Core circadian clock genes Per1 and Per2 regulate the rhythm in photoreceptor outer segment phagocytosis
Nemanja Milićević, Ouafa Ait-hmyed Hakkari, Udita Bagchi, Cristina Sandu, Aldo Jongejan, Perry Moerland, Jacoline Brink, David Hicks, Arthur Bergen, Marie-paule Felder-schmittbuhl

To cite this version:
Nemanja Milićević, Ouafa Ait-hmyed Hakkari, Udita Bagchi, Cristina Sandu, Aldo Jongejan, et al.. Core circadian clock genes Per1 and Per2 regulate the rhythm in photoreceptor outer segment phagocytosis. FASEB Journal, 2021, 35 (7), 10.1096/fj.202100293RR. hal-03447205

HAL Id: hal-03447205
https://hal.science/hal-03447205
Submitted on 24 Nov 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Core circadian clock genes Per1 and Per2 regulate the rhythm in photoreceptor outer segment phagocytosis

Nemanja Milićević1,2, Ouafa Ait-Hmyed Hakkari2, Udita Bagchi1,2, Cristina Sandu2, Aldo Jongejan3, Perry D. Moerland3, Jacoline B. ten Brink1, David Hicks2, Arthur A. Bergen1,4,5, Marie-Paule Felder-Schmittbuhl2

1Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
2Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France
3Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
4Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
5Netherlands Institute for Neuroscience (NIN-KNAW), Amsterdam, the Netherlands

Abstract
Retinal photoreceptors undergo daily renewal of their distal outer segments, a process indispensable for maintaining retinal health. Photoreceptor outer segment (POS) phagocytosis occurs as a daily peak, roughly about 1 hour after light onset. However, the underlying cellular and molecular mechanisms which initiate this process are still unknown. Here we show that, under constant darkness, mice deficient for core circadian clock genes (Per1 and Per2) lack a daily peak in POS phagocytosis. By qPCR analysis, we found that core clock genes were rhythmic over 24 hours in both WT and Per1, Per2 double mutant whole retinas. More precise transcriptomics analysis of laser capture microdissected WT photoreceptors revealed no differentially expressed genes between time points preceding and during the peak of POS phagocytosis. In contrast, we found that microdissected WT retinal pigment epithelium (RPE) had a number of genes that were differentially expressed at the peak phagocytic time point compared to adjacent ones. We also found a number of differentially expressed genes in Per1, Per2 double mutant RPE compared to WT ones at the peak phagocytic time.
1 | INTRODUCTION

Light/dark transitions are one of the hallmarks of life on Earth. Living organisms adapt their behavior and physiology according to cyclic changes in environmental conditions. In mammals, these rhythmic adjustments in molecular and cellular physiology are enabled through a hierarchical network of oscillators, encompassing a “central clock” located in the suprachiasmatic nucleus (SCN) in the brain and peripheral oscillators. The core molecular components generating these oscillations are comprised of interlocking transcriptional-translational feedback loops involving “clock” transcription factors such as PER1-2, CLOCK, BMAL1, CRY1-2, REV-ERBs, and RORs. These factors drive rhythmic expression of “clock-controlled genes” thereby enabling rhythmic adaptations in physiology.

The retina stands out as a peripheral oscillator as it lies in direct contact with the main environmental synchronizing stimulus—light. This light-sensitive organ is composed of multiple layers of cells, all of which were shown to oscillate in a layer-specific manner and are strongly coupled. Numerous aspects of retinal physiology and functions were shown to be rhythmic such as melatonin release, rod-cone coupling, visual sensitivity, and photoreceptor disc shedding. Of all retinal cells, circadian oscillations in photoreceptors have been most extensively studied.

Retinal photoreceptors are specialized, light-sensitive neuronal cells. They are metabolically highly active cells in which homeostasis is tightly controlled. They consist of a cell body, a specialized synapse, inner, and outer segments. Together with the adjacent retinal pigment epithelium (RPE), the POS contains the molecular machinery that sustains phototransduction. Excessive light exposure can damage these cells. A mechanism that prevents the accumulation of photo-oxidative compounds is rapid POS renewal. This turnover involves several critical steps. At the proximal POS end, these steps include synthesis and intracellular transport of structural and functional proteins. At the distal end, POS fragments are shed and subsequently phagocytosed by the RPE. Impairment of phagocytosis was previously implicated in photoreceptor degeneration in both animal models and humans. Despite many studies devoted to the subject, the molecular mechanisms that control POS phagocytosis remain elusive. Phagocytosis of POS was shown to be highly cyclic, taking place in rods as a daily peak occurring about 1 hour after light is turned on in both nocturnal and diurnal mammals. This peak is maintained under constant darkness, implicating circadian control. However, little is known about the transcriptional events that occur prior and during the peak of POS phagocytosis.

In the present study, we tested the hypothesis that Per1 and Per2 are necessary clock components for initiating the phagocytosis of rod outer segments in mice. We investigated the transcriptional changes that occur in the RPE and photoreceptors prior and during the peak in POS phagocytosis. Finally, we proposed a potential pathway for initiating POS phagocytosis based on our transcriptomics data obtained from multiple time points, purest possible microdissected sample material, and phagocytically arrhythmic Per1, Per2 mouse double knockout model.

2 | METHODS

2.1 | Animals

Experiments were conducted using homozygote double mutant mice carrying the loss-of-function mutation of mPer1 gene (Per1^{-/-}; 21) and mutation of the mPer2 gene (Per2^{Brdm1}; 22; hereafter defined as Per1^{-/-}/Per2^{Brdm1} or KO). Intercrosses between heterozygous (C57BL/6J x 129 SvEvBrd) F1 offspring gave rise to F2 homozygous mutants. Mutant and wild-type (WT) animals on this mixed background were used in this study, maintained as described in. Mice were maintained in our animal facilities (Chronobiotron, UMS3415, Strasbourg, France) on a 12 hours light/12 hours dark (LD) cycle (300 lux during the light phase), with an ambient temperature of ±1°C. The animals were given free access to food and water. In all experiments, control and mutant mice were age-matched. Only male mice were used for the RNAseq study.
but both males and females were used for qPCR experiments and phagocytosis analysis. All experimental procedures were performed in accordance with the Association for Research in Vision and Ophthalmology Statement on Use of Animals in Ophthalmic and Vision Research, as well as with the European Union Directive (2010/63/EU). Age-matched WT and Per1−/−Per2Brdm1 mice (6 weeks old) were sacrificed in constant darkness (dark/dark, DD) at time points (expressed in circadian time (CT); CT0—time when lights were on during LD conditions, CT12—lights off in LD conditions) specific to each experiment. Sacrifice was performed under complete darkness by night-vision goggles ATN NVG-7 (American Technologies Network Corp., San Francisco, CA, USA) and eye sampling was performed under dim red light (<5 lux). Animals were anesthetized by CO₂ inhalation and subsequently killed by cervical dislocation.

