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Preclinical applications of resting-state functional magnetic resonance imaging (rsfMRI) offer the possibility to
non-invasively probe whole-brain network dynamics and to investigate the determinants of altered network
signatures observed in human studies. Mouse rsfMRI has been increasingly adopted by numerous laboratories
worldwide. Here we describe a multi-centre comparison of 17 mouse rsfMRI datasets via a common image
processing and analysis pipeline. Despite prominent cross-laboratory differences in equipment and imaging
procedures, we report the reproducible identification of several large-scale resting-state networks (RSN),
including a mouse default-mode network, in the majority of datasets. A combination of factors was associated
with enhanced reproducibility in functional connectivity parameter estimation, including animal handling pro-
cedures and equipment performance. RSN spatial specificity was enhanced in datasets acquired at higher field
strength, with cryoprobes, in ventilated animals, and under medetomidine-isoflurane combination sedation. Our
work describes a set of representative RSNs in the mouse brain and highlights key experimental parameters that
can critically guide the design and analysis of future rodent rsfMRI investigations.
1. Introduction

The brain is the most complex organ, consisting of 86 billion neurons
(Azevedo et al., 2009), each forming on average 7000 synapses. Under-
standing the complexity of the brain is difficult due to limited access to the
tissue and the imperative for minimally invasive procedures in human
subjects. Resting-state functional magnetic resonance imaging (rsfMRI)
has gained attention within the human neuroimaging community due to
the possibility of interrogatingmultiple resting-state networks (RSNs) with
a relatively high spatial and temporal resolution (Biswal et al., 2010, 1995;
Fox and Raichle, 2007) in a minimally invasive manner. Functional con-
nectivity (FC), i.e. the statistical association of two or more time-series
extracted from spatially defined regions in the brain (Friston, 2011), is
the principal parameter estimated from rsfMRI studies. The importance of
FC to neuroscience research can be understood through its widespread use
to describe functional alterations in psychiatric and neurological disorders
(Buckner et al., 2008; Greicius, 2008). However, despite an extensive
characterization of the functional endophenotypes associated with
diseased states, limitations to invasiveness and terminal experiments
generally preclude the establishment of detailed mechanisms in humans,
as can be achieved with animal models.

Since its onset in 2011 (Jonckers et al., 2011), mouse rsfMRI methods
have been developed in several centres and have grown to become a
routine procedure for phenotyping the brain (Chuang and Nasrallah,
2017; Gozzi and Schwarz, 2016; Hoyer et al., 2014; Jonckers et al., 2015,
2013; Pan et al., 2015). Prominently, mouse rsfMRI has been used to
investigate an extensive list of models, including Alzheimer’s disease
(Grandjean et al., 2014b, 2016b; Shah et al., 2013, 2016c; Wiesmann
et al., 2016; Zerbi et al., 2014), motor (DeSimone et al., 2016; Li et al.,
2017), affective (Grandjean et al., 2016a), autism spectrum (Bertero
et al., 2018; Haberl et al., 2015; Liska et al., 2018; Liska and Gozzi, 2016;
Michetti et al., 2017; Sforazzini et al., 2016; Zerbi et al., 2018; Zhan et al.,
2014), schizophrenia (Errico et al., 2015; Gass et al., 2016), pain
(Buehlmann et al., 2018; Komaki et al., 2016), reward (Charbogne et al.,
2017; Mechling et al., 2016), and demyelinating disorders (Hübner et al.,
2017). Another application of mouse rsfMRI is the elucidation of
large-scale functional alterations exerted by pharmacological agents
(Razoux et al., 2013; Shah et al., 2016a, 2015). Finally, the method has
been used to address fundamental questions. These include the investi-
gation of the structural basis underlying FC (Bergmann et al., 2016;
Grandjean et al., 2017b; Hübner et al., 2017; Schroeter et al., 2017;
Sforazzini et al., 2016; Stafford et al., 2014), the nature of the dynamical
2

event encoded in the resting-state signal (Belloy et al., 2018a, 2018b;
Bukhari et al., 2018; Grandjean et al., 2017a; Gutierrez-Barragan et al.,
2019; Sethi et al., 2017), as well as strain (Jonckers et al., 2011; Schro-
eter et al., 2017; Shah et al., 2016b), and the impact of sedation or awake
conditions on the underlying signal and connectivity patterns (Bukhari
et al., 2017; Grandjean et al., 2014a; Jonckers et al., 2014; Wu et al.,
2017; Yoshida et al., 2016). This body of work obtained mainly over the
past 5 years reflects the growth and interest in this modality as a trans-
lational tool to understand the mechanisms underlying the organisation
of RSNs in healthy and diseased states, with the promise of highlighting
relevant targets in the drug development process and advancing funda-
mental knowledge in neuroscience.

Despite a growing interest in the field, rsfMRI studies in animals have
been inherently difficult to compare. On top of centre-related confounds
analogous to those observed in human studies (Jovicich et al., 2016),
comparisons in rodents are further confounded by greater variability in
preclinical equipment (e.g. field strength, hardware design), animal
handling protocols, and sedation regimens employed to control for mo-
tion and stress. Discrepancies between reports, such as the anatomical
and spatial extent of a rodent homologue of the human default-mode
network (DMN) (Becerra et al., 2011; Gozzi and Schwarz, 2016; Guil-
foyle et al., 2013; Hübner et al., 2017; Liska et al., 2015; Lu et al., 2012;
Sforazzini et al., 2014; Stafford et al., 2014; Upadhyay et al., 2011), or
the organisation of murine RSNs (Jonckers et al., 2011), have stark
consequences for the interpretation of the results.

To establish standards and points of comparison in rodent fMRI, a
growing need in the field, we carried out a multi-centre comparison of
mouse rsfMRI datasets. Datasets representative of local centre acquisi-
tions were analysed with a common pre-processing pipeline and exam-
ined with seed-based analyses (SBA) and independent component
analyses (ICA), two common brain mapping methods used to investigate
RSNs. Our work aims to identify representative mouse RSNs, to establish
a set of reference pre-processing and analytical steps, and to highlight
protocols associated with more sensitive and specific FC detection in the
mouse brain.

2. Material and methods

2.1. Resting-state fMRI acquisition

All animal experiments were carried out with explicit permits from
local regulatory bodies. Seventeen datasets, consisting of 15 individual
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pre-acquired rsfMRI scans each, were acquired with parameters reflect-
ing each centre’s standard. A dataset is defined here as a collection of
scans acquired under one protocol by one group of individuals on a
specific piece of equipment. A scan is a single rsfMRI acquisition obtained
from an individual mouse. A summary of the equipment, acquisition
parameters, and animal handling procedures are listed in Supplementary
Table 1. Scans were acquired on dedicated Bruker magnets operating at
4.7 T (N¼ 1 dataset), 7 T (N¼ 8), 9.4 T (N¼ 6), or 11.7 T (N¼ 2), with
either room-temperature coils (N¼ 7) or cryoprobes (N¼ 10). Gradient-
echo echo planar imaging (EPI) sequences were used to acquire all
datasets, with repetition time (TR) ranging from 1000ms to 2000ms,
echo time (TE) from 10 to 25ms, and number of volumes from 150 to
1000. Acquisitions were performed on awake (N¼ 1) or anaesthetized
C57Bl/6 J mice (both male and female) with either isoflurane 1–1.25%
(N¼ 5), halothane 0.75% (N¼ 1), medetomidine 0.1–0.4mg/kg bolus
and 0.2–0.8mg/kg/h infusion (N¼ 5), or a combination of isoflurane
0.2–0.5% and medetomidine 0.05–0.3mg/kg bolus and 0–0.1mg/kg/h
infusion (N¼ 5). Awake mice were fitted with a non-magnetic head
implant to fix their heads to a compatible cradle (Yoshida et al., 2016).
Animals were either freely-breathing (N¼ 12) or mechanically ventilated
(N¼ 5). Datasets are publicly available in the BIDS format on openneuro
.org (project ID: Mouse_rest_multicentre, 10.18112/
openneuro.ds001720.v1.0.2).

2.2. Data pre-processing

Volumes were analysed in their native resolution. First, image axes
were reoriented into LPI orientation (3dresample, Analysis of Functional
NeuroImages, AFNI_16.1.26, https://afni.nimh.nih.gov) (Cox, 1996).
Temporal spikes were removed (3dDespike), followed by motion correc-
tion (3dvolreg). Brain masks (RATS_MM, https://www.iibi.uiowa.edu)
(Oguz et al., 2014) were estimated on temporally averaged EPI volume
(fslmaths). Motion outliers were detected based on relative framewise
displacement (FWD) estimated during motion correction. Volumes with
spikes or FWD greater than 0.1mm, corresponding to approximately 0.5
voxel of the average in-plane resolution, were labelled in a confound file
to be excluded from later seed-based and dual-regression analyses. Linear
affine parameters and nonlinear deformations with greedy SyN diffeo-
morphic transformation (antsIntroduction.sh) were estimated relative to a
reference T2 MRI template (Dorr et al., 2008) registered to the Allen
Institute for Brain Science (AIBS) Common Coordinate Framework space
(CCF v3, © 2004 Allen Institute for Brain Science. Allen Mouse Brain
Atlas. Available from: http://www.brain-map.org/) (Lein et al., 2007)
and resampled to 0.2� 0.2� 0.2mm3. The normalisation to AIBS space
was carried out on brain-masked EPI using ANTS (Advanced Normal-
isation Tools, http://picsl.upenn.edu/software/ants/) (Avants et al.,
2014, 2011). Anatomical scans corresponding to each EPI acquisition
were not available in all cases. Despite this limitation, plausible regis-
trations of EPI directly to a T2 MRI template were rendered possible due
to the relatively simple structure of the lissencephalic cerebrum and high
EPI quality. Individually registered brain masks were multiplied
(fslmaths) to obtain a study mask. The analyses were performed within
this study mask, i.e. within the brain areas covered by all individual
scans. References to anatomical areas are made with respect to the AIBS
atlas. All brain masks and registrations were visually inspected and
considered plausible.

