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Abstract Introduction The pre-processing of analytical data in metabolomics
must be considered as a whole to allow the construction of a global and unique
object for any further simultaneous data analysis or multivariate statistical mod-
elling. For 1D 1H-NMR metabolomics experiments, best practices for data pre-
processing are well defined, but not yet for 2D experiments (for instance COSY in
this paper).
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Objective By considering the added value of a second dimension, the objective
is to propose two workflows dedicated to 2D NMR data handling and preparation
(the Global Peak List and Vectorization approaches) and to compare them (with
respect to each other and with 1D standards). This will allow to detect which
methodology is the best in terms of amount of metabolomic content and to advan-
tageously illustrate this selected workflows, as proof of concept, in order to finally
be able to find relevant biomarkers.

Methods To select the more informative data source, MIC (Metabolomic In-
formative Content) indexes are used, based on clustering and inertia measures
of quality. Then, to highlight biomarkers or critical spectral zones, the PLS-DA
model is used, along with more advanced sparse algorithms (sPLS and L-sOPLS).

Results Results are discussed according to two different experimental designs
(one which is unsupervised and based on human urine samples, and the other
which is controlled and based on spiked serum media). MIC indexes are shown,
leading to the choice of the more relevant workflow to use thereafter. Finally,
biomarkers are provided for each case and the predictive power of each candidate
model is assessed with cross-validated measures of RMSEP.

Conclusion In conclusion, it is shown that no solution can be universally the
best in every case, but that 2D experiments allow to clearly find relevant biomark-
ers even with a poor initial separability between groups. The MIC measures linked
with the candidate workflows (2D GPL, 2D vectorization, 1D, and with specific pa-
rameters) lead to visualize which data set must be used as a priority to more easily
find biomarkers. The diversity of data sources may often lead to complementary
or confirmatory results.

Keywords 2D NMR · 1H-NMR · COSY spectra · Pre-prossessing workflows ·
Metabolomic Informative Content (MIC) · Biomarker discovery · PLS · sPLS ·
L-sOPLS

1 Introduction

In a large variety of current metabolomics studies, as for the whole family of -omics,
the research of accurate biomarkers is a key issue whether it is to diagnose a disease
or to measure its degree of progress, to estimate the effects of a pharmaceutical
treatment, to control the quality of consumer goods, etc. Biomarkers are then a
way to explain and/or to anticipate an event, which can be of a critical importance
for example in case of a medical decision to operate or the choice of a heavy-duty
or long-term medical treatment.

In practice, the statistical detection of such biomarkers is carried out by many
researchers using Partial Least Squares (PLS) analyses when the response ma-
trix of interest Y is continuous; or PLS-DA (Discriminant Analysis) if Y is cat-
egorical or coded as a binary vector y when only two levels are of interest (for
instance, y = 1 for patients with a disease and y = 0 for healthy people, but
note that one can generalize to a multilevel response variable). The popularity
of PLS and OPLS (Orthogonal PLS) regression methods in metabolomics dates
from the early 2000s, mainly based on the works of Svante Wold and Johan Trygg
[Wold, Trygg et al., 2001] [Wold et al., 2001], and the parallel development of the
SIMCA software (see for instance [Bylesjo et al., 2006]). Since then, this popu-



Two data pre-processing workflows to facilitate the 3

larity has never stopped growing and the vast majority of the past and current
biomarkers’ researches are linked to the PLS(-DA) principles.

Because it can be advantageous to deal with only a small number of -very-
significant and ideally easily interpretable biomarkers, several studies involving
sparse solutions and methods have been proposed these last years, with the ob-
jective to reinforce the most significant biomarkers’ coefficients and to force the
less significant ones to be equal to zero (according for instance to some LASSO-
like penalties and to the well known LARS algorithm [Efron et al., 2004]). In this
paper, the notion of sparsity will be explored in the context of the biomarker
discovery issues in metabolomics. Sparse PLS (sPLS) [Chun and Keles, 2007] and
Light sparse Orthogonal PLS (L-sOPLS) [Feraud et al., 2017] are tested (but other
sparse techniques are of course possible).

But the main purpose of this paper concerns the input data chosen to feed
these algorithms. Best practices for 1D spectral data, and in particular for proton
1H-NMR are now well-known and commonly applied ([Ravanbakhsh et al., 2014]
[Craig et al., 2006] [Martin et al., 2017] for example). For two-dimensional data
sources, it is not fully the case yet (as for COSY spectra, for COrrelation Spec-
troscopY, considered here). When the spectral results of an experience or an ex-
perimental design have to be considered as a whole, it is critical to create a global
and unique data object for further simultaneous statistical analysis or multivariate
modelling (as biomarker discovery).

