for α than in the
previous extensive sets of experiments because problems with small α seem to be more challenging. The results highlight
that best performances are obtained by B-CVTS.

Conclusions We preliminary evaluated the CVaR bandit algorithms on synthetic problems before testing them on realistic-
world bandit environment in the next section. These experiments seem to highlight a greater robustness of B-CVTS to
many different settings regarding different parameters: α level, the number of arms K and the different possible shapes
of the distributions (symbolized by the number of modes in our synthetic experiments). In particular, B-CVTS is the only
algorithm that has not shown to be affected by the value of α, as the two UCB algorithms had their respective performances
degraded in some extent depending on α values.

G.2. Experiments with DSSAT crop-model

In this section we keep comparing B-CVTS with U-UCB and CVaR-UCB for α ∈ {5%, 10%, 80%} as described in
section 4. DSSAT is still parameterized with the same challenging conditions, but we generate two different problems thanks
to the crop-simulator. For both presented experiments we consider N = 1040 runs of each algorithm up to a time horizon
T = 10000. As explained in section 4, all DSSAT arms’ distributions are empirically estimated from 106 samples in both
experiments.

DSSAT Experiment 1: 7 armed planting date bandit We consider a bandit instance that consists of 7 arms, each arm
corresponds to a planting date spaced of 15 days from the previous one. An illustration of the underlying distributions is
given in Figure 10. In this case, the best arm is consistent with all values of α, as shown in Table 15. Nevertheless, arms
exhibit different gaps when considering different values of α. This experiment intends to evaluate B-CVTS robustness for a
greater number of real-world alike arms with a diversity of reward distribution shapes.

The results of this experiment are reported in Table 17. The regret curves for the three algorithms, with considered values of
α parameter are illustrated in Figures 12, 14, and 16.

In this experiment, by exhibiting superior performances B-CVTS appears to be more robust than the UCB CVaR bandit
algorithms relative to an increase in the number of arms. In practice for the planting-date problem, a global, few months
planting-window is known but needs further refinements e.g. to identify the best two-week time slot for planting. That is to
say, the number of arms is unlikely to be greater that what has been tested in this experiment, making B-CVTS a particularly
fit-for-purpose candidate in this setup.

DSSAT Experiment 2: Impact of support upper bound over-estimation This configuration is the same than the one
presented in Section 4, but here we largely over-estimate the yield upper-bound to 30 t/ha, when a close to reality yield
upper bound is about 10 t/ha. From an agronomic point of view, this yield value is a very unlikely over-estimation in
the given conditions. This experiment intends to empirically evaluate how a rough arms’ upper-bound estimation affects
algorithms’ performances, when little expert knowledge is available. An illustration of the underlying distributions and how
the upper-bound estimation is exaggerated is given in Figure 11 and corresponding metrics are reported in Table 16.

We provide the results of this experiment in Table 18, and display the regret curves in Figures 13, 15, and 17.

Experiment 2 addresses one possible concern for practitioners: the prerequisite of rewards’ support upper bound. We
empirically demonstrate that with realistic simulations, when a highly over-estimated, unrealistic support upper-bound
is given – triple of expert’s estimation –, B-CVTS keeps outperforming UCB-like CVaR bandit algorithms. We shown
that this over-estimation did not affect B-CVTS performances compared to the situation of correct support upper-bound
identification as presented in Section 4. In particular, it even slightly improved its performance for α = 80%. This result is
counter-intuitive, but it can be explained by the fact that the extra exploration induced by the larger upper bound may have
sped up learning in this particular case, improving overall performances. On the other hand, CVaR-UCB seems much more
impacted by this over-estimation (regret is respectively increased by about 150%, 75% and 78% for α ∈ {5%, 20%, 80%}).
Similarly U-UCB shown altered performances, despite its already unsatisfying results when considering the true upper



Optimal Thompson Sampling strategies for support-aware CVaR bandits

bound.

Conclusions B-CVTS appeared to be a satisfying candidate for real-world alike problems, as shown with the planting
date bandits. We empirically showed the B-CVTS was best able to deal with a greater number of planting date arms than
its UCB counterparts. We showed as well that B-CVTS remained the best performer despite considering a very unlikely
support upper-bound estimation. We think that in many physical resource-based problems, this should be reassuring for
practitioners, in particular when compared with UCB algorithms’ sensibility to the input upper bound.
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Figure 10: Experiment 1, 7 armed DSSAT environment
empirical distributions ; 106 samples.
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Figure 11: Experiment 2, 4 armed DSSAT environment
empirical distributions with over-estimated support ; 106

samples.

Table 15: DSSAT Experiment 1 distribution metrics in
kg/ha estimated from 106 samples..

day (action) CVaRα
5% 20% 80% 100% (mean)

057 0 448 2238 3016
072 46 627 2570 3273
087 287 1059 3074 3629
102 538 1515 3120 3586
117 808 1832 3299 3716
132 929 1955 3464 3850
147 1122 2203 3745 4112

Table 16: DSSAT Experiment 2 distribution metrics in
kg/ha estimated from 106 samples.

day (action) CVaRα
5% 20% 80% 100% (mean)

057 0 448 2238 3016
072 46 627 2570 3273
087 287 1059 3074 3629
102 538 1515 3120 3586

Table 17: Results for DSSAT Experiment 1, empirical
regret at T = 10000 in t/ha for 1040 replications. Stan-
dard deviations in parenthesis.

α U-UCB CVaR-UCB B-CVTS

5% 5687 (5) 1891 (18) 700 (22)
20% 6445 (10) 1795 (19) 489 (17)
80% 3367 (14) 1580 (15) 293 (8)

Table 18: Results for DSSAT Experiment 2, empirical
regret at T = 10000 in t/ha for 1040 replications.

α U-UCB CVaR-UCB B-CVTS

5% 3179 (2) 759 (14) 195 (11)
20% 5644 (6) 1020 (17) 202 (10)
80% 2642 (10) 888 (13) 284 (12)
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Figure 12: DSSAT Experiment 1, 7 armed bandit
all algorithms, α = 5% ; 1040 replications.
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Figure 13: DSSAT Experiment 2,
4 armed over-estimated support upper bound,
all algorithms, α = 5% ; 1040 replications.
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Figure 14: DSSAT Experiment 1,
all algorithms, α = 20%
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Figure 15: DSSAT Experiment 2,
all algorithms, α = 20%
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Figure 16: DSSAT Experiment 1,
all algorithms, α = 80%
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Figure 17: DSSAT Experiment 2,
all algorithms, α = 80%


