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Abstract

Motivation. k-mer counting is a common task in bioinformatic pipelines, with many dedicated
tools available. Output formats could rely on quotienting to reduce the space of k-mers in hash
tables, however counts are not usually stored in space-efficient formats. Overall, k-mer count tables
for genomic data take a considerable space, easily reaching tens of GB. Furthermore, such tables do
not support efficient random-access queries in general.

Results. In this work, we design an efficient representation of k-mer count tables supporting
fast random-access queries. We propose to apply Compressed Static Functions (CSFs), with space
proportional to the empirical zero-order entropy of the counts. For very skewed distributions, like
those of k-mer counts in whole genomes, the only currently available implementation of CSFs does
not provide a compact enough representation. By adding a Bloom Filter to a CSF we obtain a
Bloom-enhanced CSF (BCSF) effectively overcoming this limitation. Furthermore, by combining
BCSFs with minimizer-based bucketing of k-mers, we build even smaller representations breaking
the empirical entropy lower bound, for large enough k. We also extend these representations to the
approximate case, gaining additional space. We experimentally validate these techniques on k-mer
count tables of whole genomes (E.Coli and C.Elegans) as well as on k-mer document frequency
tables for 29 E.Coli genomes. In the case of exact counts, our representation takes about a half of
the space of the empirical entropy, for large enough k’s.
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1 Introduction

Nowadays, many bioinformatics pipelines rely on k-mers to perform a multitude of different
tasks. Representing sequences as sets of words of length k generally leads to more time-
efficient algorithms than relying on traditional alignments. For these reasons, alignment-free
algorithms have started to replace their alignment-based counterparts in a wide range of
practical applications, from sequence comparison and phylogenetic reconstruction [34, 36,
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7, 10] to finding SNPs [28, 15] and other tasks. These algorithms often require to associate
some kind of information to k-mers involved in the analysis, that is, to build maps where
keys are k-mers.

Typical values to associate to k-mers are their frequencies in a particular dataset. Actual
counting can be performed by one of several available k-mer counting tools developed in
recent years [16, 29, 24, 33]. Counting tables generally include both k-mers and counts
requiring considerable amounts of disk space to be stored. For example, the KMC output for
a human genome with k = 32 weights in at around 28GB.

In many scenarios, it is useful to store k-mer count tables independently from the sequence
data in order to retrieve counts multiple times and avoid redundant heavy counting steps. The
original sequence dataset can be used as the primary source of k-mers while a random-access
data structure will then allow retrieving their counts efficiently. Among potential applications
of such a data structure, efficient representation of k-mer counts can be useful for read
correction [21]. More generally, information about k-mer counts is increasingly used in other
applications [34, 28, 15, 23, 13, 14, 26] which can benefit from space-efficient solutions.

In many applications, space can be significantly reduced by representing the mapping
without actually storing k-mers. Minimal Perfect Hash Functions (MPHFs for short) im-
plement such an approach [27, 37, 9]. A MPHF bijectively maps each item from a set S

to an index in the range [0, |S| − 1]. Any additional information can then be stored in an
array indexed by the values returned by the MPHF. Practical applications of MPHFs in
bioinformatics include [22] and [38].

Frequency distributions of k-mer counts in genomic data are low-entropy distributions,
unless k is small. It is in fact known that k-mer counts for genomic sequences follow a
heavy-tail distribution [6, 4]. For large enough k-mer lengths, counts tend to follow a
skewed power-law distribution with the majority of k-mers occurring only few times, mostly
once. For these reasons, the multiset of counts of k-mers will typically have a fairly low
empirical zero-order entropy and therefore could be effectively compressed to save further
space. However, simply compressing the count array does not maintain queryability, which
requires specialized algorithms for this task. Note also that MPHFs themselves encompass a
non-negligible space overhead, with the theoretical minimum of 1.44 bits/key. BBHash [22],
a popular MPHF implementation for bioinformatics, requires around 3 bits per element in
addition to the space for storing the values.