Six different denoising approaches were applied: i) 6 motion pa-
rameters regression (MC), or the following together with motion pa-
rameters, ii) white matter (WM), iii) ventricle (VEN), iv) vascular
(VASC), v) vascular þ ventricle (VV), or vi) global (GSR) signal regres-
sion. White matter and ventricle masks were adapted from the AIBS atlas
(Supplementary Figure 1c,d). A group-level vascular mask was obtained
by combining hand-selected individual-level independent components
(threshold z> 2.3 corresponding to p< 0.01 uncorrected) overlapping
with vascular structures (Supplementary Figs. 1b and 2). These vascular-
associated components were identified in a subset of scans supporting the
3

notion of vascular signal confounds. Inverse transformations were
applied to each mask. Average time series within masks were extracted
(fslmeants) and regressed out (fsl_regfilt). Then, spatial smoothing was
applied using an isotropic 0.45mm kernel (3dBlurInMask) corresponding
approximately to 1.5 x voxel spacing along the dimension of the lowest
resolution. Finally, bandpass filtering (0.01–0.1 Hz) was applied
(3dBandpass). The bandpass filter was applied to all datasets to enhance
comparability between datasets, despite indications that medetomidine
leads to a shift in resting fluctuation frequencies (Grandjean et al., 2014a;
Kalthoff et al., 2013; Paasonen et al., 2018). The denoised and filtered
individual scans were normalised to AIBS reference space
(WarpTimeSeriesImageMultiTransform).

The noise was estimated by extracting the signal standard deviation
from manually defined regions-of-interest (ROIs) in the upper corners of
at least 3 slices, carefully avoiding ghosting artefacts or tissues (brain or
otherwise). Mean signal was extracted from the 20th acquisition volume
using a cortical mask spanning the whole isocortex (defined by AIBS
atlas) and registered in individual spaces to estimate signal-to-noise ratio
(SNR). The same cortical mask was used to extract standard deviation of
temporal signals to estimate temporal SNR (tSNR).

2.3. Seed-based analysis and independent component analysis

Seeds in the left hemisphere were defined in AIBS space based on the
AIBS atlas using 0.3mm3 spheres, corresponding to 27 voxels (Supple-
mentary Fig. 1a). The mean BOLD signal time-series within a seed were
extracted (fslmeants) and regressed into individual scans to obtain z-sta-
tistic maps (fsl_glm). Multi-session temporal concatenation ICA was car-
ried out using MELODIC (Multivariate Exploratory Linear Optimized
Decomposition into Independent Components, v3.14) (20 components).
The group-level component classification was adapted on a defined set of
rules (Zerbi et al., 2015). The following were considered plausible: (i)
components with either bilateral organisation or (ii) unilateral compo-
nents with a corresponding separate contralateral component, (iii) min-
imal crossing of relevant brain boundaries such as white matter tracts,
(iv) spatial extent covering more than one slice. The following were
considered implausible: (i) components overlapping mainly with either
white matter, ventricle, or vascular masks (Supplementary Fig. 1b,c,d),
(ii) components mainly localised on brain edges. Dual-regression analysis
was carried out using the eponymous FSL function to obtain
individual-level representations of 14 selected plausible group-level
components (Filippini et al., 2009).

2.4. Statistical analysis and data representation

Voxelwise statistics were carried out in FSL using either nonpara-
metric permutation tests (randomise) for across-dataset comparisons
(5000 permutations and voxelwise correction), or uncorrected para-
metric one-sample t-tests for within-dataset comparisons (fsl_glm). The
decision to present within-dataset comparisons using uncorrected para-
metric statistics is motivated by the desire to mitigate false-negative
rates, and hence avoiding to reject potential FC. This is however done
at the expense of enhanced false-positive rates. Within-dataset compar-
isons are summarised as “overlap maps”, i.e. the percentage of over-
lapping datasets exhibiting significance in one-sample t-tests at a given
voxel. To account for the false-positive rates imposed by our significance
threshold and for clarity in their representation, overlap maps are pre-
sented as overlays with a 30–100% range. For additional clarity, the
statistical maps relative to each dataset are detailed in the supplementary
materials for one representative SBA. Voxelwise statistical maps are
shown as colour-coded t-statistics overlays on the ABI template resam-
pled at 0.025� 0.025� 0.025mm3 using MRIcron (Rorden et al., 2007).
Statistical analysis carried out on parameters extracted from ROIs was
performed in R (v3.4.4, “Someone to Lean on”, R Foundation for Statis-
tical Computing, Vienna, Austria, https://R-project.org) using a linear
model (lm). A simplified model was designed to include the following

http://openneuro.org
http://openneuro.org
https://afni.nimh.nih.gov
https://www.iibi.uiowa.edu
http://www.brain-map.org/
http://picsl.upenn.edu/software/ants/
https://R-project.org
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fixed effects: breathing conditions (2 levels: ventilated or free-breathing),
sedation conditions (4 levels: awake, isoflurane/halothane, medetomi-
dine, medetomidine þ isoflurane combination), SNR (continuous vari-
able), and mean FWD (continuous variable). Interaction effects between
these factors were not modelled. Fixed effects’ significance were tested
using a likelihood ratio test. Scan parameter occurrence rates were
assessed with a Chi-square test (chisq.test). Residual analyses were also
performed; QQ-plots were used to assess normality of distributions,
Tukey–Anscombe plots for the homogeneity of the variance and skew-
ness, and scale location plots for homoscedasticity (i.e. the homogeneity
of residual variance). The assumptions of normality of the residuals were
considered plausible in all statistical tests. Plots were generated using
ggplot2 (v2.1.0) package for R. Significance level was set at one-tailed
p� 0.05 with family-wise error correction at a voxelwise level, unless
specified otherwise. Descriptive statistics are given as mean� 1 standard
deviation.

3. Results

3.1. Dataset description and pre-processing validation

A total of 17 datasets, each consisting of 15 individual rsfMRI scans,
were included in this study. Dataset selection was restricted to gradient-
echo echo planar imaging scans acquired on healthy and wild-type
C57Bl/6 J mice, any gender, any age, and any sedation protocol (Sup-
plementary Table 1). Cortical SNR ranged from 17.04 to 448.56, while
tSNR ranged from 8.11 to 112.68 (Fig. 1a,b). A comparison between SNR
and tSNR indicated a positive association between the two measures
(Pearson’s r¼ 0.75, t¼ 18.30, df¼ 253, p¼ 2.2e-16). Due to the lack of
orthogonality between the two factors, only SNR was considered in the
remaining analyses. Mean FWD ranged from 0.0025mm to 0.1500mm
(Fig. 1c). A summary of representative estimated motion parameters is
shown in the supplementary material (Supplementary Fig. 3). Each pre-
processing output was visually inspected. Automatic brain extraction
generated plausible brain masks. Normalisation was carried out using the
AIBS template (Supplementary Fig. 4). Spatial coverage along the
anterior-posterior axis varied across datasets. The following analysis is
thus restricted to areas fully covered by all scans, corresponding to
approximately 2.96 and �2.92mm relative to Bregma. Moreover, dis-
tortions made it impossible to cover the amygdala region in full. No
marked difference in the performance of each pre-processing step was
identified between datasets. The brain-masked, spatially smoothed,
temporally filtered, and normalised scans were further processed as
follows.

3.2. Vascular and ventricle signal regression enhances functional
connectivity specificity

Denoising procedures are an integral step to all FC analyses relying on
rsfMRI acquisitions. Nuisance signal originates from multiple sources,
including physiological and equipment-related noise (Murphy et al.,
2013). No consensus exists both in human and rodent fMRI fields
regarding optimal noise removal procedures. In this study, the following
six nuisance regression models were designed and compared, with one
model selected for the remaining analyses based on objective criteria.
The first nuisance model includes only motion parameter regression
(MC). Global signal regression (GSR) was added to the motion parameter
in a second model. The signal from either white-matter (WM), ventricle
(VEN), or vascular (VASC) masks (Supplementary Fig. 1b,c,d) were
combined with motion parameters in additional regression models.
Finally, based on the results obtained with these approaches, a combi-
nation (VV) model including VEN and VASC signal regression was
included in the comparison. The effectiveness of nuisance regression
models and the specificity of the resulting networks at the subject level
were assessed based on the outcome of SBA using the anterior cingulate
area (ACA, Supplementary Fig. 1a) as the seed region. This seed was
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selected as a central node of the putative rodent DMN (Gozzi and
Schwarz, 2016).

The statistical map of a one-sample t-test across all (255/255) indi-
vidual maps following GSR (Fig. 2a) indicated positive FC along the
rostro-caudal axis, through the ACA and extending to the retrosplenial
area (RSP), with anti-correlations in adjacent primary somatosensory
areas (SSp). In the VV nuisance model, as compared to the GSR model, a
more extended network was revealed to include posterior parietal
cortical areas (Fig. 2b), while anti-correlations in the SSp did not reach
statistical significance. To assess the specificity of the obtained functional
networks, subject-level FC parameters (z-statistic) were extracted from
ROIs located in the RSP and left SSp. The former was defined as a specific
ROI, i.e. an ROI where positive FC is expected, while the latter was
defined as a non-specific ROI, i.e. an ROI where low or negative FC is
expected. The decision to consider these two areas as belonging to
separable network systems reflects several lines of converging evidence:
a) these regions are not linked by major white matter bundles or direct
axonal projections in the mouse brain (Oh et al., 2014), b) they reflect
separable electrophysiological signatures in mammals (Popa et al.,
2009), and c) they belong to separable functional communities (Liska
et al., 2015) in the mouse brain and are similarly characterized by the
absence of significant positive correlation in the corresponding human
RSN (Fox et al., 2005).

Detailed FC within the specific ROI for the GSR and VV nuisance
model are shown as a function of FC within the corresponding non-
specific ROI at the single-subject level (Supplementary Fig. 5). In the
VV condition, 98/255 (i.e. 38%) of individual scans fell into the “specific
FC” category, while both MC and GSR conditions reach the lowest per-
centage (30%) of scans exhibiting “specific FC” relative to the ACA seed
(Fig. 2c). Out of 98/255 scans categorised as presenting “specific FC”
relative to the ACA seed, up to 14/15 scans originated from the same
dataset (median¼ 6/15). Two datasets did not contain scans that met the
definition. The 98 scans were also unevenly distributed according to the
different acquisition parameters, including field strength (4.7 T N¼ 1/
15, 7 T N¼ 41/120, 9.4 T N¼ 38/90, 11.7 T¼ 18/30, Х2¼ 13.76,
df¼ 3, p-value¼ 0.0032), coil type (room-temperature N¼ 26/105,
cryoprobe N¼ 72/150, Х2¼ 13.13, df¼ 1, p-value¼ 0.00029), breath-
ing condition (free-breathing N¼ 58/180, ventilated N¼ 40/75, Х2 ¼
9.10, df ¼ 1, p-value ¼ 0.0026), and sedation condition (awake N ¼ 7/
15, isoflurane/halothane N ¼ 18/90, medetomidine N ¼ 26/75, mede-
tomidine þ isoflurane N ¼ 47/75, Х2 ¼ 32.42, df ¼ 3, p-value ¼ 4.28e-
07). Hence, scans presenting “specific FC” patterns were more often
found in datasets acquired at higher field strengths, with cryoprobes, in
ventilated animals, and under medetomidine þ isoflurane combination
sedation.