The design of appropriate data pre-processing workflows for 2D NMR data
appears timely, since 2D NMR has recently emerged as a promising alternative
to 1D NMR in metabolomics studies [Marchand et al., 2017]. 2D spectroscopy
offers a broad variety of experiments that can significantly increase the disper-
sion of NMR signals, and this is particularly useful in the case of complex bi-
ological samples whose 1D NMR spectra are severely hampered by peak over-
laps. In 2D NMR, peak volumes remain proportional to metabolite concentrations
-although the analytical response is peak-specific, contrary to quantitative 1D
NMR [Giraudeau, 2014]. The inter-comparison of peak volumes between samples
remains possible, as well as the use of 2D spectra for targeted quantification if the
peak response factor is calibrated through an external calibration or with stan-
dard additions [Giraudeau et al., 2014]. 2D NMR experiments suffer from long
experiment times, but this duration can be significantly shortened if needed by
relying on fast acquisition methods [Rouger et al., 2017]. Several recent studies
have shown the potential of 2D NMR in metabolomics, either for untargeted
analysis ([Le Guennec et al., 2014] [Marchand et al., 2018]) or for the targeted
quantification of metabolites ([Le Guennec et al., 2012] [Martineau et al., 2012]
[Jezequel et al., 2015]). However, all these studies were focused on the improve-
ment of data acquisition methods, but suffered from a lack of standardized ap-
proach for the pre-processing of 2D data.

Two methodologies, or workflows, to handle 2D COSY spectral data are pre-
sented and compared in order to fill this lack. First, the Global Peak List (GPL)
workflow [Feraud et al., 2015] implies the construction of individual peak lists
linked with each initial individual spectrum and the intelligent merging of these
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individual peak lists into a global matrix, called GPL. The GPL workflow also al-
lows to control the resolution (and also the final size of the final object) and basic
data treatments. Second, a vectorization workflow is proposed which is not depen-
dant of any external software and which allows to fully and more precisely fix the
size of the final matrix. The goal of this work is to consider these two workflows,
to see how they can be tuned via different parameters and to compare them to
each other and with the 1D 1H-NMR approach in terms of amount of metabolomic
content, or useful information, contained in the resulting data matrices. When a
specific workflow is declared the best for classifying and separating homogeneous
groups, the biomarker discovery step can advantageously be implemented on it.

The paper is organized as follows. Section 2 provides a detailed description of
the two data sets used to demonstrate and compare the workflows: a COSY design
involving different urine donors and a controlled COSY design involving spiked
doses of two products (threonine and glutamate) in serum media. The questions
of interest will be respectively the following for these two data sets: how can we
blindly retrieve and separate the urine donors? How can we identify the threonine
and glutamate molecules’ fingerprints and then accurately find these two products
as primary biomarkers?

The GPL and vectorization workflows, the assessment of the amount of cap-
tured metabolomic content (via the Metabolomic Informative Content, MIC [Feraud et al., 2015])
and the biomarker discovery statistical models (PLS, sPLS, L-sOPLS) are detailed
in the methodological Section 3. Results for both data sets are then shown and
discussed in Section 4. Finally, a general conclusion is given in Section 5.

2 Materials: data sets and experimental protocols

In this section, the two selected data sets used to train the two workflows and to
illustrate the biomarkers selection issue are presented. For both of them, a descrip-
tion and motivational explanations are provided, as well as the main acquisition
parameters.

2.1 First experimental design: urine donors

2.1.1 Description and motivations

This first data set was built in the context of a wider inter-laboratory study about
repetability of different 1D 1H-NMR and 2D COSY spectral measures and acqui-
sition protocols. The experience involves three factors of variation: three different
donors, two urine dilution levels and four different days of acquisition. Eight mea-
sures are finally available for each donor.

In this paper, note that the focus is strictly on the group factor (i.e. the donors)
as it corresponds to the signal we want to capture and explain in subsequent sec-
tions. In this regard, urine dilution and days factors can be considered as additional
sources of noise and will not be commented separately in details.

Concretely, the idea is to handle all these data sources with the two presented
workflows, to visualize which of them succeeds best in capturing the signal or
main information (i.e. the donors) and finally to illustrate the allowed benefits
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when finally searching for relevant biomarkers (i.e. metabolites which contribute
to classify the data into homogeneous groups).

2.1.2 Urine collection

In order to conduct this experiment and to design the collection of urine samples,
the morning urine of three different fasting donors was collected. For each donor,
four aliquots of 400 µl and four aliquots of 320 µl were placed at -80◦C. Then, on
each consecutive day (four days), six aliquots were thawed (3 donors × 2 quantities)
and routinely prepared as follows.

Urine samples of 400 µl were supplemented with 300 µl of deuterated phosphate
buffer (DPB, pH 7.4), while 320 µl urine aliquots were supplemented with 380 µl of
the same buffer. 10 µl of a 10 mg/ml TMSP solution was then added to all aliquots.
The four aliquots of each dilution were put in 5mm NMR tube for NMR acquisition
and analyzed. For each day, the order of measurement was held constant across
the six sub-samples. A total of 24 1D and 2D collected signals are finally available.

All spectra are internally labelled as Si Dj Ek, where S corresponds to the
donor label (i = 1, ..., 3), D is the dilution (j = 0: no dilution; j = 1: 25% diluted)
and E is the day of acquisition (k = 1, ..., 4).