Maps on static sets of keys can be encoded using so-called Static Functions [1, 11].
Unlike MPHFs, the actual hash function and the values are encoded into the same structure.
Compressed Static Functions (CSFs) try to benefit from the compressibility of the value array
and approach the number of bits defined by the empirical entropy. This feature makes them
particularly useful for representing different k-mer annotations, such as counts or presence
information across sequences of a given sample [23, 13, 14, 26]. CSFs can be used as readily
available drop-in replacements of MPHFs whenever the set of queryable k-mers is known in
advance. Solutions based on MPFHs and Static Functions assume that only k-mers present
in the datasets can be queried for their frequency. In many cases, this is not restrictive as
the “universe” of query k-mers can be effectively specified: for example, it can be restricted
to k-mers from a given genome or a pan-genome. It is also conceivable to add an appropriate
structure providing presence-absence information, in order to benefit from the reduction of
space provided by a compact count representation.

The goal of this paper is to study data structures for storing genomic k-mer count tables
using the smallest possible space. For this, we combine different tools: CSFs and Bloom
filters on the one hand, and minimizers on the other hand.
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Our first contribution is the enhancement of CSFs with a Bloom Filter to deal with
datasets of very small entropy and to achieve better space usage. We chose an E.Coli and a
C.Elegans genome to test our implementation. With these examples, we demonstrate the
advantages of our BCSF implementation over a simple CSF.

Our second improvement takes advantage of the fact that similar k-mers tend to have
identical (or similar) counts (see also [23]). Following this insight, we introduce a minimizer-
based bucketing scheme to cluster together count values of k-mers with the same minimizer. A
similar idea is used by some k-mer counting algorithms [29, 16, 18] with the difference that in
our case buckets contain counts rather than k-mers themselves. By choosing a representative
value for each bucket, we obtain a “bucket table” that we encode using Bloom-enhanced CSF.
Bucketing allows us to break the empirical entropy lower bound, as we show on both E.Coli
and C.Elegans examples. To demonstrate the advantages of bucketing on higher-entropy
distributions, we apply it to represent a table of “document frequencies” [12, 5, 25, 17] of
each k-mer across multiple strains of E.Coli.

We study different implementation schemes based on these ideas and compare their
space performance, as well as associated query time. For large enough k (and large enough
minimizers lengths), we are able to consistently break the barrier of the empirical entropy of
the input table. To the best of our knowledge, this is the first implementation proposing such
a compact representation. We also study an extension to the approximate case when query
answers are within a pre-defined absolute error from the true value, for which we achieve an
even smaller space.

2 Technical preliminaries

Throughout the paper we consider a k-mer count table to be an associative array f mapping
a set of k-mers K, considered static, to their counts, i.e. number of occurrences in a given
dataset. ||f ||1 stands for the L1-norm of f , that is

∑
q∈K f(q).

2.1 Minimizers
Minimizers are a popular technique used in different applications involving k-mer analysis.
Given a k-mer q of length k, its minimizer of length m, with m ≤ k, is the smallest substring
of q of length m w.r.t. some order defined on m-mers. The use of minimizers for biosequence
analysis goes back to [30], whereas a similar concept, named winnowing, has been earlier
applied in [32] to document search. The guiding idea is that a minimizer can be considered
as a “footprint” (hash value) of a corresponding k-mer so that similar (e.g. neighboring in
the genome) k-mers are likely to have the same minimizer. Thus, if the order of m-mers is
randomly chosen, minimizers can be seen as a specific instance of locality-sensitive hashing,
in particular of MinHash sketching [3].

Minimizers have been successfully applied to various data-intensive sequence analysis
problems in bioinformatics, such as metagenomics (Kraken [35]) or minimizing cache
misses in k-mer counting (KMC [16]), or mapping and assembling long single-molecule reads
[19, 20]. Recently, there has been a series of works on both theoretical and practical aspects
of designing efficient minimizers, see e.g. [39, 8] and references therein.

2.2 Bloom filters
Bloom filter is a very common probabilistic data structure that supports membership queries
for a given set S drawn from a large universe U , admitting a controlled fraction of false
positives. To insure a false positive rate ε, that is the probability ε for an item from U \ S to
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be erroneously classified as belonging to S, a Bloom filter B requires |S| log e log 1
ε bits, i.e.

≈ 1.44 log 1
ε bits per element of S. For a set T ⊆ U \ S, we denote FPB(T ) the set of false

positives of T , of expected size ε|T |.