To test how FC is affected as a function of distance to the seed and
nuisance model, FC in the ACA and RSP along the anterior-posterior axis
was extracted (Fig. 2d). Comparable rate of decrease was observed in all
conditions, with GSR displaying an overall decrease of FC. This is
consistent with the overall decrease in FC induced by GSR relative to VV
in the specificity analysis (Supplementary Fig. 5). In summary, the VV
nuisance model enhanced the specificity of SBA-derived DMN, as indi-
cated by a higher frequency of scans in the “specific FC” category. Based
on this criterion, this nuisancemodel was used in all subsequent analyses.

3.3. Seed-based analysis identifies common and reproducible mouse
resting-state networks

We sought to identify common RSNs by employing SBA and to
compare reproducibility across datasets. Seeds positioned in represen-
tative anatomical regions of the left hemisphere (Supplementary Fig. 1a)
were used to reveal the spatial extent of previously described mouse
resting-state networks. The seeds were selected to represent different
cortical (somatosensory, motor, high order processing), as well as
subcortical systems (striatum, hippocampal formation, thalamus). To
obtain high-specificity and high-confidence group-level SBA maps, we



Fig. 1. Dataset description. Signal-to-Noise Ratio (SNR), temporal SNR (tSNR), and mean framewise displacement are presented as a function of dataset. There is a
positive association between tSNR and SNR (r¼ 0.75, t¼ 18.30, df¼ 253 p¼ 2.2e-16).
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first probed only 98/255 scans listed as containing “specific FC” in the
previous analysis. We next extended these analyses to include all 255/
255 scans (Supplementary Fig. 7). For the within-dataset comparisons, all
15/15 scans in each dataset were included to reflect inter-dataset
variability.

All group-level SBA maps exhibited a strong bilateral and homotopic
extension (Fig. 3a, Supplementary Fig. 6). An ACA seed revealed a
network involving the prefrontal cortex, RSP, dorsal striatum, dorsal
thalamus and peri-hippocampal areas. This recapitulates anatomical
features reminiscent of the human, primate, and rat DMN (Gozzi and
Schwarz, 2016; Hutchison and Everling, 2012; Sforazzini et al., 2014;
Stafford et al., 2014). Comparable regions were observed for the RSP
seed, a region evolutionarily related to the posterior cingulate cortex of
the human DMN (Supplementary Fig. 6). The anterior insular seed was
found to be co-activated with the dorsal cingulate and the amygdalar
areas, corresponding to the putative rodent salience network (Gozzi and
Schwarz, 2016), while the primary somato-motor region (MO) defined a
previously described latero-cortical network that appears to be antago-
nistic to midline DMN regions. Hence it has been postulated to serve as a
possible rodent homologue of the primate task-positive network (Fig. 3a)
(Liska et al., 2015; Sforazzini et al., 2014). The corresponding networks
estimated across all scans (255/255) recapitulated features identified in
the 98/255 scans listed as containing “specific FC” but appeared to have a
much lower spatial specificity (Supplementary Fig. 7). Overlap maps
summarising the results from each individual dataset revealed that 70%
(12/17) of the datasets presented the features listed above (Fig. 3b).
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Overlap maps indicate, on a voxel basis, the percentage of the dataset
presenting a significant FC following a one-sample t-test performed on its
15 scans. The one-sample t-test maps relative to each dataset are detailed
in Supplementary Fig. 8. They confirmed the different extent of network
detection in different datasets. In summary, this analysis revealed the
commonly shared spatial extent of mouse RSNs derived from SBA but
also indicates that a small subset of the datasets failed to present these
features with sufficient sensitivity or specificity.
3.4. Sedation protocol and SNR affect connectivity strength

The datasets analysed here were acquired at varying field strengths,
and with different coil designs, EPI sequence parameters, animal
handling procedures, and anaesthesia protocols, i.e. either awake or
sedated states. Hence the acquisitions were not purposefully balanced to
test specific effects. To identify factors associated with FC strength, a
simplified linear model was designed including the following explana-
tory factors: sedation and breathing conditions, SNR, and motion (mean
FWD). Limitations in the orthogonality and representation of specific
acquisition factors such as field strength, coil design, EPI sequence pa-
rameters, number of volumes, gender, and age prevented designing a
more extensive model.

Individual-level FC values (z-statistic) were extracted from SBA maps
estimated from the ACA seed using an ROI located in the RSP and shown
as a function of different acquisition parameters (Fig. 4). Sedation pro-
tocol (F(247, 251)¼ 18.29, p¼ 3.5e-13) and SNR (F(247, 248)¼ 12.39,



Fig. 2. Denoising strategies and their impact on functional connectivity (FC) specificity. a-b, Seed-based analysis for a seed in the anterior cingulate area (ACA)
following either global signal regression (GSR, a) or vascular þ ventricle signal regression (VV, b). The spatial maps obtained lead to a set of regions for which the
BOLD signals were positively associated with the BOLD signal of the ACA. These included the prefrontal cortex, retrosplenial area (RSP), and dorsal striatum. Under
VV, the connectivity profile extended to peri-hippocampal areas. Significant anti-correlation (negative t-statistic, blue) are also present in the primary somatosensory
areas (SSp) under GSR but not VV condition. Individual scans were classified as presenting “Specific”, “Unspecific”, “Spurious”, or “No” FC relative to the ACA seed (c,
see Supplementary Fig. 5 for details). Comparison of each FC category depending on the denoising strategies revealed that motion correction and GSR lead to the
lowest percentage of “specific FC” at 30%, while that percentage was highest under VV condition (38%). FC as a function of distance to the ACA seed indicates a
comparable rate of decline between denoising strategies (d). Green arrowhead indicates the position of the ACA seed, black arrowheads indicate ROIs spaced 0.4 mm
apart, shown in panel b. Voxelwise corrected t-statistics for one-sample t-tests (p< 0.001, corrected) are shown as colour-coded overlays on the AIBS reference
template. Descriptive statistics are shown as mean� 1 standard deviation.
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p¼ 5.1e-4) were significantly associated with FC, while the remaining
factors, breathing condition (F(247, 248)¼ 3.48, p¼ 0.063) and motion
(F(247, 248) ¼ 0.082, p ¼ 0.77) were not. The awake and medetomidine þ
isoflurane combination led to higher FC compared to the other two
sedation categories. Concerning SNR, high FC values started to be
observed at SNR>50, suggesting that lower SNR may not be sufficient to
detect relevant fluctuations. Interestingly, these effects were found to be
consistent across the different ROI pairs (Supplementary Table 1), thus
confirming the importance of sedation conditions and SNR, and sug-
gesting that breathing conditions mildly impact FC sensitivity.

The animal handling conditions and sedation protocols highlighted
here may not apply to all studies or laboratories due to local legislation,
equipment availability, or technical knowledge. Distributions of FC
values may hence provide useful reference points. Connectivity strength
between the ACA and RSP, representing a central feature of the rodent
DMN, reached z¼ 2.77, 5.71, and 10.46 at the 50th, 75th, and 95th
percentile respectively (Pearson’s r¼ 0.15, 0.26, 0.43, when SBA is
carried out using a correlation analysis instead of a general linear model).
Additional SBA parameter distributions are provided for other ROI pairs
in Supplementary Table 1. The parameters of the acquisitions featured in
this analysis offer an objective criterion to evaluate and compare sensi-
tivity to FC in a new dataset or previous publications, insofar as com-
parable metrics are available.
3.5. Network-specific functional connectivity is found in all datasets

Evidence for robust distal FC could not be established in all datasets
with SBA. To investigate the presence of network-specific FC also in
datasets characterized by weaker distal connectivity, a dual regression
combined with group-level ICA (drICA) approach was performed
6

(Filippini et al., 2009). To obtain an enriched data-driven reference atlas,
a group ICA atlas was generated out of the 98 “specific FC” scans selected
in the SBA above, using 20 dimensions. This was motivated by the
observation of spurious FC in one-sample t-test of SBA maps when all
scans were included (Fig. 2b). The atlas revealed 9 cortical components
(Fig. 5a, Supplementary Fig. 9, Supplementary Table 3), 5 overlapping
with the latero-cortical network (MO and 4 SSp areas), 3 overlapping
with elements of the DMN (prefrontal, cingulate/RSP, and temporal
associative areas), and 1 overlapping with the insular area (AI). Addi-
tionally, 5 sub-cortical components were revealed, overlapping with the
nucleus accumbens (ACB), caudoputamen (CP), pallidum (PAL), hippo-
campal region (HIP), and thalamus (TH) (Supplementary Fig. 10). The
components recapitulate many of the features identified with SBA
(Fig. 5b and c), namely a homotopic bilateral organisation. The compo-
nents identified here also presented strong similarities to a previous
analysis (Zerbi et al., 2015). Due to uneven brain coverages across
datasets, rostral and caudal RSNs could not be examined, including ol-
factory, auditory, and visual networks. To obtain individual-level rep-
resentations of these components, a dual regression approach was
implemented using the reference ICA identified above. These group-level
ICA were used as masks to extract time series which were then regressed
into all (255/255) individual scans using a general linear model. To
investigate specificity relative to a DMN-related component, FC relative
to the cingulate/RSP component was extracted from the ACA ROI (Spe-
cific ROI, z¼ 9.68, 16.28, and 24.24, 50th, 75th, and 95th percentiles,
Fig. 5e) and SSp ROI (Unspecific ROI). “Specific FC” was determined in
79% (201/255) of the scans, “Unspecific FC” in 16%, “Spurious FC” in
1.5%, and “No FC” in 3.1% (Fig. 5d). “Specific FC” in 15/15 scans was
found in 2 datasets (Median¼ 12/15). The “Specific FC” category was
also more evenly distributed relative to acquisition protocols and



Fig. 3. Seed-based analyses (SBA) for 3 selected seeds positioned in the left hemisphere. One-sample t-test maps of individual maps reveal the full extent of SBA-
derived resting-state networks in the mouse brain across 98/255 scans that presented “specific functional connectivity (FC)” following vascular þ ventricle signal
regression. FC relative to a seed located in the anterior cingulate area reveals the extent of the mouse default-mode network, including the dorsal caudoputamen,
dorsal thalamus, and peri-hippocampal areas. The seed in the insular area reveals significant FC in dorsal cingulate and amygdalar areas, corresponding to areas
previously associated with the human salience network. Inter-hemispheric homotopic FC is found relative to the somato-motor seed, together with lateral striatal FC.
Overlap maps, indicating the percentage of datasets presenting significant FC after applying one-sample t-tests (p < 0.05, uncorrected), reveal that 12/17 of datasets
recapitulated the features stated above. Out of these, 5 were not considered to overlap specifically (Supplementary Fig. 8). Voxelwise corrected t-statistic for one-
sample t-tests and overlap maps are shown as a colour-coded overlays on the AIBS reference template.