2.2 | Genotyping

Mice were genotyped by PCR amplification of tail DNA with four sets of primers specific either for the genomic regions that were deleted in mutants but present in WT (5’-GT CTTGGTCTCATTCTAGGACACC and 5’-AACATGAGAG CTTCCAGTCTCTC for Per1 gene; 5’-GTCTG for Per2 gene; 5’-AGTAGGGTCGTC TTTTTATGCCCC and 5’-CTCTGCTTTCAACTCCTGT GTCTG for Per2 gene) or for the recombinant alleles present in mutants only (5’-ACAAGCTACAGGACCATCC and 5’-ACCTCCCCCTGACGCTGAC for Per1 gene; 5’-TTGGTTCTGTGAGCTCCTGAACGC and 5’-ACCTCCC ATTTGTCACGTCCTGCAC for Per2Brdm1).

2.3 | Immunohistochemistry

Eye globes were immersion-fixed in 4% paraformaldehyde in phosphate-buffered saline (PBS) overnight at 4°C. Eyeballs were rinsed in PBS, cut into two hemispheres, and cryoprotected upon transfer to an anion exchange series of sucrose solutions (10%, 20%, and 30% each for 1 hour) and then embedded (TissueTek OCT compound; Thermo-Shandon, Pittsburg, PA, USA). Cryostat sections (10 μm thick) were permeabilized for 5 minutes with 0.1% Triton X-100 and saturated with PBS containing 0.1% bovine serum albumin, 0.1% Tween-20, and 0.1% sodium azide for 30 minutes. Sections were incubated overnight at 4°C with monoclonal anti-rhodopsin antibody Rho-4D2. Secondary antibody incubation was performed at room temperature for 2 hours with Alexa 488 anti-mouse IgG-conjugated antibodies (Molecular Probes Inc, Eugene, OR, USA). Cell nuclei were stained with DAPI (Molecular Probes). Slides were washed thoroughly, mounted in PBS/glycerol (1:1), and observed by an epifluorescence microscope (Nikon Optiphot 2). The number of phagosomes was quantified, as described previously by us. Transverse sections were obtained from the central retina, covering the whole width of the retina from one periphery to the other. Taking the POS/RPE interface as a baseline, any immunopositive inclusion exceeding 1 μm lying within the RPE subcellular space was scored as a phagosome. Phagosomes were counted by aligning a 150 μm × 150 μm grid parallel with the RPE layer and displacing it dorsally and ventrally (a total of 20 grids were counted per section) with respect to the optic nerve, along the POS/RPE interface. Phagosomes were counted on 12 sections per eye (1 eye per animal) and averages of these values represent 1 data point in our quantification. Thus, the data presented are the means of the numbers of phagosomes per complete retina section. Our strategy for quantifying POS phagocytosis is one of a number of generally accepted methods and is employed by a number of groups who study mechanisms of RPE-mediated POS phagocytosis. The representative images (Figure 1B) are blurry due to fluorescence emitted from the specimen outside the focal plane. They contain oversaturation of the Rho-4D2 stained OS layer to visualize the relatively faint Rho-4D2 stained phagosomes in the RPE cell layer.

2.4 | RT-qPCR gene expression analysis

Retinas were sampled immediately after sacrifice. A small incision was performed on the cornea with a sterile blade, lens and vitreous were discarded, and the retina was directly collected with sterile forceps and immediately frozen in liquid nitrogen and stored at −80°C. Retinas were homogenized in the RNAble (Eurobio Scientific, France) solution by a 23-gauge sterile needle and 1 mL syringe and mRNA extracted according to the manufacturer’s recommendations. Resuspended RNA was treated with DNase I (0.1 U/µl, 30 minutes, 37°C—Fermentas) followed by phenol/chloroform/isooamyl alcohol extraction and sodium acetate/isopropanol precipitation. RNA concentration and purity were measured using NanoDrop ND-1000V 3.5 Spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA; A260/A280 and A260/A230 values were between 1.8 and 2). RNA quality was evaluated with the Bioanalyzer 2100 (Agilent Technologies; RNA integrity (RIN) numbers were between 7.8 and 9).

Five hundred nanograms of total RNA were reverse transcribed by random primers and the “High Capacity RNA-to-cDNA” kit (Applied Biosystems, Foster City, CA, USA) following the manufacturer’s instructions. qPCR was performed using the 7300 Real-Time PCR System (Applied Biosystems) and the hydrolyzed probe-based TaqMan chemistry, with optimized Gene Expression Assays designed for specific mRNA amplification (Table 1). We used the TaqMan Universal PCR Master Mix with No AMPErase
UNG (Applied Biosystems) and 1 µL of cDNA in a total volume of 20 µL. The PCR program was 10 minutes at 95°C and then 40 cycles of 15 seconds at 95°C and 1 minute at 60°C. The fluorescence acquisition was performed at the end of the elongation step (7300 System Sequence Detection Software V 1.3.1—Applied Biosystems). Each PCR reaction was performed in duplicate. A dilution curve of the pool of all cDNA samples from one series was used to determine working dilution and to calculate the amplification efficiency for each assay (values were between 1.8 and 2 for all assays). No-template control reactions were performed as negative controls for each assay. One 96-well plate corresponded to the analysis of one gene and one genotype. Data analysis was performed with qBase software (free v1.3.5)32 and transcript levels were normalized using Hprt and Tbp that showed constant expression (Cosinor analysis of their relative expression levels as expressed by eff −ΔCt; P = .676 for Hprt in WT; P = .992 for Tbp in WT; P = .219 for Hprt in KO; P = .347 for Tbp in KO) in their mRNA during the 24-hours cycle (data not shown). We used the geometric means of the