2.3 Compressed static functions
A static function (SF) is a representation of a function defined on a given subset S of a
universe U such that an invocation of the function on any element from S yields the function
value, while an invocation on an element from U \ S produces an arbitrary output. The
problem has been studied in several works (see references in [1, 11]) resulting in several
solutions that allow function values to be retrieved without storing elements of S themselves.
One natural solution comes through MPHFs: one can build an MPHF for S and then store
function values in order in a separate array. This solution, however, incurs an overhead
associated with the MPHF, known to be theoretically lower-bounded by about 1.44 bits per
element of S.

This overhead is especially unfortunate when the distribution of values is very skewed, in
which case the value array may be compressed into a much smaller space. Compressed Static
Functions try to solve this problem by proposing a static function representation whose
size depends on the compressed value array. The latter is usually estimated through the
zero-order empirical entropy, defined by H0(f) =

∑
ℓ∈L

|f−1(ℓ)|
|K| log( |K|

|f−1(ℓ)| ), where L is the
set of all values (i.e. L = {f(t) | t ∈ K}}) and f−1(ℓ) = {t | f(t) = ℓ} is the set of k-mers
with count ℓ. |K| · H0(f) can be viewed as a lower bound on the size of compressed value
array, in absence of additional assumptions. Thus, the goal of CSFs is to approach the bound
of H0(f) bits per element as closely as possible, in representing a static function f .

An overview of different algorithmic solutions for SFs and CSFs is out of scope of this
paper, we refer the reader to [1, 11] and references therein. [1] proposed a solution for
CSF taking an asymptotically optimal nH0(f) + o(nH0(f)) space (n size of the underlying
value set), however the solution is rather complex and probably not suitable for practical
implementation. As of today, to our knowledge, the only practical implementation of a CSF
is GV3CompressedFunction [11], found in the Java package Sux4J (https://sux.di.unimi.
it/). Although entropy-sensitive, the method of [11], however, has an intrinsic limitation of
using at least 1 bit per element, due to involved coding schemes. This is a serious limitation
when dealing with very skewed distributions of values, where one value occurs predominantly
often and the empirical entropy can be much smaller than 1. This is precisely the case for
count distributions in whole genomes, studied in this paper.

3 Representation of low-entropy data

As mentioned earlier, Compressed Static Functions (CSF) of [11] do not properly deal with
datasets generated by low-entropy distributions, in particular with entropy smaller than 1.
This case occurs when the dataset has a dominant value representing a large fraction (say,
more than a half) of all values. This is typically the case with genomic k-mer count data,
especially whole-genome data, where a very large fraction of k-mers occur just once. For
example, in E.Coli genome (≈5.5Mbp), about 97% of all distinct 15-mers occur once, and
only the remaining 3% of 15-mers occur more than once.

For such datasets, the method of [11] does not approximate well the empirical entropy, as
it cannot achieve less than 1 bit per key. Here we propose a technique to circumvent this
deficiency in order to achieve, in combination with CSFs of [11], a compression close to the
empirical entropy.

https://sux.di.unimi.it/
https://sux.di.unimi.it/
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We build a Bloom filter for all k-mers whose value is not the dominant one, and then
construct a CSF on all positives (i.e. true and false positives) of this filter. At query time,
we first check the query k-mer against the Bloom filter and, if the answer is positive, recover
its value with the CSF.

Formally, let K0 be the k-mers with the most common frequency. Let |K0| = α|K|.
Assume that our Bloom filter implementation takes CBF log 1

ε bits per key (a standard value
is CBF = log e ≈ 1.44) and our CSF implementation takes CCSF bits per key. As explained
earlier, CCSF depends on the data, however, for the purpose of this section, we abstract
from this dependency. In Sec. 6 below, we will specify CCSF for the implementation we use.

We store keys K \ K0 in a Bloom filter B and build a CSF for (K \ K0) ∪ FPB(K0). The
total space is

CBF (1 − α)|K| log 1
ε

+ CCSF |K|((1 − α) + εα). (1)

The Bloom filter enables space saving only if α is sufficiently large. To decide if we need
a Bloom filter, we have to verify if the inequality

CBF (1 − α)|K| log 1
ε

+ CCSF |K|((1 − α) + εα) < CCSF |K|. (2)

holds for some ε < 1. Note again that CCSF on the left and right sides are not exactly the
same in reality, however assuming them the same is not reductive because of specificities
of the CSF implementation we use. We will elaborate further on this later on. Then (2)
rewrites to