Fig. 4. Functional connectivity (FC) in the retrosplenial cortex relative to a seed
located in the anterior cingulate area, as a function of acquisition parameters. A
statistically significant association was determined between sedation effect and
FC (a, F(247, 251)¼ 18.29, p¼ 3.5e-13) and between SNR and FC (c,
F(247,248)¼ 12.39, p¼ 5.1e-4). Neither breathing condition nor motion effects
were significant with FC (b, d). Due to limitations in the representation of each
level within a factor, coil design (e) and magnetic field (f) were omitted from the
final statistical model. Free¼ free-breathing, Vent¼mechanically ventilated,
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equipments: Field strength (4.7 T N¼ 14/15, 7 T N¼ 89/120, 9.4 T
N¼ 73/90, 11.7 T N¼ 25/30, Х2¼ 4.01, df¼ 3, p-value¼ 0.25), coil
type (room-temperature N¼ 88/105, cryoprobe N¼ 113/150,
Х2¼ 2.17, df¼ 1, p-value¼ 0.14), breathing condition (free-breathing
N¼ 138/180, ventilated N¼ 63/75, Х2 ¼ 1.29, df ¼ 1, p-value ¼ 0.25),
and sedation condition (awake N ¼ 13/15, isoflurane/halothane N ¼
65/90, medetomidine N ¼ 55/75, medetomidine þ isoflurane N ¼
68/75, Х2¼ 10.56, df¼ 3, p-value¼ 0.014). Importantly, statistical
inference revealed that significant within-component FC could be
established in 17/17 datasets for all 14 components (Fig. 5c, Supple-
mentary Fig. 11, Supplementary Fig. 12). This suggests that
network-specific inferences can be probed in all rsfMRI datasets, and that
drICA is a powerful approach enabling FC detection in all datasets,
including those that may not robustly exhibit distal connectivity patterns.

4. Discussion

The rodent rsfMRI research field has been growing over the past 10
years (Chuang and Nasrallah, 2017; Gozzi and Schwarz, 2016; Hoyer
et al., 2014; Jonckers et al., 2015, 2013; Pan et al., 2015). Fast-paced
development of this field has yielded many exciting results, yet the
comparability of these findings remains unclear. The results presented
here indicate that, despite major differences in cross-site equipment, scan
conditions, and sedation protocols, mouse rsfMRI networks converge
toward spatially defined motifs encompassing previously described
neuroanatomical systems of the mouse brain. Importantly, we also
highlight the possibility of using rsfMRI to probe distributed network
systems of high translational relevance, including a rodent DMN, salience
network, and latero-cortical network. While not reliably identified in all
datasets and scan conditions, these large-scale networks were found to
Cryo¼ cryoprobe, RT¼ room-temperature.
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Fig. 5. Group-level independent component analysis (ICA) estimated across 98/255 “specific functional connectivity (FC)” scans reveals canonical mouse components
(a). All components presented a marked bilateral organisation. Nine components were found to overlap principally with the isocortex including regions attributed to
latero-cortical, salience, and DMN networks by seed-based analyses, three components overlapped with the striatum, one with the hippocampal areas, and one with
the thalamus. Detailed representations of the cingulate/retrosplenial area component (Cg/RSP b). One-sample t-tests within datasets indicate that 100% of datasets
presented significant FC (p< 0.05, uncorrected) within the Cg/RSP component (c). Remaining components are presented in Supplementary Figs. 9 and 10. Overlap
maps for the remaining components are presented in Supplementary Figs. 11 and 12. FC relative to Cg/RSP is found specifically in the anterior cingulate area but not
in the primary somatosensory in 79% of the individual scans following dual regression (d). FC strength distribution across 255 scans within selected components
relative to ROIs defined in Supplementary Fig. 1a (e). Line intervals indicate 25th, 50th, and 75th percentiles. AI ¼ insular area, MO ¼ somato-motor area, SSp ¼
primary somatosensory area, PFC ¼ prefrontal cortex, Cg/RSP ¼ cingulate þ retrosplenial area, Tea ¼ temporal associative area, CP ¼ caudoputamen, ACB ¼ nucleus
accumbens, PAL ¼ pallidum, HIP ¼ hippocampal region, TH ¼ thalamus.
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colocalize within the well-delineated boundaries in the majority of scans
and datasets, recapitulating previous descriptions in rodents (Gozzi and
Schwarz, 2016; Lu et al., 2012; Sforazzini et al., 2014; Stafford et al.,
2014), monkeys (Hutchison and Everling, 2012), and humans (Buckner
et al., 2008).

Interestingly, most (12/17) of the datasets converged toward spatially
defined common RSNs when distal FC relative to a seed location was
assessed. When the analysis was restricted to local connectivity, i.e.
parameter estimates confined within the pre-defined networks, all (17/
17) datasets converged. These results indicate that group-level, or
second-level inferences, might be assessed irrespective of acquisition
protocol or animal handling procedures using robust analysis strategies.
At the subject level, “specific FC” relative to the DMN was found in 98/
255 of the scans, indicating that first-level inference on distal FC is within
reach in some, but not all datasets. Sedation and equipment performance
leading to increased SNR were the major factors associated with both FC
sensitivity and specificity, together with breathing conditions. Awake
animals presented overall higher FC, however, datasets acquired with
medetomidine þ isoflurane combination together with mechanical
ventilation were associated with greater specificity within elements of
the DMN. Importantly, the results converged irrespective of sedation or
awake protocols. This underlines that all datasets should be examined
with the same criteria to further enhance results comparability. Hence,
the set of standards provided here (e.g. spatial maps and FC parameter
distributions), will allow for the calibration of future multi-centre pro-
jects and assist in designing meta-analysis and replication studies, the
gold standards in evidence-based research.

In addition to acquisition procedures, the adoption of analysis stan-
dards must be encouraged. An MRI template (Dorr et al., 2008)
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transformed into the AIBS standard space provides a common space that
extends beyond animal MRI studies, including the seamless imple-
mentation of AIBS resources (Bergmann et al., 2016; Grandjean et al.,
2017b; Oh et al., 2014; Richiardi et al., 2015; Stafford et al., 2014).
Moreover, analysis based on robust methods (Zuo and Xing, 2014), such
as drICA (Filippini et al., 2009), together with considerations for statis-
tical analysis (Eklund et al., 2016), and the sharing of datasets on online
repositories (Nichols et al., 2017) provide a comprehensive
evidence-based roadmap to improve the comparability of acquisitions
carried out between centres and enhance the robustness and reproduc-
ibility of future results. In particular, all the datasets analysed in the
context of this study have been made fully available and therefore will
provide references for scientists developing customized rsfMRI protocols.

Several major limitations in this study should be acknowledged. First
and foremost, the lack of consensus quality assurance parameters for the
estimation of FC led us to devise a strategy to examine FC specificity.
Human studies often use test-retest reliability method to assess protocol
stability and reproducibility (Zuo and Xing, 2014), however, such met-
rics require duplicated acquisitions not presently available. Moreover,
test-retest reliability might be biased in low-FC datasets, where the
absence of FC is a reproducible feature. Because this study combined a set
of existing scans, factors were not entirely orthogonal and it was not
possible to model potentially relevant effects affecting FCmetrics, such as
specific sequence parameters (e.g. number of volumes), as well as bio-
logically relevant factors including sex, age, and mouse strain. Addi-
tionally, the analysis was based on a fixed pre-processing pipeline.
Different pipelines, beyond nuisance regression, have not been
compared. Hence, different pre-processing step may favour specific ac-
quisitions, e.g. adapted bandpass filters for anaesthesia protocols
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(Grandjean et al., 2014a). The advent of standardized open-source
pipelines dedicated to rodents, comparable to that found in humans
(Esteban et al., 2019), may overcome this limitation in the future. Finally,
the lack of distal FC in some datasets could not be attributed to specific
animal handling protocols or equipment performance. This indicates that
additional experimental factors not considered here might be better
predictors in estimating this particular kind of FC. For example, the
implementation of procedures to control the arterial level of carbon di-
oxide may be critical to prevent hypercapnic conditions, a feature that is
associated with reduced FC connectivity (Biswal et al., 1997) and that is
often observed in freely-breathing anaesthetized rodents. Despite these
limitations, the work presented here is likely to enhance the true scien-
tific value of mouse rsfMRI by establishing standards. With these, the
field is set to meet its goals toward the establishment and understanding
of the cellular and molecular mechanisms of large-scale brain functional
reorganisation in the healthy and diseased brain.

Author contributions

JG designed the study. Every author contributed to data acquisition.
JG, CC and AG carried out the analysis. Every author participated in the
preparation of the manuscript.

Declaration of competing interest

A.M.L. has received consultant fees from Blueprint Partnership,
Boehringer Ingelheim, Daimler und Benz Stiftung, Elsevier, F. Hoffmann-
La Roche, ICARE Schizophrenia, K. G. Jebsen Foundation, L.E.K.
Consulting, Lundbeck International Foundation (LINF), R. Adamczak,
Roche Pharma, Science Foundation, Synapsis Foundation–Alzheimer
Research Switzerland, and System Analytics and has received lectures
including travel fees from Boehringer Ingelheim, Fama Public Relations,
Institut d’investigacions Biom�ediques August Pi i Sunyer (IDIBAPS),
Janssen-Cilag, Klinikum Christophsbad, G€oppingen, Lilly Deutschland,
Luzerner Psychiatrie, LVR Klinikum Düsseldorf, LWL Psychiatrie Ver-
bund Westfalen-Lippe, Otsuka Pharmaceuticals, Reunions i Ciencia S. L.,
Spanish Society of Psychiatry, Südwestrundfunk Fernsehen, Stern TV,
and Vitos Klinikum Kurhessen.