![FIGURE 1](image)

TABLE 1 List of primers used for the qPCR analysis of WT and *Per1^{−/−} Per2^{Brdm1}* mouse whole retinas

<table>
<thead>
<tr>
<th>Gene</th>
<th>TaqMan assay reference</th>
<th>RefSeq</th>
<th>Exon/exon boundary</th>
<th>Assay location</th>
<th>Amplicon length (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock</td>
<td>Mm00455950_m1</td>
<td>NM_007715.5</td>
<td>15-16</td>
<td>1592</td>
<td>81</td>
</tr>
<tr>
<td>Bmal1</td>
<td>Mm00500226_m1</td>
<td>NM_007489.3</td>
<td>11-12</td>
<td>1193</td>
<td>87</td>
</tr>
<tr>
<td>Per1</td>
<td>Mm00501813_m1</td>
<td>NM_011065.4</td>
<td>18-19</td>
<td>2628</td>
<td>106</td>
</tr>
<tr>
<td>Per2</td>
<td>Mm00478113_m1</td>
<td>NM_011066.3</td>
<td>19-20</td>
<td>3271</td>
<td>73</td>
</tr>
<tr>
<td>Per3</td>
<td>Mm00478120_m1</td>
<td>NM_011067.2</td>
<td>4-5</td>
<td>984</td>
<td>73</td>
</tr>
<tr>
<td>Cry1</td>
<td>Mm00514392_m1</td>
<td>NM_007771.3</td>
<td>1-2</td>
<td>740</td>
<td>64</td>
</tr>
<tr>
<td>Cry2</td>
<td>Mm00546062_m1</td>
<td>NM_009963.4</td>
<td>1-2</td>
<td>254</td>
<td>70</td>
</tr>
<tr>
<td>Rev-Erbα</td>
<td>Mm00520708_m1</td>
<td>NM_145434.3</td>
<td>1-2</td>
<td>531</td>
<td>62</td>
</tr>
<tr>
<td>Rorb</td>
<td>Mm00524993_m1</td>
<td>NM_146095</td>
<td>2-3</td>
<td>201</td>
<td>74</td>
</tr>
<tr>
<td>Tbp</td>
<td>Mm00446971_m1</td>
<td>NM_013684.3</td>
<td>2-3</td>
<td>305</td>
<td>93</td>
</tr>
<tr>
<td>Hprt</td>
<td>Mm001324427_m1</td>
<td>NM_013556.2</td>
<td>5-6</td>
<td>543</td>
<td>108</td>
</tr>
</tbody>
</table>
relative expression levels of Hprt and Thy genes to normalize the data of all target genes. Within one experiment (one gene expression profile, one genotype), relative expression levels were calculated relative to the average expression of the dataset throughout the 6 time points, which was rescaled to one. In this configuration, the amplitudes determined by cosinor analysis represent the maximal deviation from the 100% mean and can potentially be compared between genotypes, as was previously performed by Hiragaki and colleagues.

2.5 | Laser capture microdissection

Eye globes (n = 4 animals/genotype/time point) were enucleated under dim red light (<5 lux), embedded in OCT, snap-frozen and stored at −80°C until use. Eyes were cryosectioned at 10 μm thickness. Each eye provided 116-258 sections. All sections were dehydrated with ethanol and stained with cresyl violet staining (LCM Staining Kit, Ambion) and air-dried before microdissection with a laser microdissection system (LCM; PALM, Bernried, Germany). The RPE and photoreceptors were isolated with LCM (Figure S1). The number of eye sections used for LCM RPE and photoreceptor isolation between genotypes was similar with 183 ± 10.18 (mean ± SD) slices used from WT eyes, whereas 201.3 ± 8.91 slices were used from double mutants (P = .19, Student’s t test).

2.6 | RNA isolation for RNA sequencing

Total RNA was isolated using an RNeasy Micro kit (Qiagen Benelux, Venlo, The Netherlands), quantified with a NanoDrop (Isogen Life Science BV, The Netherlands) and the quality was checked on a Bioanalyzer (Agilent Technologies, Amstelveen, The Netherlands). Sample RIN values for photoreceptors ranged from 7 to 9.8, except for three samples (RIN = 3.2, 4.1, 4.1). For RPE samples, RIN values ranged from 5 to 9.5.

2.7 | Library preparation and RNA sequencing

We used the KAPA mRNA HyperPrep kit (Illumina Platforms). For generating libraries, we used one batch of 20 ng of total photoreceptor (n = 1/genotype/time point) RNA and 30 ng for the other three batches (n = 3/genotype/time point) according to the manufacturer’s protocol (Illumina Platforms). For generating libraries from RPE samples, we used 20 ng of RNA. In case of low RNA yield, two samples were pooled, resulting in three independent biological replicates per genotype and time point for library synthesis. RPE libraries were generated in three batches.

The presence of cDNA was confirmed using flash gels (cat No. 57032, Lonza, Rockland, ME, USA). Libraries were 50 bp single-end sequenced using the Illumina HiSeq 4000 platform.