The acquisition of 1D and 2D NMR spectra is described below in Section 2.3.

2.2 Second serum based experimental design: spiked products

2.2.1 Description and motivations

The second dataset consists in proton-NMR and 2D COSY spectra acquisition of
sera samples spiked with known concentrations of metabolites. In this dataset, glu-
tamate and threonine have been used as spiking references. Indeed, 1H-NMR iden-
tification of these two metabolites is usually difficult to perform on clinical samples
due to spectral crowding and peak overlapping in their region. Threonine is com-
pletely overlapped by lactate at 1.32 ppm, while glutamate is overlapped at 2.12
ppm and 2.34 ppm by proline, lipoproteins and glutamine [Marjanska et al., 2008].
The purpose of this dataset is to assess the separation between spiked and non-
spiked samples using the two presented workflows, in order to determine which
one is the best at highlighting these spiked metabolites.

2.2.2 Blood collection and spiking

Serum from a single donor was collected and 36 aliquots of 500 µl were prepared
and stored at -80◦C. On three consecutive days of experiment, 12 aliquots were
thawed and spiked under four different conditions as follows: i) 500 µl serum
without any product added (internally labelled as ”P1D1 P2D1”); ii) 500 µl
serum spiked with 7 µl of a 17 mM threonine solution (”P1D2 P2D1”); iii) 500
µl serum spiked with 10 µl of a 8.3 mM glutamate solution (”P1D1 P2D2”); iv)
and 500 µl serum spiked with 7 µl of the 17 mM threonine solution and with
10 µl of the 8.3 mM glutamate solution (”P1D2 P2D2”). 30 µl of a 10 mg/ml
TMSP solution and 50 µl of a 35 mM maleic acid solution were then added to all
samples. Finally, samples were supplemented with different volumes of deuterated
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phosphate buffer (DPB, pH 7.4) in order to reach a final volume of exactly 700 µl
in each case. Samples were put in 5 mm NMR tube for NMR acquisition and were
analyzed. A total of 36 spectral measures are finally available.

In this experiment, spectra are labelled as Ji P1Dj P2Dj Rk, where J is
the day of measurement (i = 1, ..., 3), P1 corresponds to threonine and P2 to
glutamate,D refers to the spiking condition (j = 1: no spiking; j = 2: spiking of the
corresponding metabolite) and R is the repetition of the experiment (k = 1, ..., 3
for each day).

The acquisition of 1D and 2D NMR spectra is described below in Section 2.3.

2.3 NMR spectroscopy

All samples were analyzed at 298K on a Bruker Avance spectrometer operating
at 500.13 MHz for proton signal acquisition. The instrument was equiped with
a 5 mm TCI cryoprobe with a Z-gradient. 1H-NMR spectra were acquired using
a 1D NOESY pulse sequence with presaturation for urine samples and a CPMG
relaxation-editing sequence with presaturation for serum samples. The NOESY ex-
periment with water signal presaturation used a RD-90◦-Tau-90◦-Tm-90◦-acquire
sequence with a relaxation delay of 4 s, a mixing time (Tm) of 10 ms, and a fixed
Tau delay of 4 µs. The water suppression pulse was placed during the relaxation
delay (RD). The CPMG experiment used a RD-90-(t-180-t)n-sequence with a re-
laxation delay (RD) of 2 s, a spin echo delay (t) of 400 µs and a number of loops
equal to 80. The number of transients was typically 32, and a number of 4 dummy
scans was chosen. The acquisition time was fixed to 3.28 s. The data were then
processed with the Bruker Topspin 3.2 software with a standard parameter set.

Before Fourier transformation, FIDs were subjected to exponential multipli-
cation resulting in an additional line-broadening of 0.3 Hz. Phase and baseline
corrections were performed manually over the entire range of the spectra, and the
δ scale was calibrated to 0 ppm, using the internal standard TMSP.

For 2D experiments, gradient enhanced magnitude COSY (pulse sequence
cosygpprqf supplied by Bruker) with a pre-saturation during relaxation delay was
used for urine and sera samples 2D measurements. Spectra were collected with
4096 points in F2 and 300 points in F1 over a sweep width of 10 ppm, with 4
scans per F1 value. The acquisition times were fixed to 0.256 s in F2 and 0.0187
s in F1. The resulting COSY spectra were processed in Topspin 3.2 using stan-
dard methods, with sine-squared apodization in both dimensions and zero filling
in F1 to yield a transformed 2D dataset of 2048 by 2048 points. Finally, Fourier
transformation, baseline correction and symmetrisation were performed manually
on all FIDs.

3 Methods

This methodological section discusses the data pre-processing steps to apply when
the full spectral acquisition has been performed. As previously said, when a whole
experimental design is considered, a global and unique object has to be built for
further data analysis or multivariate statistics. Two workflows are presented in
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this paper: a workflow based on the concept of ”Global Peak Lists” (GPL, see
[Feraud et al., 2015] and Section 3.1) and another which implies the vectorization
of the initial spectral matrices (Section 3.2). In this paper, note that we make the
implicit and intuitive assumption that 2D data requires a less advanced level of
pre-processing than for 1D data.