Acknowledgements

This work was supported by the Singapore Bioimaging Consortium
(SBIC), A*STAR, Singapore. AG acknowledges funding from the Simons
Foundation (SFARI 314688 and 400101), the Brain and Behavior
Foundation (2017 NARSAD independent Investigator Grant) and the
European Research Council (ERC, G.A. 802371). This work was also
supported by the JSPS KAKENHI Grant Number 16K07032 to NT,
16K10233 to NY, and 18K18375 to CS, by Brain/MINDS, the Strategic
Research Program for Brain Sciences (SRPBS) from the Ministry of Ed-
ucation, Culture, Sports, Science, and Technology of Japan (MEXT) and
Japan Agency for Medical Research and Development (AMED) to NT and
HO, by AMED under Grant Number JP19dm0307007h0002 and
JP19dm0307008h0002 to NY, JP19dm0307026h0002 to CS, and
17dm0107066h to IA, by COI program by Japan Science and Technology
Agency (JST) to IA, and by ERATO JPMJER1801 by JST to NY. It was
further supported as part of the Excellence Cluster ‘BrainLinks-Brain-
Tools’ by the German Research Foundation, grant EXC1086. AH ac-
knowledges funding from the German BMBF (NeuroImpa, 01EC1403C
and NeuroRad 02NUK034D). MD acknowledges funding from France-
Alzheimer Association, Plan Alzheimer Foundation and the French Public
Investment Bank’s “ROMANE” program. This work was also supported
by the Fund for Scientific Research Flanders (FWO) (grant agreements
G057615N and 12S4815N - AvL), the Stichting Alzheimer Onderzoek
(SAO-FRA, grant agreement 13026-AvL), the interdisciplinary PhD grant
BOF DOCPRO 2014 - MV). NG acknowledges NEWMEDS project funded
from the Innovative Medicine Initiative Joint Undertaking under Grant
9

Agreement no.115008 of which resources are composed of European
Federation of Pharmaceutical Industries and Associations (EFPIA) in-
kind contribution and financial contribution from the European
Union’s Seventh Framework Programme (FP7/2007-2013); as well as
funding from the German Research Foundation (Deutsche For-
schungsgemeinschaft): DFG SA 1869/15-1 and DFG GA 2109/2-1. The
authors would like to thank Itamar Kahn, Eyal Bergmann and Daniel
Gutierrez-Barragan for critically reading the manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.neuroimage.2019.116278.

References

Avants, B.B., Tustison, N.J., Song, G., Cook, P.A., Klein, A., Gee, J.C., 2011.
A reproducible evaluation of ANTs similarity metric performance in brain image
registration. Neuroimage 54, 2033–2044. https://doi.org/10.1016/
j.neuroimage.2010.09.025.

Avants, B.B., Tustison, N.J., Stauffer, M., Song, G., Wu, B., Gee, J.C., 2014. The Insight
ToolKit image registration framework. Front. Neuroinf. 8, 44. https://doi.org/
10.3389/fninf.2014.00044.

Azevedo, F.A.C., Carvalho, L.R.B., Grinberg, L.T., Farfel, J.M., Ferretti, R.E.L.,
Leite, R.E.P., Jacob Filho, W., Lent, R., Herculano-Houzel, S., 2009. Equal numbers of
neuronal and nonneuronal cells make the human brain an isometrically scaled-up
primate brain. J. Comp. Neurol. 513, 532–541. https://doi.org/10.1002/cne.21974.

Becerra, L., Pendse, G., Chang, P.-C., Bishop, J., Borsook, D., 2011. Robust reproducible
resting state networks in the awake rodent brain. PLoS One 6. https://doi.org/
10.1371/journal.pone.0025701 e25701.

Belloy, M.E., Naeyaert, M., Abbas, A., Shah, D., Vanreusel, V., van Audekerke, J.,
Keilholz, S.D., Keliris, G.A., Van der Linden, A., Verhoye, M., 2018a. Dynamic resting
state fMRI analysis in mice reveals a set of Quasi-Periodic Patterns and illustrates
their relationship with the global signal. Neuroimage 180, 463–484. https://doi.org/
10.1016/j.neuroimage.2018.01.075.

Belloy, M.E., Shah, D., Abbas, A., Kashyap, A., Roßner, S., Van der Linden, A.,
Keilholz, S.D., Keliris, G.A., Verhoye, M., 2018b. Quasi-periodic patterns of neural
activity improve classification of Alzheimer’s disease in mice. Sci. Rep. 8, 10024.
https://doi.org/10.1038/s41598-018-28237-9.

Bergmann, E., Zur, G., Bershadsky, G., Kahn, I., 2016. The organization of mouse and
human cortico-hippocampal networks estimated by intrinsic functional connectivity.
Cerebr. Cortex 26, 4497–4512. https://doi.org/10.1093/cercor/bhw327.

Bertero, A., Liska, A., Pagani, M., Parolisi, R., Masferrer, M.E., Gritti, M., Pedrazzoli, M.,
Galbusera, A., Sarica, A., Cerasa, A., Buffelli, M., Tonini, R., Buffo, A., Gross, C.,
Pasqualetti, M., Gozzi, A., 2018. Autism-associated 16p11.2 microdeletion impairs
prefrontal functional connectivity in mouse and human. Brain 141, 2055–2065.
https://doi.org/10.1093/brain/awy111.

Biswal, B., Hudetz, A.G., Yetkin, F.Z., Haughton, V.M., Hyde, J.S., 1997. Hypercapnia
reversibly suppresses low-frequency fluctuations in the human motor cortex during
rest using echo-planar MRI. J. Cereb. Blood Flow Metab. 17, 301–308. https://
doi.org/10.1097/00004647-199703000-00007.

Biswal, B., Yetkin, F.Z., Haughton, V.M., Hyde, J.S., 1995. Functional connectivity in the
motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34,
537–541. https://doi.org/10.1002/mrm.1910340409.

Biswal, B.B., Mennes, M., Zuo, X.-N., Gohel, S., Kelly, C., Smith, S.M., Beckmann, C.F.,
Adelstein, J.S., Buckner, R.L., Colcombe, S., Dogonowski, A.-M., Ernst, M., Fair, D.,
Hampson, M., Hoptman, M.J., Hyde, J.S., Kiviniemi, V.J., K€otter, R., Li, S.-J., Lin, C.-
P., Milham, M.P., 2010. Toward discovery science of human brain function. Proc.
Natl. Acad. Sci. U.S.A. 107, 4734–4739. https://doi.org/10.1073/pnas.0911855107.

Buckner, R.L., Andrews-Hanna, J.R., Schacter, D.L., 2008. The brain’s default network:
anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 1124, 1–38.
https://doi.org/10.1196/annals.1440.011.

Buehlmann, D., Grandjean, J., Xandry, J., Rudin, M., 2018. Longitudinal resting-state
functional magnetic resonance imaging in a mouse model of metastatic bone cancer
reveals distinct functional reorganizations along a developing chronic pain state. Pain
159, 719–727. https://doi.org/10.1097/j.pain.0000000000001148.

Bukhari, Q., Schroeter, A., Cole, D.M., Rudin, M., 2017. Resting state fMRI in mice reveals
anesthesia specific signatures of brain functional networks and their interactions.
Front. Neural Circuits 11, 5. https://doi.org/10.3389/fncir.2017.00005.

Bukhari, Q., Schroeter, A., Rudin, M., 2018. Increasing isoflurane dose reduces homotopic
correlation and functional segregation of brain networks in mice as revealed by
resting-state fMRI. Sci. Rep. 8, 10591. https://doi.org/10.1038/s41598-018-28766-
3.

Charbogne, P., Gardon, O., Martín-García, E., Keyworth, H.L., Matsui, A., Mechling, A.E.,
Bienert, T., Nasseef, T., Rob�e, A., Moquin, L., Darcq, E., Ben Hamida, S., Robledo, P.,
Matifas, A., Befort, K., Gav�eriaux-Ruff, C., Harsan, L.-A., von Elverfeldt, D.,
Hennig, J., Gratton, A., Kieffer, B.L., 2017. Mu opioid receptors in gamma-
aminobutyric acidergic forebrain neurons moderate motivation for heroin and
palatable food. Biol. Psychiatry 81, 778–788. https://doi.org/10.1016/
j.biopsych.2016.12.022.

https://doi.org/10.1016/j.neuroimage.2019.116278
https://doi.org/10.1016/j.neuroimage.2019.116278
https://doi.org/10.1016/j.neuroimage.2010.09.025
https://doi.org/10.1016/j.neuroimage.2010.09.025
https://doi.org/10.3389/fninf.2014.00044
https://doi.org/10.3389/fninf.2014.00044
https://doi.org/10.1002/cne.21974
https://doi.org/10.1371/journal.pone.0025701
https://doi.org/10.1371/journal.pone.0025701
https://doi.org/10.1016/j.neuroimage.2018.01.075
https://doi.org/10.1016/j.neuroimage.2018.01.075
https://doi.org/10.1038/s41598-018-28237-9
https://doi.org/10.1093/cercor/bhw327
https://doi.org/10.1093/brain/awy111
https://doi.org/10.1097/00004647-199703000-00007
https://doi.org/10.1097/00004647-199703000-00007
https://doi.org/10.1002/mrm.1910340409
https://doi.org/10.1073/pnas.0911855107
https://doi.org/10.1196/annals.1440.011
https://doi.org/10.1097/j.pain.0000000000001148
https://doi.org/10.3389/fncir.2017.00005
https://doi.org/10.1038/s41598-018-28766-3
https://doi.org/10.1038/s41598-018-28766-3
https://doi.org/10.1016/j.biopsych.2016.12.022
https://doi.org/10.1016/j.biopsych.2016.12.022


J. Grandjean et al. NeuroImage 205 (2020) 116278
Chuang, K.-H., Nasrallah, F.A., 2017. Functional networks and network perturbations in
rodents. Neuroimage 163, 419–436. https://doi.org/10.1016/
j.neuroimage.2017.09.038.