2.8 | Bioinformatics

The photoreceptor and RPE RNA-seq data were analyzed separately, but with the same software versions and parameter settings unless indicated otherwise. Raw sequencing data were subjected to quality control using FastQC (v.0.11.15), Picard Tools, and dupRadar. 34 All samples were of sufficient quality. Reads were trimmed for adapter sequences using Trimmomatic (v0.32). 35 Trimmed reads were aligned to the mouse genome (Ensembl GRCm38.p6) using HISAT2 (v2.1.0). 36 Gene level counts were obtained using HTSeq (v0.11) 37 with default parameters except -stranded = reverse and the mouse GTF from Ensembl (release 93). Statistical analyses were performed using the edgeR 38 and limma R (v3.5.0)/Bioconductor (v3.7) packages. 39 Genes with more than two counts in four or more samples (photoreceptors) or in three or more samples (RPE) were retained. Count data were transformed to log2-counts per million (logCPM), normalized by applying the trimmed mean of M-values method and precision weighted using voom. 40 Pairwise differential expression between the conditions of interest was assessed using an empirical Bayes moderated t test within limma's linear model framework, including the precision weights estimated by voom. Both for WT and Per1−/−Per2Brdm1, a moderated F test was used to determine which genes are differentially expressed between time points. The resulting p-values were corrected for multiple testing using the Benjamini-Hochberg false discovery rate (FDR). An adjusted P-value < .05 was considered significant for photoreceptors. For the RPE, an adjusted P-value of <.1 was considered significant. Additional gene annotation was retrieved from Ensembl (photoreceptors: release 94, RPE: release 98) using the biomart R/Bioconductor package. We deposited the RNA-seq data in NCBI's Gene Expression Omnibus. These data are accessible through GEO Series accession number GSE172440 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE172440). The SubSeries accession numbers of the RPE and photoreceptor RNA-seq data are: GSE172438 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE172438) and GSE172437 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE172437). Gene ontology and pathway enrichment analyses were performed using g:Profiler. 41 We set all identified transcripts in our RNA-seq dataset as a reference background. We set
an adjusted $P < .05$ as a threshold for significantly enriched
pathways using the g:SCS method to correct for multiple
testing.41 We investigated interactions between protein pro-
ducts of the list of potential POS phagocytosis candidate genes
by STRING analysis.42 The 57 candidate genes encode for 49
proteins represented as nodes in the STRING network analy-
sis. By setting the threshold to 0.25, we found 32 edges in the
STRING network. Non-interacting nodes were not shown.

2.9 | Statistics

Data are represented as means ± SEM. Plots were gener-
ated using GraphPad Prism (La Jolla, CA, USA), SigmaPlot
(Systat Software, San Jose, CA, USA) or R (Bell Labs,
Murray Hill, NJ, USA). Normality of distribution was tested
using the Shapiro-Wilk test. In case of non-normal distribu-
tion, the analysis was performed using ANOVA on ranks.
Circadian expression profiles were determined using non-
linear regression fitting to the equation $y = y_0 + c \cdot \cos \left[2\pi \left(t-\phi\right)/24\right]$, where y_0 represents mesor, c amplitude, and ϕ ac-
rophase.43,44 The function featured the following constraints:
$\phi < 24$, $\phi > 0$ and $c > 0$. Gene expression profiles were
considered to be rhythmic when significant fitting ($P < .05$)
was observed to the equation $y = y_0 + c \cdot \cos \left[2\pi \left(t-\phi\right)/24\right]$.
Further analyses, where indicated, were performed using 1-
way or 2-way ANOVA analysis followed by Holm-Sidak’s
post hoc tests.

3 | RESULTS

3.1 | Peak of rod outer segment
phagocytosis is blunted in the retinas of
Per1−/−Per2Brdm1 mice

The phagocytosis of photoreceptor outer segments (POS) is a
highly rhythmic process occurring at a daily peak. This pro-
cess persists in constant darkness, suggesting that it is driven
by the circadian clock.12,28 We tested the hypothesis that in-
tact clockwork is required to sustain a rhythm of POS phag-
ocytosis in constant darkness (DD). To that end, we used the
Per1−/−Per2Brdm1 clock mutant mice which are behaviorally
arrhythmic in DD.21

We used age-matched (2 months old) WT and
Per1−/−Per2Brdm1 mice, harvested eye globes at 8-time points
over 24 hours and analyzed anti-rhodopsin-stained phago-
somes in the RPE (Figure 1A). We quantified POS phago-
somes at various time points under DD conditions ($n = 3$
animals per genotype and per time point). A 2-way ANOVA
analysis showed that the number of POS phagosomes was af-
fected by genotype (WT vs Per1−/−Per2Brdm1, $P < .001$), time
($P < .001$), and an interaction between genotype and time
($P < .001$). Post hoc analysis showed that phagocytic activity
was rhythmic in WT mice only, with 3-4 times more phago-
somes at time point CT1 compared with baseline ($P < .001$
for all time point comparisons) (Figure 1B,C; also confirmed
by 1-way ANOVA, $F_{7,16} = 34.49$; $P < .001$). In contrast, in
Per1−/−Per2Brdm1 mice, there was no obvious peak (1-way
ANOVA, $F_{7,16} = 2.35$; $P = .075$). These results suggest that
Per1 and/or Per2 is required for rhythmic POS phagocytosis.

3.2 | Molecular makeup of the retinal clock
in the absence of Per1 and Per2

Since the peak of phagocytosis is attenuated in the mutant
mice in DD, we hypothesized that the molecular clockwork
is impaired in Per1−/−Per2Brdm1 retinas. To test this hypo-
thesis, we sampled retinas from WT ($n = 3-4$/time point) and
Per1−/−Per2Brdm1 ($n = 4-5$/time point) mice every 4
hours over 24 hours under DD, and quantified relative mRNA
levels of clock genes by qPCR (Figure 2A). Rhythmicity in
expression profiles was assessed by cosinor analysis. These
changes over the 24 hours cycle were mainly confirmed by 1-
way ANOVA analysis (Table S1). We found rhythmic clock
gene expression for Bmal1, Per1, Per2, Rev-Erba, and Rorb
in WT whole retinas (Figure 2B, Table S1). Unexpectedly,
we found that in Per1−/−Per2Brdm1 mouse retinas also five
clock genes were rhythmic: Bmal1, Per3, Cry1, Cry2 and
Rev-Erba. Therefore, in contrast to our hypothesis, these re-
results suggest that Per1 and Per2 mutations do not signifi-
cantly impair the rhythmicity of whole retinas in mice.

3.3 | Transcriptomics analysis of WT mouse
RPE and photoreceptors

To characterize the potential link between the circadian clock
and the peak in POS phagocytosis, we first sought to char-
acterize the time-affected transcriptomes of the RPE and
photoreceptors. We harvested WT and Per1−/−Per2Brdm1
mouse eyes kept in DD at 4 time points (CT19, 22, 1, and
10) (Figure 3A). We laser-capture-microdissected the RPE
and photoreceptors from each mouse eye, extracted RNA
and performed RNA sequencing ($n = 4$/genotype/time point
for photoreceptors; $n = 3$/genotype/time point for RPE). In
the RPE and photoreceptors, respectively, a total of 24 382
and 22 694 genes had sufficiently large counts to be retained
in the statistical analysis. Next, we performed a pair-wise
comparison of WT RPE and photoreceptor transcriptomes
between consecutive time points (Figure 3B,C). In WT RPE,
we found a large number of differentially expressed genes
in comparisons between the expected peak in phagocytosis
time point CT1 and adjacent time points (CT22 and CT10,
respectively, Figure 3B, Table S2). In WT photoreceptors,
most genes are differentially expressed in comparisons between CT10 and adjacent time points (CT1 and CT19, respectively, Figure 3C, Table S3). In contrast, in all pair-wise comparisons, we found that only three genes differed significantly between time points (ie, were upregulated at CT10 vs 19) in Per1−/−Per2Brdm1 RPE. We found that one gene was downregulated at CT19 vs CT10 in Per1−/−Per2Brdm1 photoreceptors. Thus, these results suggest that the transcriptional program for initiating POS phagocytosis is likely in the RPE and not photoreceptors.