CBF

CCSF

1 − α

α
log 1

ε
+ ε < 1. (3)

Using simple calculus, we obtain that if CBF

CCSF

1−α
α > ln 2 (that is, CBF

CCSF

1−α
α log e > 1), then

(3) never holds for 0 < ε < 1. The left-hand side of (3) reaches its minimum for

ε0 = CBF

CCSF

1 − α

α
log e, (4)

and this minimum is smaller than 1 if ε0 < 1. We conclude that in order to decide if a Bloom
filter enables space saving, we have to check the value ε0. If ε0 ≥ 1, we do not need a Bloom
filter, otherwise we need one with ε = ε0. This shows that a Bloom filter is needed whenever

α >
CBF log e

CCSF + CBF log e
(5)

For CBF = CCSF , this gives α > 0.59.
In the rest of the paper we use the term Bloom-enhanced Compressed Static Function,

BCSF for short, to speak about CSF possibly augmented by a prior Bloom filter, as described
in this section. Algorithm 1 summarizes the computation of the BCSF data structure.

4 Using minimizers

4.1 Bucketing
A key idea to reduce the computational burden of counting k-mers, is to use minimizers to
bucket k-mers and split the counting process across multiple tables (cf e.g. [16]). Here we
use the same principle to bucket count values instead of k-mers themselves. Let Mm(K) =

WABI 2021
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Algorithm 1 BCSF construction.

Data: A counting table f between keys and (integer) values
Result: A BCSF for f

Compute R, the k-mer spectrum of f ;
Compute ε with (4);
if ε < 1 then

let K0 ⊆ K be the k-mers with the most common item in R;
C = K \ K0;
Initialise Bloom filter B of ⌈log(e)|C| log2( 1

ε )/⌉ bits;
Insert C into Bloom filter;
Compute E = FPB(K0);
S = C ∪ E;

else
S = K

end
Construct CSF for S;

{µm(q) | q ∈ K} be the set of minimizers of all k-mers of K of a given length m < k. We map
the input set K onto the (smaller) set Mm(K). To each minimizer s ∈ Mm(K), corresponds
the bucket {f(q) | q ∈ K, µm(q) = s}. We call a minimizer and the corresponding bucket
ambiguous if this set contains more than one value. The guiding idea is to replace f by
a mapping g of Mm(K) to N. Querying value f(q) for a k-mer q ∈ K will reduce to first
querying g(µm(q)) and then possibly “correcting” the retrieved value. In other words, for
each bucket, we replace its set of counts with one representative value and we split the
query into two operations: retrieving the representative from the buckets and correcting to
reconstruct the original value. The rationale is that k-mers having the same minimizer tend
to have the same count allowing multiple values to be dealt with by a single bucket.

We consider two implementations which differ on how the representatives are chosen and
how corrections are applied. In the first implementation, that we name FIL (from FILtration,
see Algorithm 2), g(s) is defined to be the majority value among all values of its bucket,
ties resolved arbitrarily. In particular, if s is a non-ambiguous minimizer then g(s) is set
to the unique value of the bucket. In practice, computing the majority value may incur a
computational overhead as this requires storing bucket values until all values are known.
An option to cope with this is to use the “approximate majority” computed by the online
Boyer-Moore majority algorithm [2].

We then store a “correcting mapping” h : K → N defined by h(q) = f(q)−g(µm(q)). That
is, we construct another counting table h where each k-mer is associated to the correction
factor h(q), which, added to the representative g(s) results in the original count c. Both
mappings g and h are stored using BCSFs.

The rationale for this scheme is that, due to properties of minimizers, h(q) is supposed to
be often 0, which makes h well compressible using BCSF. Note that because of the majority
rule, 0 will always be the majority value of h. Therefore, the Bloom filter of the BCSF storing
h (if any) will hold k-mers q with f(q) ̸= g(µm(q)) (i.e. h(q) ̸= 0). Then the CSF will store
h restricted to k-mers with h(q) ̸= 0 together with a subset of k-mers (false positives of the
Bloom filter) for which h(q) = 0.

In our second implementation, named AMB (from AMBiguity, see Algorithm 3), for
non-ambiguous minimizers u, g(u) is again defined to be the unique value of the bucket.
For ambiguous minimizers v, we set g(v) = 0, where 0 is viewed as a special value marking
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Algorithm 2 FIL construction algorithm.