Cox, R.W., 1996. AFNI: software for analysis and visualization of functional magnetic
resonance neuroimages. Comput. Biomed. Res. 29, 162–173. https://doi.org/
10.1006/cbmr.1996.0014.

DeSimone, J.C., Febo, M., Shukla, P., Ofori, E., Colon-Perez, L.M., Li, Y.,
Vaillancourt, D.E., 2016. In vivo imaging reveals impaired connectivity across
cortical and subcortical networks in a mouse model of DYT1 dystonia. Neurobiol. Dis.
95, 35–45. https://doi.org/10.1016/j.nbd.2016.07.005.

Dorr, A.E., Lerch, J.P., Spring, S., Kabani, N., Henkelman, R.M., 2008. High resolution
three-dimensional brain atlas using an average magnetic resonance image of 40 adult
C57Bl/6J mice. Neuroimage 42, 60–69. https://doi.org/10.1016/
j.neuroimage.2008.03.037.

Eklund, A., Nichols, T.E., Knutsson, H., 2016. Cluster failure: why fMRI inferences for
spatial extent have inflated false-positive rates. Proc. Natl. Acad. Sci. U.S.A. 113,
7900–7905. https://doi.org/10.1073/pnas.1602413113.

Errico, F., D’Argenio, V., Sforazzini, F., Iasevoli, F., Squillace, M., Guerri, G.,
Napolitano, F., Angrisano, T., Di Maio, A., Keller, S., Vitucci, D., Galbusera, A.,
Chiariotti, L., Bertolino, A., de Bartolomeis, A., Salvatore, F., Gozzi, A., Usiello, A.,
2015. A role for D-aspartate oxidase in schizophrenia and in schizophrenia-related
symptoms induced by phencyclidine in mice. Transl. Psychiatry 5, e512. https://
doi.org/10.1038/tp.2015.2.

Esteban, O., Markiewicz, C.J., Blair, R.W., Moodie, C.A., Isik, A.I., Erramuzpe, A.,
Kent, J.D., Goncalves, M., DuPre, E., Snyder, M., Oya, H., Ghosh, S.S., Wright, J.,
Durnez, J., Poldrack, R.A., Gorgolewski, K.J., 2019. fMRIPrep: a robust preprocessing
pipeline for functional MRI. Nat. Methods 16, 111–116. https://doi.org/10.1038/
s41592-018-0235-4.

Filippini, N., MacIntosh, B.J., Hough, M.G., Goodwin, G.M., Frisoni, G.B., Smith, S.M.,
Matthews, P.M., Beckmann, C.F., Mackay, C.E., 2009. Distinct patterns of brain
activity in young carriers of the APOE-epsilon4 allele. Proc. Natl. Acad. Sci. U.S.A.
106, 7209–7214. https://doi.org/10.1073/pnas.0811879106.

Fox, M.D., Raichle, M.E., 2007. Spontaneous fluctuations in brain activity observed with
functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711. https://
doi.org/10.1038/nrn2201.

Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., Raichle, M.E., 2005.
The human brain is intrinsically organized into dynamic, anticorrelated functional
networks. Proc. Natl. Acad. Sci. U.S.A. 102, 9673–9678. https://doi.org/10.1073/
pnas.0504136102.

Friston, K.J., 2011. Functional and effective connectivity: a review. Brain Connect. 1,
13–36. https://doi.org/10.1089/brain.2011.0008.

Gass, N., Weber-Fahr, W., Sartorius, A., Becker, R., Didriksen, M., Stensbøl, T.B.,
Bastlund, J.F., Meyer-Lindenberg, A., Schwarz, A.J., 2016. An acetylcholine alpha7
positive allosteric modulator rescues a schizophrenia-associated brain
endophenotype in the 15q13.3 microdeletion, encompassing CHRNA7. Eur.
Neuropsychopharmacol. 26, 1150–1160. https://doi.org/10.1016/
j.euroneuro.2016.03.013.

Gozzi, A., Schwarz, A.J., 2016. Large-scale functional connectivity networks in the rodent
brain. Neuroimage 127, 496–509. https://doi.org/10.1016/
j.neuroimage.2015.12.017.

Grandjean, J., Azzinnari, D., Seuwen, A., Sigrist, H., Seifritz, E., Pryce, C.R., Rudin, M.,
2016a. Chronic psychosocial stress in mice leads to changes in brain functional
connectivity and metabolite levels comparable to human depression. Neuroimage
142, 544–552. https://doi.org/10.1016/j.neuroimage.2016.08.013.

Grandjean, J., Derungs, R., Kulic, L., Welt, T., Henkelman, M., Nitsch, R.M., Rudin, M.,
2016b. Complex interplay between brain function and structure during cerebral
amyloidosis in APP transgenic mouse strains revealed by multi-parametric MRI
comparison. Neuroimage 134, 1–11. https://doi.org/10.1016/
j.neuroimage.2016.03.042.

Grandjean, J., Preti, M.G., Bolton, T.A.W., Buerge, M., Seifritz, E., Pryce, C.R., Van De
Ville, D., Rudin, M., 2017a. Dynamic reorganization of intrinsic functional networks
in the mouse brain. Neuroimage 152, 497–508. https://doi.org/10.1016/
j.neuroimage.2017.03.026.

Grandjean, J., Schroeter, A., Batata, I., Rudin, M., 2014a. Optimization of anesthesia
protocol for resting-state fMRI in mice based on differential effects of anesthetics on
functional connectivity patterns. Neuroimage 102 (2), 838–847. https://doi.org/
10.1016/j.neuroimage.2014.08.043. Pt.

Grandjean, J., Schroeter, A., He, P., Tanadini, M., Keist, R., Krstic, D., Konietzko, U.,
Klohs, J., Nitsch, R.M., Rudin, M., 2014b. Early alterations in functional connectivity
and white matter structure in a transgenic mouse model of cerebral amyloidosis.
J. Neurosci. 34, 13780–13789. https://doi.org/10.1523/JNEUROSCI.4762-13.2014.

Grandjean, J., Zerbi, V., Balsters, J.H., Wenderoth, N., Rudin, M., 2017b. Structural basis
of large-scale functional connectivity in the mouse. J. Neurosci. 37, 8092–8101.
https://doi.org/10.1523/JNEUROSCI.0438-17.2017.

Greicius, M., 2008. Resting-state functional connectivity in neuropsychiatric disorders.
Curr. Opin. Neurol. 21, 424–430. https://doi.org/10.1097/
WCO.0b013e328306f2c5.

Guilfoyle, D.N., Gerum, S.V., Sanchez, J.L., Balla, A., Sershen, H., Javitt, D.C.,
Hoptman, M.J., 2013. Functional connectivity fMRI in mouse brain at 7T using
isoflurane. J. Neurosci. Methods 214, 144–148. https://doi.org/10.1016/
j.jneumeth.2013.01.019.

Gutierrez-Barragan, D., Basson, M.A., Panzeri, S., Gozzi, A., 2019. Infraslow state
fluctuations govern spontaneous fMRI network dynamics. Curr. Biol. 29, 2295–2306.
https://doi.org/10.1016/j.cub.2019.06.017 e5.
10
Haberl, M.G., Zerbi, V., Veltien, A., Ginger, M., Heerschap, A., Frick, A., 2015. Structural-
functional connectivity deficits of neocortical circuits in the Fmr1 (-/y) mouse model
of autism. Sci. Adv. 1 https://doi.org/10.1126/sciadv.1500775 e1500775.

Hoyer, C., Gass, N., Weber-Fahr, W., Sartorius, A., 2014. Advantages and challenges of
small animal magnetic resonance imaging as a translational tool.
Neuropsychobiology 69, 187–201. https://doi.org/10.1159/000360859.

Hübner, N.S., Mechling, A.E., Lee, H.-L., Reisert, M., Bienert, T., Hennig, J., von
Elverfeldt, D., Harsan, L.-A., 2017. The connectomics of brain demyelination:
functional and structural patterns in the cuprizone mouse model. Neuroimage 146,
1–18. https://doi.org/10.1016/j.neuroimage.2016.11.008.

Hutchison, R.M., Everling, S., 2012. Monkey in the middle: why non-human primates are
needed to bridge the gap in resting-state investigations. Front. Neuroanat. 6, 29.
https://doi.org/10.3389/fnana.2012.00029.

Jonckers, E., Delgado y Palacios, R., Shah, D., Guglielmetti, C., Verhoye, M., Van der
Linden, A., 2014. Different anesthesia regimes modulate the functional connectivity
outcome in mice. Magn. Reson. Med. 72, 1103–1112. https://doi.org/10.1002/
mrm.24990.

Jonckers, E., Shah, D., Hamaide, J., Verhoye, M., Van der Linden, A., 2015. The power of
using functional fMRI on small rodents to study brain pharmacology and disease.
Front. Pharmacol. 6, 231. https://doi.org/10.3389/fphar.2015.00231.

Jonckers, E., Van Audekerke, J., De Visscher, G., Van der Linden, A., Verhoye, M., 2011.
Functional connectivity fMRI of the rodent brain: comparison of functional
connectivity networks in rat and mouse. PLoS One 6. https://doi.org/10.1371/
journal.pone.0018876 e18876.

Jonckers, E., Van der Linden, A., Verhoye, M., 2013. Functional magnetic resonance
imaging in rodents: an unique tool to study in vivo pharmacologic neuromodulation.
Curr. Opin. Pharmacol. 13, 813–820. https://doi.org/10.1016/j.coph.2013.06.008.

Jovicich, J., Minati, L., Marizzoni, M., Marchitelli, R., Sala-Llonch, R., Bartr�es-Faz, D.,
Arnold, J., Benninghoff, J., Fiedler, U., Roccatagliata, L., Picco, A., Nobili, F., Blin, O.,
Bombois, S., Lopes, R., Bordet, R., Sein, J., Ranjeva, J.-P., Didic, M., Gros-Dagnac, H.,
PharmaCog Consortium, 2016. Longitudinal reproducibility of default-mode network
connectivity in healthy elderly participants: a multicentric resting-state fMRI study.
Neuroimage 124, 442–454. https://doi.org/10.1016/j.neuroimage.2015.07.010.

Kalthoff, D., Po, C., Wiedermann, D., Hoehn, M., 2013. Reliability and spatial specificity
of rat brain sensorimotor functional connectivity networks are superior under
sedation compared with general anesthesia. NMR Biomed. 26, 638–650. https://
doi.org/10.1002/nbm.2908.