Our differential expression analysis showed that 594 genes in WT RPE (=2.44% of all genes retained in the analysis) and 2 372 genes in WT photoreceptors (=10.45% of retained genes) varied over time points (Figure 3D, Tables S4 and S5). Among them are components of the circadian clock network (Tables S4 and S5). Pathway analysis of time-affected genes in WT mice RPE revealed that, in addition to circadian pathways, phototransduction and metabolic-related pathways were functionally enriched (Table S6). We also performed pathway analyses of differentially expressed RPE genes between adjacent time points (Table S7). The highest number of functionally enriched terms was found in downregulated RPE genes at CT10 compared to CT1, among which the most significantly enriched terms were axon, distal axon, presynapse, and glycolysis and gluconeogenesis (Table S7).

Time-affected WT photoreceptor genes were enriched in circadian, metabolic, neurotransmission, and DNA
FIGURE 3 Transcriptional profiling of WT mouse RPE and photoreceptors. A, Eyes were obtained under DD conditions from four successive time points: before (CT19, CT22), during (CT1), and after (CT10) the expected peak in POS phagocytosis (n = 4/time point). RPE and photoreceptors were meticulously laser-capture-microdissected from each mouse eye, RNA was extracted and the transcriptomes were determined using RNA-sequencing. B, In the RPE (n = 4 pooled to 3/time point), a substantial number of genes were differentially expressed at time points adjacent to the peak in POS phagocytosis—CT1. Detailed lists of differentially expressed RPE genes are shown in Table S2. C, In contrast, in photoreceptors (PR) most differential gene expression occurs around CT10 (n = 4/time point). Detailed lists of differentially expressed PR genes are shown in Table S3. Red numbers represent the number of upregulated differentially expressed genes, whereas blue ones are downregulated. D, A substantial number of identified transcripts showed a time effect in WT PR and RPE. There is considerable overlap (n = 119) between time-affected genes in these two tissues, a number of which overlap with the RetNet list of eye disease-related genes.45 Detailed lists of these genes are shown in Table S12. E, Functional annotation (performed using g:Profiler) revealed that overlapping time-affected genes in RPE and PR are enriched in glucose metabolism and neurotransmission-related pathways. The orange line represents the significance level cut-off (adjusted P < .05). WikiPathways (WP), Reactome, and KEGG are databases of biological pathways.
repair-related pathways (Table S8). Notably, DNA-repair-related pathways were enriched in photoreceptor genes upregulated at CT10 compared to adjacent time points (CT19 and CT1). These terms include: DNA repair, helicase activity, cellular response to DNA damage stimulus, response to radiation, among many others (Table S9). Interestingly, 119 time-affected genes overlap in RPE and photoreceptors (Table S10), and are functionally enriched in glucose metabolism and neurotransmitter release-related pathways (Figure 3E, Table S11). We also found that, respectively, 32 and 48 time-affected genes in the RPE and photoreceptors overlap with the RetNet list of eye disease-related genes.45 (Figure 3D, Table S12). Thus, our results show that in the RPE and photoreceptors, a large number of genes and pathways vary in a time-dependent manner, a number of which are implicated in eye diseases.

3.4 Potential molecular pathway that initiates POS phagocytosis

Our results suggested that the transcriptional events in the RPE might initiate POS phagocytosis (Figure 3B). Our results also suggested that Per1 and/or Per2 are necessary for driving the peak in POS phagocytosis under DD (Figure 1), but the molecular link is unclear. To characterize this link, we performed pair-wise comparisons between WT and Per1−/−Per2Brdm1 RPE transcriptomes. We found a substantial number of genes that were differentially expressed in Per1−/−Per2Brdm1 RPE compared to WT ones at the peak POS phagocytosis time point CT1 (Figure 4A). Next, we defined selection criteria for genes that potentially initiate POS phagocytosis (Figure 4B). Considering that the peak in POS phagocytosis is lacking in Per1−/−Per2Brdm1 mice, we assumed that the genes that initiate POS phagocytosis are downregulated in double mutant RPE compared to WT ones at CT1. POS phagocytosis occurs as a peak in WT mice on a molecular and functional level.46,47 Thus, we selected genes that are both upregulated at CT1 vs CT22 and downregulated at CT10 vs CT1 in WT RPE. We removed possible photoreceptor “contaminants” from this list by mouse signature cone and rod genes48 and the Gene Ontology database (POS cellular component, GO:0001750). Using this strategy, we obtained a list of 57 candidate genes (Figure 4B, Table 2). These genes are functionally enriched in neurotransmission-related pathways (Figure 4C, Table S13). To reveal the interactions that protein products of these genes are involved in, we constructed a protein-protein interaction network using STRING42 (Figure 4D). Our list revealed a number of functional associations in which the protein products of candidate genes are involved in, most of which are associated with the term cell junction (highlighted in red in Figure 4D). This cluster involves the interactions of Syp, Gnaz, Pacsin1, Snap91, Camk2d, and Camk2b as identified in our STRING analysis. Thus, POS phagocytosis might be initiated by the largest cluster identified in this analysis.