Data: A mapping f of keys to (integer) values, a minimizer length m0
Result: FIL compressed structure
Sort L by increasing order;
T = f ;
Initialise an array A of buckets;
for (q, c) in f do

z = µm0(q) Insert c into g(z);
end
for b in A do

Select representative r of bucket b by majority rule;
end
Compress A by using BCSF;
Create output table O;
for (q, c) in f do

if g(µm(q)) ̸= c then
Write q and c − g(µm(q)) to O;

end
end
Compress O by using BCSF;

ambiguous buckets (k-mers with count 0 are not present in the input). This has the
disadvantage of providing no information about the values of ambiguous buckets, and also
of making g less compressible (because of an additional value). On the other hand, this
has the advantage of distinguishing between ambiguous and non-ambiguous buckets and
allows the query to immediately return the answer for k-mers hashing to non-ambiguous
buckets. As a consequence, unambiguous k-mers are not propagated to the second layer, and
if g(µm(q)) ̸= 0 it can be immediately returned as f(q). We then have to store mapping f

restricted only to k-mers from ambiguous buckets, which we denote f̃ . Both mappings g and
f̃ are stored using BCSFs.

4.2 Cascading

An intermediate layer corresponding to a minimizer length m < k, introduced in Section 4.1,
can be viewed as a “filter” providing values for some k-mers and “propagating” the other
k-mers to the next layer. Therefore, both implementations can be cascaded into more than
one layer. This construction is reminiscent of the BBHash algorithm [22] or to cascading
Bloom filters from [31].

For m1 < m2 < ...mℓ ≤ k, each layer i is then input some map fi−1 defined on a subset of
k-mers Ki−1 ⊆ K (f0 = f , K0 = K) and outputs another map fi defined on a smaller subset
Ki ⊆ Ki−1. Each layer stores a bucket table for minimizers Mmi(K) = {µmi(q) | q ∈ Ki−1}.
The specific definition of fi and Ki depends on the implementation.

The multi-layer scheme is particularly intuitive for the AMB implementation, where each
layer stores a unique value for non-ambiguous minimizers and a special value 0 otherwise. In
this case, Ki consists of those k-mers of Ki−1 hashed to ambiguous buckets, and fi is simply
a restriction of f to those k-mers. Algorithm 3 shows a pseudo-code of multi-level AMB
extended to the approximate case (see Section 5 below). The multi-layer version of the FIL
scheme is shown in Appendix (Algorithm 4).

WABI 2021
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Algorithm 3 AMB multi-layer construction algorithm. Exact AMB can be obtained by
setting δ = 0.

Data: A mapping f of keys to (integer) values, a list L of minimizer lengths, a
maximum absolute error δ

Result: One BCSFs for each layer
Sort L by increasing order;
T = f ;
for m in L do

Initialise an array A of buckets;
for (q, c) in T do

z = µm(q);
if z in A then (rmin, rmax) = g(z) ;
else (rmin, rmax) = (∞, −∞) ;
g(z) = (min(rmin, c), max(rmax, c));

end
for b = (rmin, rmax) in A do

if rmax − rmin > δ then b = 0 ;
else b = rmin ;

end
Compress A by using BCSF;
Create output table O;
for (q, c) in T do

if g(µm(q)) = 0 then
Write q and c to O;

end
end
T = O;

end

5 Extension to approximate counts

In addition to cascading, the AMB implementation can also be easily extended to work as
an approximation algorithm. Consider, to this end, the layered bucketing procedure desribed
in 4.2. In the exact case, a bucket is marked as colliding whenever it contains two or more
distinct count values. In the approximate case, a collision is defined if a bucket contains a
pair of counts, ci, cj such that |ci − cj | > δ with δ a pre-defined maximum absolute error.
With this modification, the algorithm guarantees to output a value within the absolute error
δ from the true count.