When an unique data object has been built, any multivariate statistical tool
can then be applied on it: clustering, classification, PCA, PLS regressions, sparse
regressions, etc... Different data sources, or matrices, built according to differents
acquisition parameters or conditions, can first be compared in order to determine
which set contains most information about the signal. Inertia or Metabolomic
Informative Content (MIC) measures [Feraud et al., 2015] are presented to answer
this question (Section 3.3).

In the context of biomarker identification, this unique and global object can
then be considered as input into usual (O)PLS regressions or into more advanced
sparse models (Section 3.4).

3.1 The Global Peak List (GPL) approach

This approach is fully detailed in [Feraud et al., 2015] and is structured as illus-
trated in Fig.1 (left part). First, each of the n initial individual 2D spectra is
converted into an individual peak list, i.e. a (ti × 3) matrix which contains the
two ppm coordinates and the concentration intensity of ti existing peaks. After
some manipulations detailed below, the n peak lists are merged, resulting in a
(T ×MGPL) Global Peak List (GPL) matrix. This matrix includes the T pairs of
coordinates that appear in at least one of the individual spectra and all the cor-
responding intensities. Note that the number of rows T is not known in advance.

The individual peak lists can be obtained from initial spectra with, for example,
the ACD/Labs free software (ACD/NMR processor). It implies the choice of a
threshold to determine when an intensity level begins to be relevant and can not
be associated with pure noise only. This threshold has to be maintained at a low
level, typically between 0.02 and 0.05 in ACD/Labs.

A list of pre-processing steps can be applied on the individual initial peak lists
in order to increase the impact of the informative sources and to remove potential
unnecessary artefacts. These steps include, for instance, the symmetrisation of
homonuclear 2D spectra with respect to the diagonal, or the removal of negative
intensities.

With biological samples, one major problem is the strong residual water signal,
even with a previous application of some solvent signal suppression techniques.
As a result, a water zone deletion is very useful to avoid over-representations
(it mainly concerns the water zone, but may also concern urea, maleic acid or
lipoproteins). A normalization of the intensities (using Constant Sum = 1) and
a further log-transformation can also be of crucial interest and added in order to
stabilize distribution variances.

Finally, a dimension reduction step is also applied. In 1H-NMR spectroscopy,
bucketing tools are common and widely used to control the spectral resolution
and/or to overcome the misalignments problems. Classical and more advanced
bucketing methods have already shown their usefulness for 1H-NMR spectra [Rousseau, 2011]
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[Sousa et al., 2013]. In this workflow, a soft bucketing step adapted to 2D COSY is
used in order to control the resolution level of the two-dimensional spectra. Practi-
cally, a variation of the number of decimals of the coordinates is simply proposed.
The intensities belonging to a bucket are then aggregated. For example, if the
couples of coordinates [3.286; 4.194], [3.281; 4.189] and [3.278; 4.191] provide posi-
tive intensities INT1, INT2 and INT3 respectively, the couple [3.28; 4.19] provides
an intensity equal to INT1+INT2+INT3 when adjusting the number of allowed
decimals from 3 to 2. Using this method, the width of the COSY peaks is adjusted
and the size of the resulting database is adjusted simultaneously. Furthermore,
intermediate resolutions can be computed in a similar way.

All these steps can be easily implemented using the R programming language
(http://www.R-project.org).

3.2 The vectorization approach

Unlike the GPL approach, the vectorization one can be directly applied on raw
Bruker text files. The choice of the intensity threshold when using ACD/Labs is
then not anymore an issue.

The principle is quite straightforward: each individual initial (m× p) 2D spec-
tral matrix is first bucketed twice (by rows and by columns) and summarized into
a (MV ×MV ) object. The high dimensionality of the data and small residual peak
shifts can indeed impede the future multivariate data analyses [Liland, 2011] and
bucketing reduces such problems by integrating the p original spectral intensities
into MV predefined intervals, or buckets, with MV < p. For convenience with stan-
dards, MV is often chosen equal to 256 or 512 here (or subsequent 2k multiples
according to the initial resolution) in order to control the dimension reduction and
to avoid truncating extremities.

In this step, the optimal trade-off lies between keeping the spectral information
and removing the peaks shifts as well as decreasing the total number of variables.
Among possible binning methods, The R package PepsNMRs ([Martin et al., 2017])
bucketing function proposes two integration options, either trapezoidal or rectan-
gular, with equally sized buckets and is generalized to cut the original axis at
any chosen location. For 2D COSY, rectangular bucketing is chosen for its more
intuitive aspect linked with a kind of pixelation of a spectral grid.

These bucketed 2D objects are then vectorized, transformed into a (1 ×MV
2)

row vector. Finally, these row vectors are stacked to form a global matrix of size
(n×MV

2) containing the whole information from all the initial spectra.
Before this bucketing step, the water zone is set to zero and the normalization

(Constant Sum = 1) step is performed. A subsequent log-transformation could
also be considered for the same reason as the GPL methodology.