4 DISCUSSION

In the present study, we found no peak in POS phagocytosis in the retinas of mice carrying a combined Per1 and Per2 mutation under constant darkness. Unexpectedly, gene expression analysis revealed that mutant retinas remained rhythmic under constant darkness, in contrast to mutant RPE and photoreceptors which showed no temporal variation. Using the purest possible RPE and photoreceptor sample material obtained by microdissection, we found significant differential gene expression in WT RPE at the peak phagocytosis time point, but not in photoreceptors. Our results suggest a network of genes that potentially initiates POS phagocytosis in the RPE. These data cast doubts on the view that molecular events in photoreceptors drive POS phagocytosis (via expression of phosphatidylserine “eat-me” signals).18

Retinal clocks are present in virtually all retinal layers1,49-51 and are tightly coupled.4 Coupling between retinal clocks contributes toward the precise timing of physiology within the retina.52 In our study, in Per1−/−Per2Brdm1 mice, constant darkness prevented any increased phagocytosis following the subjective onset of day, a process known to be clock-regulated.12,53-56 Thus, we speculated that constant darkness might impair the clockwork in Per1−/−Per2Brdm1 whole retinas. The literature is not consistent regarding the effects of lighting conditions on clock gene expression in the whole retina. Studies either report no effects of DD on global retinal oscillations,51,57 or suggest that DD conditions dampen retinal rhythmicity.44,58,59 Unexpectedly, our qPCR study revealed that clock gene expression remained rhythmic in both WT and Per1−/−Per2Brdm1 whole retinas. The origin of rhythmicity in mutant whole retinas is not known. It is most likely not due to input from the central clock, because retinal clocks are known to be independent of the SCN3 and the SCN is considered arrhythmic based on the locomotor activity of Per1−/−Per2Brdm1 mice in DD.21 The source is most likely not in photoreceptors because, in this study, transcriptomics analysis of LCM-isolated Per1−/−Per2Brdm1 photoreceptors showed no temporal variations. Therefore, it is likely that rhythms in mutant whole retinas originate from retinal layers which display the most robust rhythms: eg, the inner retina.4,44,49,50,57 Considering that the number of oscillating genes differs considerably across mouse organs/tissues,60 Per1 and/or Per2 mutations may impact the RPE and photoreceptor clocks disproportionately more than the clockwork...
of other retinal cells. Regardless of the reasons, these results suggest that (global) retinal rhythmicity is not sufficient for driving the peak of POS phagocytosis.

The phagocytosis of POS is a rhythmic process occurring roughly 1 hour after light onset.12,53-56 This process is critical for retinal health as demonstrated by retinal degeneration...
Table 2

<table>
<thead>
<tr>
<th>NCBI gene symbol</th>
<th>ENSEMBL ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agpat3</td>
<td>ENSMUSG00000001211</td>
<td>1-acylglycerol-3-phosphate O-acyltransferase 3 [Source:MGI Symbol; Acc:MGI:1336186]</td>
</tr>
<tr>
<td>AI847159</td>
<td>ENSMUSG000000084826</td>
<td>expressed sequence AI847159 [Source:MGI Symbol; Acc:MGI:3528181]</td>
</tr>
<tr>
<td>Ano2</td>
<td>ENSMUSG00000038115</td>
<td>anoctamin 2 [Source:MGI Symbol; Acc:MGI:2387214]</td>
</tr>
<tr>
<td>Anp32e</td>
<td>ENSMUSG00000015749</td>
<td>acidic (leucine-rich) nuclear phosphoprotein 32 family, member E [Source:MGI Symbol; Acc:MGI:1913721]</td>
</tr>
<tr>
<td>Atp1a3</td>
<td>ENSMUSG000000040907</td>
<td>ATPase, Na+/K+ transporting, alpha 3 polypeptide [Source:MGI Symbol; Acc:MGI:88107]</td>
</tr>
<tr>
<td>Bbs5</td>
<td>ENSMUSG000000063145</td>
<td>Bardet-Biedl syndrome 5 (human) [Source:MGI Symbol; Acc:MGI:1919819]</td>
</tr>
<tr>
<td>C430042M11Rik</td>
<td>ENSMUSG000000097254</td>
<td>RIKEN cDNA C430042M11 gene [Source:MGI Symbol; Acc:MGI:2443186]</td>
</tr>
<tr>
<td>Cadm1</td>
<td>ENSMUSG00000032076</td>
<td>cell adhesion molecule 1 [Source:MGI Symbol; Acc:MGI:1889272]</td>
</tr>
<tr>
<td>Camk2b</td>
<td>ENSMUSG000000057897</td>
<td>calcium/calmodulin-dependent protein kinase II, beta [Source:MGI Symbol; Acc:MGI:88257]</td>
</tr>
<tr>
<td>Camk2d</td>
<td>ENSMUSG000000053819</td>
<td>calcium/calmodulin-dependent protein kinase II, delta [Source:MGI Symbol; Acc:MGI:1341265]</td>
</tr>
<tr>
<td>Ccdc117</td>
<td>ENSMUSG000000020482</td>
<td>coiled-coil domain containing 117 [Source:MGI Symbol; Acc:MGI:2144383]</td>
</tr>
<tr>
<td>Ccdc24</td>
<td>ENSMUSG000000078588</td>
<td>coiled-coil domain containing 24 [Source:MGI Symbol; Acc:MGI:2685874]</td>
</tr>
<tr>
<td>Cenpi</td>
<td>ENSMUSG00000031262</td>
<td>centromere protein 1 [Source:MGI Symbol; Acc:MGI:2147897]</td>
</tr>
<tr>
<td>Cited2</td>
<td>ENSMUSG000000039910</td>
<td>Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain, 2 [Source:MGI Symbol; Acc:MGI:1306784]</td>
</tr>
<tr>
<td>Cntnap5b</td>
<td>ENSMUSG000000067028</td>
<td>contactin associated protein-like 5B [Source:MGI Symbol; Acc:MGI:3664583]</td>
</tr>
<tr>
<td>Cplx4</td>
<td>ENSMUSG000000024519</td>
<td>complexin 4 [Source:MGI Symbol; Acc:MGI:2685803]</td>
</tr>
<tr>
<td>Crbl</td>
<td>ENSMUSG000000063681</td>
<td>crumbs family member 1, photoreceptor morphogenesis associated [Source:MGI Symbol; Acc:MGI:2136343]</td>
</tr>
<tr>
<td>D16Erd472e</td>
<td>ENSMUSG000000022864</td>
<td>DNA segment, Chr 16, ERATO Doi 472, expressed [Source:MGI Symbol; Acc:MGI:1196400]</td>
</tr>
<tr>
<td>Diaph3</td>
<td>ENSMUSG000000022021</td>
<td>diaphanous-related formin 3 [Source:MGI Symbol; Acc:MGI:1927222]</td>
</tr>
<tr>
<td>Dnah9</td>
<td>ENSMUSG000000056752</td>
<td>dynein, axonemal, heavy chain 9 [Source:MGI Symbol; Acc:MGI:1289279]</td>
</tr>
<tr>
<td>Dnttip2</td>
<td>ENSMUSG00000039756</td>
<td>Deoxynucleotidyl transferase, terminal, interacting protein 2 [Source:MGI Symbol; Acc:MGI:1923113]</td>
</tr>
<tr>
<td>Dusp8</td>
<td>ENSMUSG000000037887</td>
<td>dual specificity phosphatase 8 [Source:MGI Symbol; Acc:MGI:106626]</td>
</tr>
<tr>
<td>Eph4112</td>
<td>ENSMUSG000000019978</td>
<td>erythrocyte membrane protein band 4.1 like 2 [Source:MGI Symbol; Acc:MGI:103009]</td>
</tr>
<tr>
<td>Fam171b</td>
<td>ENSMUSG000000048388</td>
<td>family with sequence similarity 171, member B [Source:MGI Symbol; Acc:MGI:244579]</td>
</tr>
<tr>
<td>Fbxl5</td>
<td>ENSMUSG000000039753</td>
<td>F-box and leucine-rich repeat protein 5 [Source:MGI Symbol; Acc:MGI:2152883]</td>
</tr>
<tr>
<td>Foxj1</td>
<td>ENSMUSG000000034227</td>
<td>forkhead box J1 [Source:MGI Symbol; Acc:MGI:1347474]</td>
</tr>
<tr>
<td>Gjd2</td>
<td>ENSMUSG000000068615</td>
<td>gap junction protein, delta 2 [Source:MGI Symbol; Acc:MGI:1334209]</td>
</tr>
<tr>
<td>Gmi13112</td>
<td>ENSMUSG000000087433</td>
<td>predicted gene 13112 [Source:MGI Symbol; Acc:MGI:3701127]</td>
</tr>
<tr>
<td>Gmi13735</td>
<td>ENSMUSG000000081853</td>
<td>predicted gene 13735 [Source:MGI Symbol; Acc:MGI:3650011]</td>
</tr>
<tr>
<td>Gmi16701</td>
<td>ENSMUSG000000097823</td>
<td>predicted gene, 16701 [Source:MGI Symbol; Acc:MGI:4439625]</td>
</tr>
<tr>
<td>Gm43316</td>
<td>ENSMUSG000000105332</td>
<td>predicted gene, 43316 [Source:MGI Symbol; Acc:MGI:5663453]</td>
</tr>
<tr>
<td>Gm44214</td>
<td>ENSMUSG000000108197</td>
<td>predicted gene, 44214 [Source:MGI Symbol; Acc:MGI:5690606]</td>
</tr>
<tr>
<td>Gnaz</td>
<td>ENSMUSG000000040009</td>
<td>guanine nucleotide-binding protein, alpha z subunit [Source:MGI Symbol; Acc:MGI:95780]</td>
</tr>
<tr>
<td>Gpr152</td>
<td>ENSMUSG000000044724</td>
<td>G protein-coupled receptor 152 [Source:MGI Symbol; Acc:MGI:2685519]</td>
</tr>
<tr>
<td>Hcls1</td>
<td>ENSMUSG000000022831</td>
<td>hematopoietic cell specific Lyn substrate 1 [Source:MGI Symbol; Acc:MGI:104568]</td>
</tr>
</tbody>
</table>