Implementing this modification is simple when the majority is computed with the Boyer-
Moore majority vote algorithm. Another option is to define g(s) to be the minimum, instead
of majority. The rationale of using minimum is the decreasing behavior of k-mer spectra
which implies that smaller counts are more frequent and therefore more likely to constitute
the majority. It is then sufficient to only remember the maximum max(s) and minimum
min(s) values seen by each bucket and check if max(s) − min(s) > δ. If that is the case,
then the bucket is marked as colliding, otherwise min(s) is chosen as representative. The
latter solution is reported in Algorithm 3.
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6 Experimental results

We report experiments on three datasets, two with lower and one with higher empirical
entropy. The first is the k-mer counts computed on the Sakai strain of E.Coli from [36]
(NCBI accession number B000007). The second one is a full genome of C.Elegans, strain
Bristol N2 downloaded from RefSeq (accession number GCF_000002985.6). The last one is
the whole dataset from the same paper [36], hereafter referred to as “df”, of k-mer “document
frequencies” across 29 E.Coli genomes made of approximately 25 million k-mers. Here the
document frequency of a k-mer is the number of genomes containing this k-mer.

Experiments were performed on a machine equipped with an Intel® Core™ i7-4770k
(Haswell), 8 GB of RAM and Kubuntu 18.04. All construction code is written in python,
except for the CSF part which is handled by a simple Java program using Sux4J [11]. Time
measurements are performed by a program written in C using the code provided by Sux4J
for reading and querying its CSFs. We use xxHash1 as µm(q) to define an ordering over the
minimizers of a given k-mer q. All code is available at https://github.com/yhhshb/locom.
git.

We only report the best methods for each case with the following naming convention:
CSF: baseline CSF implementation from Sux4J.
BCSF: extended CSF with Bloom Filter from Section 3. It may get reduced to a simple
CSF if the Bloom Filter is not useful.
FIL m1 k: our first implementation, saving into each bucket a majority-selected repres-
entative and saving corrections into its second layer.
FIL m1 m2 k: same as before but with an additional layer.
AMB m1 k: our second implementation, selecting each representative by minimum and
marking colliding buckets with a special value.
AMB m1 m2 k: same as before but with an additional layer.

In order to apply equation (4), we have to have estimates of CBF and CCSF , that is,
estimates of the number of bits per element taken by our implementations of Bloom filter and
CSF. For CBF , we have CBF = 1.44 corresponding to the theoretical coefficient. For CCSF ,
we empirically estimated the value as a function of the empirical entropy H0 of experimental
data, and obtained the following estimate:

CCSF =
{

0.22H2
0 + 0.18H0 + 1.16, if H0 < 2

1.1H0 + 0.2, otherwise.
(6)

To better understand how different minimizer lengths affect the final compression ratio,
we ran FIL and AMB on all possible combinations of 2 and 3 minimizers lengths for k =
10,11,12,13,15,18,21.

6.1 Compression of skewed data
Figure 1 reports memory usage for k = 13, 15, 18, 21, when compressing the Sakai dataset.
As mentioned earlier, simple CSF takes more than 1 bit/k-mer, which is considerably larger
than the entropy of our data. Bloom-enhanced CSF (BCSF) considerably reduces space
bringing it closer to the entropy value. For relatively small k’s (k = 13) AMB and FIL give
almost the same results as BCSF, that is, bucketing is not helpful. For larger k’s, however,

1 https://github.com/Cyan4973/xxHash
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Figure 1 Results for the Sakai dataset for big values of k. For presentation purposes, H0 is
represented as an additional red column in each subgroup.

minimizer-based schemes, AMB and FIL, lead to a reduction of space, eventually breaking
the entropy barrier for larger values of k (k = 18, 21). This demonstrates that for larger
k’s, minimizers provide an effective way of factoring the space of k-mers in such a way that
k-mers with equal counts tend to have the same minimizer.

More in detail, for larger k, the overwhelming majority of buckets are unambiguous
(e.g. more than 99% of them, for k = 18, m = 13). As a consequence, AMB “filters out” a
very large number of k-mers at the first layer, propagating to the second layer only a small
fraction of them – those corresponding to ambiguous buckets. The special collision value
then becomes the dominant value of the bucket table, making it highly compressible with
BCSF. Note also that due to the skewedness of the distribution, i.e. the prevalence of one
value, the k-mer tables of the last layer are well compressible as well. Altogether, this enables
breaking the empirical entropy lower bound. The situation is similar for FIL: its first layer is
even better compressible than the one of AMB, due to the absence of the additional special
value which makes the table of AMB slightly less compressible. On the other hand, the
BCSF of the second layer table of FIL turns out to take more space than that of AMB. This
is because its Bloom filter operates on the large set of all k-mers, which implies a very small
value of ε to keep the set of false positives under control, and as a consequence, a relatively
large Bloom filter. Overall, FIL turns our to yield a slightly larger space.