The vectorization workflow is displayed in simplified form in Fig.1 (right part).
The different patterns represented in this figure could involve different sources for
the initial data, different acquisition techniques or set of parameters, etc. In this
figure, all the steps are displayed from the signal acquisition to the final obtained
global matrices. Note that the initial FID are transformed and pre-processed via,
for example, the Bruker TopSpin software (double Fourier transform, baseline
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Fig. 1 The GPL and vectorization approaches workflows for 2D experiments: steps and re-
sulting data files.
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correction, etc.). Recommended data file formats are also mentioned. For instance,
the .dx format is more adapted to the ACD/Labs environment.

3.3 The assessment of the Metabolomic Informative Content

Once a set of global objects is obtained for a given experimental study, Global
Peak Lists or Vectorized spectra, stemming from various sources (urine, blood,
serum, ...), various experiences (COSY, TOCSY, ...) or from the variation of some
parameters of acquisition at any step of the workflows, a natural progress involves
determining which one is the ”best” to consider further more elaborate statistical
studies. ”Best” means here the capacity to distinguish and highlight the useful
information, the signal, by opposition to the experimental or environmental sources
of variability.

Of course, repetitions of the sample measures have to be ideally planned during
the data acquisition when these signal/noise studies are of major interest. More-
over, the presence of groups to recover into the data is very important and helpful
by taking the role of the above-mentioned signal.

When such data are available, quality criteria to compare distinct pre-processing
strategies can be derived from unsupervised as well as supervised chemometric
tools. In this paper, the selected criteria are gathered under the Metabolomic In-
formative Content (MIC) concept, developed in [Feraud et al., 2015] and include
complementary inertia measures, clustering analysis quality measures and PCA or
PLS-DA related criteria.

First, the inertia analysis decomposes the total variance into two complemen-
tary parts: the variance between the groups (maximized in a good partition) and
the variance within the groups of observations (minimized in a good partition).
Second, the clustering results obtained via the Ward’s algorithm ([Ward, 1963],
[Murtagh and Legendre, 2011]) or the K-means one ([McQueen, 1967]) are sum-
marized into some criteria. The (adjusted) Rand indexes measure the true class
recovery efficiency and should be maximized, with a maximal value of 1, while the
Dunn and Davies-Bouldin indexes measure the clustering homogeneity and they
have to be respectively maximized and minimized (formula details can be found in
[Feraud et al., 2015]). Finally, PCA and PLS-DA can allow to graphically recover
the groups from the spectral data.

A priori, the spectral pool which provides the best MIC performances on av-
erage would be the pool that allows in the best way to capture the relevant infor-
mation and to discern the useful signal relative to the noise.

3.4 Biomarker identification

After data preparation and data quality analysis, the next step consists in applying
multivariate statistical tools to model the information and ideally discover relevant
biomarkers.

In order to apply and illustrate the two workflows, as proof of concept, and
the quality measurements, the idea is now to discriminate the urine donors and
to blindly identify discriminant biomarkers or spectral zones when using the first
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dataset; and to discriminate the groups linked with different doses of threonine
and glutamate when using the second dataset. In the later controlled case, the
biomarkers to be found should be directly linked with threonine and/or glutamate.

The conventional PLS ([Wold et al., 2001] [Trygg and Wold, 2002]) and the al-
ready well established sparse PLS (sPLS) ([Chun and Keles, 2007] [Chung et al., 2012]
[Feraud et al., 2017]) methods are applied here, along with the innovative sparse
L-sOPLS solution fully detailed in [Feraud et al., 2017]. L-sOPLS remains quite
intuitive. It requires to start with the OPLS algorithm, to follow the process until
the construction of a data matrix Xd (deflated by the y-orthogonal components)
and then to apply a sparsing model on this filtered matrix specifically, instead of
on the initial data matrix X. The sparsing technique may be freely chosen between
sPLS, Lasso logistic regression, Elastic Net, etc. In this paper, L-sOPLS combines
the OPLS orthogonalization step with sPLS. For interpretability and intuitive-
ness concerns, the L-sOPLS algorithm implies two optimization steps in order to
ensure the best possible predictive ability (i.e. for each step, minimization of the
Root Mean Square Error of Prediction (RMSEP) via an adapted cross-validation
technique). The first step is aimed at optimally selecting the number of orthogonal
components, as in a classic OPLS process. The deflated resulting matrix Xd is then
built according to this number (qortho). The second step builds the sPLS sparse
model, using Xd as input, and is based on a number of predictive components (q)
and a penalty term (λ1) also both chosen optimally.

1D 1H-NMR and 2D COSY spectra will be used and results will be compared
in both cases.

4 Results and discussion

In this section, all the obtained results are discussed for the two data sets, but
only some of them are shown for convenience and readability. Section 4.1 provides
MIC indexes and Section 4.2 shows biomarker discovery results. In Section 4.2,
optimal parameters will be also provided for each PLS, sPLS and L-sOPLS model.