(Continues)
displayed in both human patients16 and animal models.15,30,61 Some literature stresses the importance of precise timing of POS phagocytosis in maintaining retinal health.30,61 This view is corroborated by our finding that a number of eye disease-related genes vary across time points in the RPE and photoreceptors. However, it was recently reported that dopamine D2 receptor knockout mice had no peak in POS phagocytosis and displayed no apparent retinal pathologies.29 Regardless, the molecular pathways responsible for driving this peak are not known.5,17,18 By immunohistochemistry and quantifying ingested POS in clock mutant mouse retinas, we showed that \textit{Per1} and/or \textit{Per2} are necessary (molecular clock) components for the transient surge in POS phagocytosis.

The prevailing view is that POS phagocytosis is initiated by the externalization of phosphatidylserine "eat-me" signals on the POS membrane.17,18 However, we found that microdissected WT photoreceptors did not differ in gene expression 3h or 6h before the peak in POS phagocytosis. This view is also disputed by recent work showing that the POS phagocytosis peak persists in mice carrying a retina-specific (\textit{Chx10Cre}-driven) knockout of \textit{Bmal1}.62 In contrast, in WT RPE, we found that a number of genes were differentially expressed at the phagocytic peak time point compared to the 3h earlier one. In addition, at the peak phagocytosis time point, we found a vast number of differentially expressed genes in \textit{Per1}−/−\textit{Per2Brdm1} RPE compared to WT ones. These results suggest that POS phagocytosis is initiated by the RPE. This possibility is, indeed, plausible because the RPE was shown to display sustained rhythms in various models: in vivo,29,63-66 ex vivo,67-69 and in cell culture models.69-73 Importantly, the phagocytic machinery is rhythmic in these cells.29,47,69,72 Furthermore, there was no rhythm of phagocytic activity in an arrhythmic \textit{BMAL1} knockout RPE cell culture model72 and in a conditional RPE-specific \textit{Bmal1} knockout mouse model.62 Thus, the literature together with our data supports the view that the clock in the RPE controls