The advantages of AMB and FIL tend to vanish for smaller values of k. For small k’s,
none of the methods beats the empirical entropy, which means that minimizers do not provide
an efficient mean to factor the space of k-mers according to count values. We observe that in
this case, applying BCSF to the input table provides the most efficient solution.

Since longer k-mers lead to more skewed data, and by extension, to a smaller entropy,
both AMB and FIL better compress whole genome count tables for increasing ks. In order
to test our algorithms in a more complex and challenging situation, we chose to compress
the reference genome of C.Elegans (around 100Mbp). Taking into account the considerations
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presented previously, we quickly found that the best results for AMB and FIL were given by
k = 18 when using 2 layers. We randomly chose m1 = 19 and m = 21 for three-layer AMB
and FIL, respectively. Figure 2 demonstrates that our algorithms are not limited to bacterial
genomes. Larger values of k only reduce the entropy of the data, leading to more succinct
representations whereas simple CSF could not go below 1.2 bits/k-mer.
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Figure 2 Results when compressing the reference genome of C.Elegans.

6.2 Compression of higher entropy data

With very skewed data, collisions of k-mer counts may happen between unrelated k-mers
simply because one counter value strongly dominates the spectrum. In order to demonstrate
that minimizers are useful as well for less skewed distributions than whole genome count
tables, we applied our methods to the df dataset, see Figure 3.

The use of minimizers for larger k’s, proves to be beneficial again, with AMB and FIL
requiring much less space that the empirical entropy of the data. A similar scenario to the
previous case represents itself for relatively small k (k = 13), for which both AMB and FIL
do not have an advantage over a simpler (B)CSF. For even smaller k-mers (B)CSF remains
the best option (results not shown).

The seemingly erroneous exceptions (BCSF taking more space than simple CSF) are
explained by the approximation carried by formula (2) (assumption of equal values of CCSF

in both sides).

6.3 Approximate counts

In many applications, it is acceptable to tolerate a small absolute error in retrieved counts.
Figure 5 shows that, in such case, it is possible to achieve a better memory consumption
than simple CSFs even for small values of k. For medium values of k, neither too small nor
too big, approximation can lead to the smallest compressed size, even when δ = 1.
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Figure 3 Compressed space usage for the high entropy df dataset.
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Figure 4 Space usage for the Sakai dataset with small k when using AMB (FIL is slightly worse
and was omitted). Minimizer lengths vary between 1 and 5 indicating that the best option is to use
a simple (B)CSF.

Unlike Figure 4, reported here for comparison, Figure 5 does not use the best minimizer
lengths found for AMB with two layers. This is because we want to use δ to remove ambiguity
from as many buckets as possible in each layer, by ignoring small collisions. For small k’s
this would not be possible with the best solutions found before, because minimizer lengths
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Figure 5 Space usage when using the approximated version of AMB. Entropy (red columns)
and CSF (blue columns) are reported for comparison. Unlike Figure 4, AMB is able to break the
empirical entropy lower bound when small errors are acceptable.

are too small to allow unambiguity even for δ > 0. Therefore, in this case only, we just
use contiguous minimizer lengths for each layer (e.g. if k = 10, layers will be 8, 9, 10 for
three-layer AMB).

Another interesting observation about the approximate case is that AMB with three
layers is substantially better than AMB with two layers only for k = 12 and k = 13. For
k = 10 and k = 11 both versions give almost the same results.

6.4 Query speed
Figure 6 shows query time averaged over all distinct k-mers, in ns/k-mer. Simple CSFs, not
surprisingly, are the fastest method, with BCSF having a negligible effect on the average
query speed. On the other hand, bucketing has a tangible effect on performance, with speed
negatively affected by additional layers. For short k-mers, both FIL and AMB are slower
than the simple CSF by a factor equal to their number of layers.

The situation is different for larger k’s where AMB is only marginally slower than a
bare-bones CSF. This is because most queries are solved without accessing all layers every
time, thanks to unambiguous buckets. Two layered FIL, on the other hand, gives almost
constant average query times across all test, since all queries have to access both of its layers
to reconstruct the exact count value. We did not perorm tests for FIL with 3 layers because
it will always be slower than the two layered version.