Komaki, Y., Hikishima, K., Shibata, S., Konomi, T., Seki, F., Yamada, M., Miyasaka, N.,
Fujiyoshi, K., Okano, H.J., Nakamura, M., Okano, H., 2016. Functional brain mapping
using specific sensory-circuit stimulation and a theoretical graph network analysis in
mice with neuropathic allodynia. Sci. Rep. 6, 37802. https://doi.org/10.1038/
srep37802.

Lein, E.S., Hawrylycz, M.J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., Boe, A.F.,
Boguski, M.S., Brockway, K.S., Byrnes, E.J., Chen, Lin, Chen, Li, Chen, T.-M.,
Chin, M.C., Chong, J., Crook, B.E., Czaplinska, A., Dang, C.N., Datta, S., Dee, N.R.,
Jones, A.R., 2007. Genome-wide atlas of gene expression in the adult mouse brain.
Nature 445, 168–176. https://doi.org/10.1038/nature05453.

Liska, A., Bertero, A., Gomolka, R., Sabbioni, M., Galbusera, A., Barsotti, N., Panzeri, S.,
Scattoni, M.L., Pasqualetti, M., Gozzi, A., 2018. Homozygous loss of autism-risk gene
CNTNAP2 results in reduced local and long-range prefrontal functional connectivity.
Cerebr. Cortex 28, 1141–1153. https://doi.org/10.1093/cercor/bhx022.

Liska, A., Galbusera, A., Schwarz, A.J., Gozzi, A., 2015. Functional connectivity hubs of
the mouse brain. Neuroimage 115, 281–291. https://doi.org/10.1016/
j.neuroimage.2015.04.033.

Liska, A., Gozzi, A., 2016. Can mouse imaging studies bring order to autism connectivity
chaos? Front. Neurosci. 10, 484. https://doi.org/10.3389/fnins.2016.00484.

Li, Q., Li, G., Wu, D., Lu, H., Hou, Z., Ross, C.A., Yang, Y., Zhang, J., Duan, W., 2017.
Resting-state functional MRI reveals altered brain connectivity and its correlation
with motor dysfunction in a mouse model of Huntington’s disease. Sci. Rep. 7, 16742.
https://doi.org/10.1038/s41598-017-17026-5.

Lu, H., Zou, Q., Gu, H., Raichle, M.E., Stein, E.A., Yang, Y., 2012. Rat brains also have a
default mode network. Proc. Natl. Acad. Sci. U.S.A. 109, 3979–3984. https://doi.org/
10.1073/pnas.1200506109.

Mechling, A.E., Arefin, T., Lee, H.-L., Bienert, T., Reisert, M., Ben Hamida, S., Darcq, E.,
Ehrlich, A., Gaveriaux-Ruff, C., Parent, M.J., Rosa-Neto, P., Hennig, J., von
Elverfeldt, D., Kieffer, B.L., Harsan, L.-A., 2016. Deletion of the mu opioid receptor
gene in mice reshapes the reward-aversion connectome. Proc. Natl. Acad. Sci. U.S.A.
113, 11603–11608. https://doi.org/10.1073/pnas.1601640113.

Michetti, C., Caruso, A., Pagani, M., Sabbioni, M., Medrihan, L., David, G., Galbusera, A.,
Morini, M., Gozzi, A., Benfenati, F., Scattoni, M.L., 2017. The knockout of synapsin II
in mice impairs social behavior and functional connectivity generating an ASD-like
phenotype. Cerebr. Cortex 27, 5014–5023. https://doi.org/10.1093/cercor/bhx207.

Murphy, K., Birn, R.M., Bandettini, P.A., 2013. Resting-state fMRI confounds and cleanup.
Neuroimage 80, 349–359. https://doi.org/10.1016/j.neuroimage.2013.04.001.

Nichols, T.E., Das, S., Eickhoff, S.B., Evans, A.C., Glatard, T., Hanke, M., Kriegeskorte, N.,
Milham, M.P., Poldrack, R.A., Poline, J.-B., Proal, E., Thirion, B., Van Essen, D.C.,
White, T., Yeo, B.T.T., 2017. Best practices in data analysis and sharing in
neuroimaging using MRI. Nat. Neurosci. 20, 299–303. https://doi.org/10.1038/
nn.4500.

Oguz, I., Zhang, H., Rumple, A., Sonka, M., 2014. RATS: rapid automatic tissue
segmentation in rodent brain MRI. J. Neurosci. Methods 221, 175–182. https://
doi.org/10.1016/j.jneumeth.2013.09.021.

Oh, S.W., Harris, J.A., Ng, L., Winslow, B., Cain, N., Mihalas, S., Wang, Q., Lau, C.,
Kuan, L., Henry, A.M., Mortrud, M.T., Ouellette, B., Nguyen, T.N., Sorensen, S.A.,
Slaughterbeck, C.R., Wakeman, W., Li, Y., Feng, D., Ho, A., Nicholas, E., Zeng, H.,

https://doi.org/10.1016/j.neuroimage.2017.09.038
https://doi.org/10.1016/j.neuroimage.2017.09.038
https://doi.org/10.1006/cbmr.1996.0014
https://doi.org/10.1006/cbmr.1996.0014
https://doi.org/10.1016/j.nbd.2016.07.005
https://doi.org/10.1016/j.neuroimage.2008.03.037
https://doi.org/10.1016/j.neuroimage.2008.03.037
https://doi.org/10.1073/pnas.1602413113
https://doi.org/10.1038/tp.2015.2
https://doi.org/10.1038/tp.2015.2
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1073/pnas.0811879106
https://doi.org/10.1038/nrn2201
https://doi.org/10.1038/nrn2201
https://doi.org/10.1073/pnas.0504136102
https://doi.org/10.1073/pnas.0504136102
https://doi.org/10.1089/brain.2011.0008
https://doi.org/10.1016/j.euroneuro.2016.03.013
https://doi.org/10.1016/j.euroneuro.2016.03.013
https://doi.org/10.1016/j.neuroimage.2015.12.017
https://doi.org/10.1016/j.neuroimage.2015.12.017
https://doi.org/10.1016/j.neuroimage.2016.08.013
https://doi.org/10.1016/j.neuroimage.2016.03.042
https://doi.org/10.1016/j.neuroimage.2016.03.042
https://doi.org/10.1016/j.neuroimage.2017.03.026
https://doi.org/10.1016/j.neuroimage.2017.03.026
https://doi.org/10.1016/j.neuroimage.2014.08.043
https://doi.org/10.1016/j.neuroimage.2014.08.043
https://doi.org/10.1523/JNEUROSCI.4762-13.2014
https://doi.org/10.1523/JNEUROSCI.0438-17.2017
https://doi.org/10.1097/WCO.0b013e328306f2c5
https://doi.org/10.1097/WCO.0b013e328306f2c5
https://doi.org/10.1016/j.jneumeth.2013.01.019
https://doi.org/10.1016/j.jneumeth.2013.01.019
https://doi.org/10.1016/j.cub.2019.06.017
https://doi.org/10.1126/sciadv.1500775
https://doi.org/10.1159/000360859
https://doi.org/10.1016/j.neuroimage.2016.11.008
https://doi.org/10.3389/fnana.2012.00029
https://doi.org/10.1002/mrm.24990
https://doi.org/10.1002/mrm.24990
https://doi.org/10.3389/fphar.2015.00231
https://doi.org/10.1371/journal.pone.0018876
https://doi.org/10.1371/journal.pone.0018876
https://doi.org/10.1016/j.coph.2013.06.008
https://doi.org/10.1016/j.neuroimage.2015.07.010
https://doi.org/10.1002/nbm.2908
https://doi.org/10.1002/nbm.2908
https://doi.org/10.1038/srep37802
https://doi.org/10.1038/srep37802
https://doi.org/10.1038/nature05453
https://doi.org/10.1093/cercor/bhx022
https://doi.org/10.1016/j.neuroimage.2015.04.033
https://doi.org/10.1016/j.neuroimage.2015.04.033
https://doi.org/10.3389/fnins.2016.00484
https://doi.org/10.1038/s41598-017-17026-5
https://doi.org/10.1073/pnas.1200506109
https://doi.org/10.1073/pnas.1200506109
https://doi.org/10.1073/pnas.1601640113
https://doi.org/10.1093/cercor/bhx207
https://doi.org/10.1016/j.neuroimage.2013.04.001
https://doi.org/10.1038/nn.4500
https://doi.org/10.1038/nn.4500
https://doi.org/10.1016/j.jneumeth.2013.09.021
https://doi.org/10.1016/j.jneumeth.2013.09.021


J. Grandjean et al. NeuroImage 205 (2020) 116278
2014. A mesoscale connectome of the mouse brain. Nature 508, 207–214. https://
doi.org/10.1038/nature13186.

Paasonen, J., Stenroos, P., Salo, R.A., Kiviniemi, V., Gr€ohn, O., 2018. Functional
connectivity under six anesthesia protocols and the awake condition in rat brain.
Neuroimage 172, 9–20. https://doi.org/10.1016/j.neuroimage.2018.01.014.

Pan, W.-J., Billings, J.C.W., Grooms, J.K., Shakil, S., Keilholz, S.D., 2015. Considerations
for resting state functional MRI and functional connectivity studies in rodents. Front.
Neurosci. 9, 269. https://doi.org/10.3389/fnins.2015.00269.

Popa, D., Popescu, A.T., Par�e, D., 2009. Contrasting activity profile of two distributed
cortical networks as a function of attentional demands. J. Neurosci. 29, 1191–1201.
https://doi.org/10.1523/JNEUROSCI.4867-08.2009.

Razoux, F., Baltes, C., Mueggler, T., Seuwen, A., Russig, H., Mansuy, I., Rudin, M., 2013.
Functional MRI to assess alterations of functional networks in response to
pharmacological or genetic manipulations of the serotonergic system in mice.
Neuroimage 74, 326–336. https://doi.org/10.1016/j.neuroimage.2013.02.031.

Richiardi, J., Altmann, A., Milazzo, A.-C., Chang, C., Chakravarty, M.M.,
Banaschewski, T., Barker, G.J., Bokde, A.L.W., Bromberg, U., Büchel, C., Conrod, P.,
Fauth-Bühler, M., Flor, H., Frouin, V., Gallinat, J., Garavan, H., Gowland, P.,
Heinz, A., Lemaître, H., Mann, K.F., 2015. IMAGEN consortium, 2015. BRAIN
NETWORKS. Correlated gene expression supports synchronous activity in brain
networks. Science 348, 1241–1244. https://doi.org/10.1126/science.1255905.