During the pre-processing stage, the water zone was set to zero (typically
deletion of a square area between 4.5 and 5.5 ppm) and a classical outlier detection
was performed. In the second experimental design based on serum, it was also
found better to delete lipoprotein zones (1.26-1.33 ppm and 0.91-0.945 ppm) as
they are tending to vary according to the time which the sample spent at room
temperature before NMR measurements. A log transformation was applied on all
GPL matrices. The 1D 1H-NMR spectra were bucketed at 0.02 ppm and were
submitted to constant sum normalization (using PepsNMR [Martin et al., 2017]).

4.1 Metabolomic Informative Content results

For both experimental designs, the MIC indexes mentioned in Section 3.3 and
described in [Feraud et al., 2015] were calculated on the basis of different de-
grees of pre-processing of the initial COSY spectra. More precisely, different log-
transformed GPL were generated by tuning the ACD/Lab significance threshold
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and/or the number of retained decimals of the coordinates in the 2D bucketing
step. The vectorization approach (Section 3.2) was also taken into account in the
process, along with 1H-NMR spectra. The main results are described in Table 1.

As a reminder, the goal is to recover the three different donors in the case of
the first design and the four doses combinations of threonine and glutamate in the
case of the second one.
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Fig. 2 First two PCA factors for the best GPL in terms of MIC results (left) and for the
corresponding pre-processed 1H-NMR data (right). The upper individuals PCA graphs are
related to the first urine design; the lower ones to the second threonine/glutamate design. Note
again that each individual in these score plots are internally defined by S=donor, D=dilution
and E=day of acquisition for the first design; and by J=day, P=product, D=spiking condition
and R=repetition for the second design.

For the first experimental design, the indexes tend to show that the best infor-
mative content and separability are reached by log-transformed GPL approaches
involving small matrices (with one or two decimals for the coordinates). In these
cases, the initial groups can be blindly retrieved without any error (Rand indexes
= 1, good between inertia, etc.). It is also the case when using pre-processed 1H-
NMR spectra, but with lower Dunn index values. Note that inertia measures are
somehow far better with 1D processed data.
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In the upper part of Fig.2, the first two PCA factors are displayed for the GPL
with threshold = 0.05 and number of decimals = 1, and for the pre-processed
1H-NMR data. In both cases, perfect separability is reached between the urine
donors, as expected by the perfect Rand indexes.

Note that the urine dilution factor does not interfere in the creation of the
donors clusters.

For the second design, the results in Table 1 are far more homogeneous be-
tween the various techniques and separability between groups is harder to obtain
(lower Rand and between inertia indexes for instance). However, the use of the
1D NMR seems to supply the best performances to separate the doses levels. The
vectorization approach provides similar results than GPL ones (except the GPL
with threshold = 0.05 and number of decimals = 1, which is again better). Re-
member that the benefits of vectorization allow to directly select the dimensions
of the matrix on which the user wants to work and allow to bypass the use of
ACD/Labs to arbitrarily select the initial significance threshold.

In the lower part of Fig.2, the first two PCA factors are displayed for this second
design, illustrating a quite low discriminating power between the doses. Note that
the percentage of explained variance by the first two principal components is better
when using 1D data. This later PCA does not seem very informative about the
groups separability but Section 4.2 demonstrates that this is not necessarily bad
news in terms of relevant biomarker discovery.

These poor PCA results can be explained by two reasons. First, PCA remains
a descriptive and unsupervised technique which, by definition, takes into account
all the factors of the experiment (in other words, PCA is not appropriate to detect
one factor precisely, here the dose levels, among other factors). PLS and relative
models are on the contrary supervised and focused on a target to explain.

Secondly, this threonine/glutamate experimental design proposes conditions
of low variabilities between samples, which is doubtless close to real conditions.
Indeed, the spiking process described in Section 2.2.2 implied only a 1 to 1.4%
change between the samples in terms of volume (7 or 10 µl among a total of 700
µl).

4.2 Biomarker discovery results

When the source of data containing most information is identified via the MIC
measures, the user can have an idea on which workflow to use in order to separate
individuals and to highlight biomarkers or discriminating spectral zones.

In this section, PLS, sPLS and L-sOPLS are used to detect relevant biomarkers
from the best 2D COSY solution (i.e. GPL with threshold = 0.05 and number of
decimal = 1) and from corresponding 1H-NMR spectra. Each model is optimized
in order to minimize the RMSEP via LOO cross-validation. For PLS, the number
of predictive component(s) q is optimized by this way. For sPLS, the number of
predictive component(s) q and the penalty term λ1 are optimized. And, finally, for
L-sOPLS, the number of orthogonal component(s) qortho is first optimized and, in
a second step, the number of predictive component(s) q and the penalty term λ1
are optimized too.