6.5 Choosing minimizer lengths
In all reported cases, good minimizer lengths for the first layer (m0) follow the rule: m0 >

ms = (log4(|G|) + 2) with |G|, the size in base pair of the genome. Smaller m0, are no
longer capable of partitioning k-mers in a meaningful way. Furthermore, space tends to first
monotonically decrease to a minimum for increasing minimizer lengths, to increase again
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Figure 6 Average query time for AMB with 2 and 3 layers and FIL with 2 layers.

once the optimal value is passed. It is therefore possible to find the minimum by sequentially
trying all possible minimizers greater than ms and stop as soon as the compressed size starts
to increase again.

Our results also show how multiple layers have a marginal effect on final compression sizes.
In case of AMB, using three layers is always helpful, compared to the two-layer case. Best
results are usually achieved for combinations including the best minimizer length obtained
for the two-layer case.

On the other hand, FIL with three layers seems to be advantageous only for low entropy
data, performing worse that its two-layer counterpart on the df dataset and for small k’s.

7 Conclusions

In this work, we introduced three data structures to represent compressed k-mer count tables.
Our BCSF algorithm combines Compressed Static Functions, as implemented in Sux4J
software [11], with Bloom Filters. This allows for a much better compression for skewed
distributions with empirical entropy smaller than 1. Note that to our knowledge, this is the
first time that CSFs are used in bioinformatic applications. We also provide a method to
dimension the Bloom filter in a BCSF in order to minimise the final space.

Our two other algorithms, FIL and AMB, pair BCSF with a bucketing procedure where
count values are mapped into buckets according to minimizer values of respective k-mers.
This locality-sensitive hashing scheme allows us to efficiently factor the space of counts, which
leads to breaking the empirical entropy lower bound for large enough k’s. FIL and AMB use
slightly different strategies in decomposing the input table across minimizer layers.

Our last contribution is an extension of AMB to the approximate case, gaining more
space at the expense of a small and user-definable absolute error on the retrieved counts.
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We validated our algorithms on three different datasets, two fully assembled genomes
(E.Coli and C.Elegans), and one document frequency example, for different k-mer lengths
showing how BCSF, AMB and FIL behave in different situations. FIL and AMB have a clear
advantage when minimizers are long enough to bucket k-mers in a meaningful way, for both
skewed and high entropy data. When it is not possible to define a long-enough minimizer
length, the advantage of using intermediate minimizer layers vanishes, and simple CSF and
its BCSF provide a better solution.

At query time, CSF and BCSF are the fastest methods requiring about 100ns on average
for a single query. For a fixed number of layers, AMB is faster than FIL in all situations
when minimizers are useful. FIL becomes faster than AMB only for those cases when both
algorithms achieve worse compression ratios than simple (B)CSF.

We consider this study to be the first step towards designing efficient representations for k-
mer count tables occurring in data-intensive bioinformatics applications. One possible future
direction is compression of RNA-Seq experiments where counts may translate expression
levels of genes. Another example is metagenomics where different species may be present
with different abundances which can be captured by k-mer counts. In such applications,
efficient representation of k-mer counts can be particularly beneficial.
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A Multilayer FIL algorithm

Algorithm 4 FIL multi-layer construction algorithm.

Data: A mapping f of keys to (integer) values, a list L of minimizer lengths
Result: One BCSFs + Bloom filter for each layer
Sort L by increasing order;
T = f ;
for m in L do

Initialise an array A of buckets;
n = 0;
for (q, c) in T do

z = µm(q) Insert c into g(z);
n = n + 1;

end
for b in A do

Select representative r of bucket b by majority rule;
end
Compress A by using BCSF;
Create output table O;
pq = 0;
for (q, c) in T do

if g(µm(q)) ̸= c then
Write q and c − g(µm(q)) to O;
pq = pq + 1;

end
end
α = (n − pq)/n;
ϵ = (1 − α)/α;
if ϵ < 1 then

Initialise an empty Bloom Filter of size 1.44 log2(1/ϵ);
Insert all elements of O into B;
for (q, c) in T do

if g(µm(q)) = c and B(q) then
Write q and c − g(µm(q)) to O

end
end

end
T = O;

end
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B Additional figures
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Figure 7 Space usage across all values of k, for the Sakai dataset.
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Figure 8 Space usage across all values of k, for the df dataset.
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