Rorden, C., Karnath, H.-O., Bonilha, L., 2007. Improving lesion-symptom mapping.
J. Cogn. Neurosci. 19, 1081–1088. https://doi.org/10.1162/jocn.2007.19.7.1081.

Schroeter, A., Grandjean, J., Schlegel, F., Saab, B.J., Rudin, M., 2017. Contributions of
structural connectivity and cerebrovascular parameters to functional magnetic
resonance imaging signals in mice at rest and during sensory paw stimulation.
J. Cereb. Blood Flow Metab. 37, 2368–2382. https://doi.org/10.1177/
0271678X16666292.

Sethi, S.S., Zerbi, V., Wenderoth, N., Fornito, A., Fulcher, B.D., 2017. Structural
connectome topology relates to regional BOLD signal dynamics in the mouse brain.
Chaos 27. https://doi.org/10.1063/1.4979281, 047405.

Sforazzini, F., Bertero, A., Dodero, L., David, G., Galbusera, A., Scattoni, M.L.,
Pasqualetti, M., Gozzi, A., 2016. Altered functional connectivity networks in acallosal
and socially impaired BTBR mice. Brain Struct. Funct. 221, 941–954. https://doi.org/
10.1007/s00429-014-0948-9.

Sforazzini, F., Schwarz, A.J., Galbusera, A., Bifone, A., Gozzi, A., 2014. Distributed BOLD
and CBV-weighted resting-state networks in the mouse brain. Neuroimage 87,
403–415. https://doi.org/10.1016/j.neuroimage.2013.09.050.

Shah, D., Blockx, I., Guns, P.-J., De Deyn, P.P., Van Dam, D., Jonckers, E., Delgado Y
Palacios, R., Verhoye, M., Van der Linden, A., 2015. Acute modulation of the
cholinergic system in the mouse brain detected by pharmacological resting-state
functional MRI. Neuroimage 109, 151–159. https://doi.org/10.1016/
j.neuroimage.2015.01.009.

Shah, D., Blockx, I., Keliris, G.A., Kara, F., Jonckers, E., Verhoye, M., Van der Linden, A.,
2016a. Cholinergic and serotonergic modulations differentially affect large-scale
functional networks in the mouse brain. Brain Struct. Funct. 221, 3067–3079.
https://doi.org/10.1007/s00429-015-1087-7.

Shah, D., Deleye, S., Verhoye, M., Staelens, S., Van der Linden, A., 2016b. Resting-state
functional MRI and [18F]-FDG PET demonstrate differences in neuronal activity
between commonly used mouse strains. Neuroimage 125, 571–577. https://doi.org/
10.1016/j.neuroimage.2015.10.073.
11
Shah, D., Jonckers, E., Praet, J., Vanhoutte, G., Delgado Y Palacios, R., Bigot, C.,
D’Souza, D.V., Verhoye, M., Van der Linden, A., 2013. Resting state FMRI reveals
diminished functional connectivity in a mouse model of amyloidosis. PLoS One 8.
https://doi.org/10.1371/journal.pone.0084241 e84241.

Shah, D., Praet, J., Latif Hernandez, A., H€ofling, C., Anckaerts, C., Bard, F., Morawski, M.,
Detrez, J.R., Prinsen, E., Villa, A., De Vos, W.H., Maggi, A., D’Hooge, R., Balschun, D.,
Rossner, S., Verhoye, M., Van der Linden, A., 2016c. Early pathologic amyloid
induces hypersynchrony of BOLD resting-state networks in transgenic mice and
provides an early therapeutic window before amyloid plaque deposition. Alzheimers
Dement. 12, 964–976. https://doi.org/10.1016/j.jalz.2016.03.010.

Stafford, J.M., Jarrett, B.R., Miranda-Dominguez, O., Mills, B.D., Cain, N., Mihalas, S.,
Lahvis, G.P., Lattal, K.M., Mitchell, S.H., David, S.V., Fryer, J.D., Nigg, J.T., Fair, D.A.,
2014. Large-scale topology and the default mode network in the mouse connectome.
Proc. Natl. Acad. Sci. U.S.A. 111, 18745–18750. https://doi.org/10.1073/
pnas.1404346111.

Upadhyay, J., Baker, S.J., Chandran, P., Miller, L., Lee, Y., Marek, G.J., Sakoglu, U.,
Chin, C.-L., Luo, F., Fox, G.B., Day, M., 2011. Default-mode-like network activation in
awake rodents. PLoS One 6. https://doi.org/10.1371/journal.pone.0027839 e27839.

Wiesmann, M., Zerbi, V., Jansen, D., Haast, R., Lütjohann, D., Broersen, L.M.,
Heerschap, A., Kiliaan, A.J., 2016. A dietary treatment improves cerebral blood flow
and brain connectivity in aging apoE4 mice. Neural Plast. 2016, 6846721. https://
doi.org/10.1155/2016/6846721.

Wu, T., Grandjean, J., Bosshard, S.C., Rudin, M., Reutens, D., Jiang, T., 2017. Altered
regional connectivity reflecting effects of different anaesthesia protocols in the mouse
brain. Neuroimage 149, 190–199. https://doi.org/10.1016/
j.neuroimage.2017.01.074.

Yoshida, K., Mimura, Y., Ishihara, R., Nishida, H., Komaki, Y., Minakuchi, T.,
Tsurugizawa, T., Mimura, M., Okano, H., Tanaka, K.F., Takata, N., 2016.
Physiological effects of a habituation procedure for functional MRI in awake mice
using a cryogenic radiofrequency probe. J. Neurosci. Methods 274, 38–48. https://
doi.org/10.1016/j.jneumeth.2016.09.013.

Zerbi, V., Grandjean, J., Rudin, M., Wenderoth, N., 2015. Mapping the mouse brain with
rs-fMRI: an optimized pipeline for functional network identification. Neuroimage
123, 11–21. https://doi.org/10.1016/j.neuroimage.2015.07.090.

Zerbi, V., Ielacqua, G.D., Markicevic, M., Haberl, M.G., Ellisman, M.H., A-Bhaskaran, A.,
Frick, A., Rudin, M., Wenderoth, N., 2018. Dysfunctional autism risk genes cause
circuit-specific connectivity deficits with distinct developmental trajectories. Cerebr.
Cortex 28, 2495–2506. https://doi.org/10.1093/cercor/bhy046.

Zerbi, V., Wiesmann, M., Emmerzaal, T.L., Jansen, D., Van Beek, M., Mutsaers, M.P.C.,
Beckmann, C.F., Heerschap, A., Kiliaan, A.J., 2014. Resting-state functional
connectivity changes in aging apoE4 and apoE-KO mice. J. Neurosci. 34,
13963–13975. https://doi.org/10.1523/JNEUROSCI.0684-14.2014.

Zhan, Y., Paolicelli, R.C., Sforazzini, F., Weinhard, L., Bolasco, G., Pagani, F.,
Vyssotski, A.L., Bifone, A., Gozzi, A., Ragozzino, D., Gross, C.T., 2014. Deficient
neuron-microglia signaling results in impaired functional brain connectivity and
social behavior. Nat. Neurosci. 17, 400–406. https://doi.org/10.1038/nn.3641.

Zuo, X.-N., Xing, X.-X., 2014. Test-retest reliabilities of resting-state FMRI measurements
in human brain functional connectomics: a systems neuroscience perspective.
Neurosci. Biobehav. Rev. 45, 100–118. https://doi.org/10.1016/
j.neubiorev.2014.05.009.

https://doi.org/10.1038/nature13186
https://doi.org/10.1038/nature13186
https://doi.org/10.1016/j.neuroimage.2018.01.014
https://doi.org/10.3389/fnins.2015.00269
https://doi.org/10.1523/JNEUROSCI.4867-08.2009
https://doi.org/10.1016/j.neuroimage.2013.02.031
https://doi.org/10.1126/science.1255905
https://doi.org/10.1162/jocn.2007.19.7.1081
https://doi.org/10.1177/0271678X16666292
https://doi.org/10.1177/0271678X16666292
https://doi.org/10.1063/1.4979281
https://doi.org/10.1007/s00429-014-0948-9
https://doi.org/10.1007/s00429-014-0948-9
https://doi.org/10.1016/j.neuroimage.2013.09.050
https://doi.org/10.1016/j.neuroimage.2015.01.009
https://doi.org/10.1016/j.neuroimage.2015.01.009
https://doi.org/10.1007/s00429-015-1087-7
https://doi.org/10.1016/j.neuroimage.2015.10.073
https://doi.org/10.1016/j.neuroimage.2015.10.073
https://doi.org/10.1371/journal.pone.0084241
https://doi.org/10.1016/j.jalz.2016.03.010
https://doi.org/10.1073/pnas.1404346111
https://doi.org/10.1073/pnas.1404346111
https://doi.org/10.1371/journal.pone.0027839
https://doi.org/10.1155/2016/6846721
https://doi.org/10.1155/2016/6846721
https://doi.org/10.1016/j.neuroimage.2017.01.074
https://doi.org/10.1016/j.neuroimage.2017.01.074
https://doi.org/10.1016/j.jneumeth.2016.09.013
https://doi.org/10.1016/j.jneumeth.2016.09.013
https://doi.org/10.1016/j.neuroimage.2015.07.090
https://doi.org/10.1093/cercor/bhy046
https://doi.org/10.1523/JNEUROSCI.0684-14.2014
https://doi.org/10.1038/nn.3641
https://doi.org/10.1016/j.neubiorev.2014.05.009
https://doi.org/10.1016/j.neubiorev.2014.05.009

	Common functional networks in the mouse brain revealed by multi-centre resting-state fMRI analysis
	1. Introduction
	2. Material and methods
	2.1. Resting-state fMRI acquisition
	2.2. Data pre-processing
	2.3. Seed-based analysis and independent component analysis
	2.4. Statistical analysis and data representation

	3. Results
	3.1. Dataset description and pre-processing validation
	3.2. Vascular and ventricle signal regression enhances functional connectivity specificity
	3.3. Seed-based analysis identifies common and reproducible mouse resting-state networks
	3.4. Sedation protocol and SNR affect connectivity strength
	3.5. Network-specific functional connectivity is found in all datasets

	4. Discussion
	Author contributions
	Declaration of competing interest
	Acknowledgements
	Appendix A. Supplementary data
	References