For convenience, and because the expected biomarkers to found are known,
results for the second experimental design are primarily discussed in details.
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In 1D, threonine appears in these following zones: 1.33 ppm, 3.59 ppm and
4.29 ppm (submitted to 0.02-0.03 ppm variations according to the pH). Gluta-
mate appears in these following zones: 2.05 ppm (large signal), 2.34 ppm and 3.76
ppm (submitted to 0.02-0.03 ppm variations according to the pH). In 2D COSY,
correlation peaks have to appear outside the diagonal. For threonine: 1.356 - 4.288
ppm (and 4.288 - 1.356 ppm) and 3.611 - 4.288 ppm (and 4.288 - 3.611 ppm). For
glutamate: 2.165 - 2.487 ppm (and 2.487 - 2.165 ppm) and 2.165 - 3.803 ppm (and
3.803 - 2.165 ppm). These correlation peaks are shown in Fig.3.

Ideally, the objective is to already detect the 1D peaks using the pre-processed
1H-NMR spectra (used first because of better MIC performances for this design,
see Table 1).

The PLS, sPLS and L-sOPLS results are shown in Table 2 (as the associated
optimal parameters). For PLS, the twenty first selected features, associated with
the twenty highest coefficients in absolute values, are arbitrarily displayed. For op-
timized sPLS and L-sOPLS, the sparse decisions concerning these biomarkers are
also shown (Yes/No to indicate if the biomarker is selected, and the corresponding
final sparse coefficient if yes).

PLS coefficients sPLS selection L-sOPLS selection
q = 4 q = 5, λ1 = 0.72 qortho = 3, q = 5, λ1 = 0.72

Biomarkers Zone LOO-RMSEP LOO-RMSEP LOO-RMSEP
(in ppm) =0.1755 =0.1514 =0.0759

1.349 Threonine 345.88 Yes (352.92) Yes (196.14)
2.369 Glutamate 340.53 Yes (647.35) Yes (158.22)
2.389 Glutamate 313.39 Yes (578.24) Yes (145.98)
3.609 Threonine 261.96 Yes (362.60) Yes (366.93)
3.789 Glutamate 200.84 No No
1.329 Threonine -180.44 No No
4.289 Threonine 170.24 Yes (223.17) Yes (274.41)
3.269 -168.86 Yes (-272.94) Yes (-310.98)
1.37 Threonine 158.61 Yes (87.14) Yes (348.69)
3.25 -156.90 No No
2.149 140.05 No No
3.909 -125.45 Yes (-197.68) Yes (-348.36)
1.389 -115.01 Yes (-169.57) Yes (-229.57)
4.69 -112.42 No No
3.449 110.32 Yes (182.42) Yes (127.44)
0.929 -107.69 No No
3.289 -92.20 No No
3.49 -91.15 Yes (-64.97) No
2.089 Glutamate 89.46 No No
0.949 -89.13 No No

Table 2 PLS, sPLS and L-sOPLS biomarker selection for 1H-NMR data (threonine-glutamate
design).

One can see that the threonine and glutamate 1D peaks are well retrieved by
the PLS and the sparse algorithms (in bold for these last ones) even if the MIC
and PCA results don’t provide a smart separation between the groups of spectra.
Furthermore, the use of sparse techniques, and in particular L-sOPLS, leads to a
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Fig. 3 Threonine (in red) and glutamate (in blue) 2D correlation peaks in a raw COSY
spectrum and corresponding peaks in a 1D NMR spectrum (red dashes for threonine and blue
long dashes for glutamate).

lower value of the RMSEP of the model, thus significantly improving the predictive
power (from 0.1755 to 0.0759).

But one can also see that some artefacts or other ppm zones are selected, of-
ten with high coefficients (and importance). For example, the peaks in 3.909 and
1.389 ppm are selected and can be easily confused with some nearby threonine
and/or glutamate peaks. It can refer to a contiguous peak zones problem which
may require the addition of a deeper warping step. This confirms the interest to
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apply PLS, sPLS and L-sOPLS on 2D data in order to ideally highlight relevant
correlation peaks outside the diagonal. These peaks would then confirm and re-
inforce the first 1D results. The search for non-diagonal biomarkers based on the
best 2D COSY solution (i.e. GPL with threshold = 0.05 and number of decimal =
1) is summarized in Table 3. Even if all the information was taken into account,
biomarkers located on the diagonal are not displayed, being redundant with the
biomarkers discovered in 1D. For PLS, the non-diagonal peaks whose coefficients
are among the thirty higher global coefficients in absolute values are displayed.

PLS coefficients sPLS selection L-sOPLS selection
q = 5 q = 4, λ1 = 0.78 qortho = 4, q = 5, λ1 = 0.60

Biomarkers Zone LOO-RMSEP LOO-RMSEP LOO-RMSEP
(in ppm) =0.6393 =0.4872 =0.1912
4.3 - 3.6 Threonine 0.146 Yes (0.2089) Yes (0.0994)
3.6 - 4.3 Threonine 0.142 Yes (0.1884) Yes (0.0942)
2.1 - 2.4 Glutamate 0.0582 Yes (0.0933) Yes (0.0289)
4.3 - 1.4 Threonine 0.0544 Yes (0.0884) Yes (0.0555)
3.8 - 2.1 Glutamate 0.0495 Yes (0.0567) Yes (0.0308)
4.3 - 1.3 Threonine 0.0492 Yes (0.0692) Yes (0.0514)
2.4 - 2.1 Glutamate 0.0466 Yes (0.0367) Yes (0.0324)
3.8 - 2.2 Glutamate -0.0288 No No
1.4 - 4.2 Threonine 0.0269 No Yes (0.0119)
3.3 - 4.0 -0.0252 No No
4.4 - 4.9 -0.0244 No No
3.0 - 1.7 -0.0198 No No
3.8 - 4.9 -0.0182 No No

Table 3 PLS, sPLS and L-sOPLS non-diagonal biomarker selection applied on the best GPL
solution in terms of MIC measures (threonine-glutamate design).