<table>
<thead>
<tr>
<th>NCBI gene symbol</th>
<th>ENSEMBL ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{Hs3st3b1}</td>
<td>ENSMUSG00000070407</td>
<td>heparan sulfate (glucosamine) 3-O-sulfotransferase 3B1 [Source:MGI Symbol; Acc:MGI:1333853]</td>
</tr>
<tr>
<td>\textit{Kcnv2}</td>
<td>ENSMUSG00000047298</td>
<td>potassium channel, subfamily V, member 2 [Source:MGI Symbol; Acc:MGI:2670981]</td>
</tr>
<tr>
<td>\textit{Lrit1}</td>
<td>ENSMUSG00000041044</td>
<td>leucine-rich repeat, immunoglobulin-like and transmembrane domains 1 [Source:MGI Symbol; Acc:MGI:2385320]</td>
</tr>
<tr>
<td>\textit{Lrp11}</td>
<td>ENSMUSG00000019796</td>
<td>low density lipoprotein receptor-related protein 11 [Source:MGI Symbol; Acc:MGI:2442989]</td>
</tr>
<tr>
<td>\textit{Mapk4}</td>
<td>ENSMUSG00000024558</td>
<td>mitogen-activated protein kinase 4 [Source:MGI Symbol; Acc:MGI:2444559]</td>
</tr>
<tr>
<td>\textit{Mfge8}</td>
<td>ENSMUSG00000030605</td>
<td>milk fat globule-EGF factor 8 protein [Source:MGI Symbol; Acc:MGI:102768]</td>
</tr>
<tr>
<td>\textit{Mtag2}</td>
<td>ENSMUSG00000091510</td>
<td>metastasis associated gene 2 [Source:MGI Symbol; Acc:MGI:1860766]</td>
</tr>
<tr>
<td>\textit{Myl3}</td>
<td>ENSMUSG00000059741</td>
<td>myosin, light polypeptide 3 [Source:MGI Symbol; Acc:MGI:97268]</td>
</tr>
<tr>
<td>\textit{Nsf}</td>
<td>ENSMUSG00000034187</td>
<td>N-ethylmaleimide sensitive fusion protein [Source:MGI Symbol; Acc:MGI:104560]</td>
</tr>
<tr>
<td>\textit{Pacsin1}</td>
<td>ENSMUSG00000040276</td>
<td>protein kinase C and casein kinase substrate in neurons 1 [Source:MGI Symbol; Acc:MGI:1345181]</td>
</tr>
<tr>
<td>\textit{Pgam1}</td>
<td>ENSMUSG00000011752</td>
<td>phosphoglycerate mutase 1 [Source:MGI Symbol; Acc:MGI:97552]</td>
</tr>
<tr>
<td>\textit{Ptger3}</td>
<td>ENSMUSG00000040016</td>
<td>prostaglandin E receptor 3 (subtype EP3) [Source:MGI Symbol; Acc:MGI:97795]</td>
</tr>
<tr>
<td>\textit{Rundc3a}</td>
<td>ENSMUSG00000065675</td>
<td>RUN domain containing 3A [Source:MGI Symbol; Acc:MGI:1858752]</td>
</tr>
<tr>
<td>\textit{Sct}</td>
<td>ENSMUSG00000035850</td>
<td>secretin [Source:MGI Symbol; Acc:MGI:99466]</td>
</tr>
<tr>
<td>\textit{Set}</td>
<td>ENSMUSG00000054766</td>
<td>SET nuclear oncogene [Source:MGI Symbol; Acc:MGI:1860267]</td>
</tr>
<tr>
<td>\textit{Slc2a25}</td>
<td>ENSMUSG00000026819</td>
<td>solute carrier family 25 (mitochondrial carrier, phosphate carrier), member 25 [Source:MGI Symbol; Acc:MGI:1915913]</td>
</tr>
<tr>
<td>\textit{Snap91}</td>
<td>ENSMUSG00000033419</td>
<td>synaptosomal-associated protein 91 [Source:MGI Symbol; Acc:MGI:109132]</td>
</tr>
<tr>
<td>\textit{Srmr4}</td>
<td>ENSMUSG00000063919</td>
<td>serine/arginine repetitive matrix 4 [Source:MGI Symbol; Acc:MGI:1916205]</td>
</tr>
<tr>
<td>\textit{St8sia3}</td>
<td>ENSMUSG00000056812</td>
<td>ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 3 [Source:MGI Symbol; Acc:MGI:106019]</td>
</tr>
<tr>
<td>\textit{Syp}</td>
<td>ENSMUSG00000031144</td>
<td>synaptophysin [Source:MGI Symbol; Acc:MGI:98467]</td>
</tr>
<tr>
<td>\textit{Trim2}</td>
<td>ENSMUSG00000027993</td>
<td>tripartite motif-containing 2 [Source:MGI Symbol; Acc:MGI:1933163]</td>
</tr>
<tr>
<td>\textit{Vopp1}</td>
<td>ENSMUSG00000037788</td>
<td>vesicular, overexpressed in cancer, pro-survival protein 1 [Source:MGI Symbol; Acc:MGI:2141658]</td>
</tr>
</tbody>
</table>
the morning peak of POS phagocytosis. However, photoreceptors may still initiate POS phagocytosis via yet unidenti-
ified post-transcriptional pathways.

Finally, we proposed a network of genes for regulating ROS phagocytosis in the RPE. The candidate genes in this list are enriched in the ion homeostasis pathway. This is expected as previous studies implicated ion channels in POS phago-
cytosis such as voltage-gated sodium channels and the L-type calcium channel Ca$_{1.3}$. The list also contains known genes implicated in POS phagocytosis such as Mfge8 and Myl3. Cell junctions were also enriched in the candidate gene list, among which Gjd2 encodes for a gap junction protein. Increased gap junction expression may enhance the connect-

The strength of this approach is the use of the purest possible sample material obtained from LCM. In addition, we con-

In conclusion, our study reveals that Per1$^{-/-}$Per2 are nec-

ACKNOWLEDGMENTS

We thank Anneloor LMA ten Asbroek and Nguyen-Vy Vo for technical assistance. We thank Dr D. Sage, Dr S. Reibel and N. Lethenet from the Chronobiotron (UMS 3415) for animal care and Dr U. Albrecht (University of Freiburg) for the Per1$^{-/-}$Per2Brdml mice. This project has been funded with support from the NeuroTime Erasmus+ grant (European Union), Rotterdamse Stichting Blindenbelangen (Netherlands), Nelly Reef fund (Netherlands), Stichting voor Ooglijders (Netherlands), Stichting tot Verbetering van het Lot der Blinden (Netherlands), and Retina France (France).

REFERENCES

MILIĆEVIĆ ET AL.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the Supporting Information section.

How to cite this article: Milicevic N, Ait-Hmyed Hakkari O, Bagchi U, et al. Core circadian clock genes *Per1* and *Per2* regulate the rhythm in photoreceptor outer segment phagocytosis. *The FASEB Journal*. 2021;35:e21722. https://doi.org/10.1096/fj.202100293RR