One can see in Table 3 that the PLS-DA technique can already detect the
threonine and glutamate correlation peaks in the 2D COSY spectral data, with
higher coefficients in absolute values. But the corresponding predictive power,
based on LOO-RMSEP criteria, is very poor. It is very important to observe that
sparse sPLS and L-sOPLS only detect threonine and glutamate correlation peaks
(and nothing else outside the diagonal). This result is very comforting, especially
as the increase in predictive quality is very significant (from 0.6393 with PLS to
0.1912 with L-sOPLS).

Of course, note that these latter values of LOO-RMSEP are not better than
the previous 1D ones, which is consistent with the initial MIC measures (better
separability can be reached when using pre-processed 1D data here).

Concerning the first data design, the process would be a little bit different, and
more or less inverted. As MIC indexes tend to promote the use of some 2D GPL
as a priority (see Table 1), PLS, sPLS and L-sOPLS have to be applied on these
data source first. So, relevant 2D correlation peaks can be quickly found in a blind
and non-supervised way as biomarkers.

The discovery of such spectral correlation peaks, which perfectly discrimi-
nate the three initial urine donors, can be directly put in connection with re-
cent studies. For instance in [Thevenot et al., 2015] and [Rist et al., 2017], the
effects of age, gender or Body Mass Index (BMI) as sources of variation on the
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human metabolome are proved. Moreover, some particular peaks are highlighted
as biomarker zones, in 1D and 2D (onto the diagonal), and contribute to dis-
crimine the three donors: principally Trimethylamine N-oxide (TMAO), urea and
acetaminophen (paracetamol).

Finally, the application of sparse algorithms on 1H-NMR data would only serve
as confirmation studies.

Note that the same conclusions are observed in terms of predictive power:
L-sOPLS always allows better results.

5 Conclusions

In this article, two pre-processing workflows are presented to handle 2D COSY
spectral data issued from an experimental design and to summarize them into a
single and global object. The Global Peak List (GPL) workflow, especially when
considering low resolutions and a log transformation, performs very well in terms
of metabolomic content and tends to allow a high separability power between
existing groups in the data. The vectorization approach also has advantages: it
may seem more intuitive for users, with no external significance threshold to chose
and final resulting matrices whose dimensions are strictly known in advance.

On the basis of two different data designs (masked group donors and con-
trolled threonine/glutamate doses), GPL matrices, vectorization objects and pre-
processed 1D 1H-NMR data were compared in terms of MIC (Metabolomic Infor-
mative Content), involving unsupervised clustering and inertia quality measures,
in order to visualize which data source is allowing the best separability. For the first
design, some GPL matrices obtained the best performances. And for the second
design, the 1D data source was slightly the best.

In each case, once a data source seemed better than the others, this source was
chosen as priority input for the biomarkers discovery algorithms. In this paper,
PLS-DA, sPLS and L-sOPLS were then applied. Because there is no methodology
or workflow that can be the best every time, the biomarkers discovery step should
ideally be applied on both 1D and 2D data sources to highlight significant 1D
peaks or 2D correlations. These two subsequent data sources can then be used for
confirmation or reinforcing purposes (1D peaks which can confirm the previous
highlighting of 2D correlation peaks; or 2D correlation peaks which can reinforce
the previous highlighting of 1D peaks and corresponding metabolites).

The conclusion is then definitively focused on the complementarity between
the different data sources that can be available during an experience. The use of
different worflows or data sources, coupled with the use of different algorithms,
can lead to complementary and/or confirmatory results.

It is also very important to enhance that the second example, with the threonine-
glutamate experimental design, demonstrated that 2D COSY spectra allow to dis-
cover the relevant molecules’ fingerprints without any equivocation via the non-
diagonal biomarkers (Table 3), even if the initial MIC and PCA results were not
very optimistic (Table 1 and Fig.2).
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For the biomarker research part of this article, it is demonstrated that sparse
derivatives of the PLS model provide very good performances in terms of biomarker
identification and predictive power. By selecting a (very) small number of (very)
relevant features as biomarkers, by providing, consequently, lighter and more in-
terpretable cross-validated optimal models to practitionners, and by offering very
low RMSEP values, the L-sOPLS seems to be a very interesting and promising
tool. The conclusions observed in [Feraud et al., 2017] are now confirmed on 2D
COSY data here.
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