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Abstract: The adjustment of rail traffic in the event of an electrical infrastructure disruption presents
an important decision-making process for the smooth operation of the network. Railway systems
are complex, and their analysis relies on expensive simulations, which makes incident management
difficult. This paper proposes the use of sensitivity analysis in order to evaluate the influence of
different traffic adjustment actions (e.g., spacing between trains and speed reduction) on the train
supply voltage, which must never drop below the critical value prescribed by technical standards.
Three global sensitivity analysis methods dedicated to black box, multivariate, nonlinear models
are considered: generalized Sobol indices, energy distance-based indices, and regional sensitivity
analysis. The three methods are applied to a simple traffic rescheduling test case and give similar
results, but at different costs. Regional sensitivity analysis appears to be the most suitable method
for the present application: it is easy to implement, rather fast, and accounts for constraints on the
system output (a key feature for electrical incident management). The application of this method to a
test case representative of a real rescheduling problem shows that it provides the information needed
by the traffic manager to reschedule traffic in an efficient way. The same type of approach can be
used for any power system optimization problem with the same characteristics.

Keywords: railway rescheduling; global sensitivity analysis; regional sensitivity analysis; power
supply; optimization; constraints

1. Introduction

The increasing demand for rail transport leads to a densification of the traffic and a
growing impact of any unexpected event, such as track damage, rolling stock breakdown,
or signal failure. Due to the cascade effect, a single train delay may affect a large number
of trains. In such a case, the timetable deviation is small and the perturbation is therefore
referred to as a disturbance. On the other hand, a technical incident causing the partial
or total blocage of a track results in large perturbation which is known as disruption.
Disruptions require not only the timetable, but also the duties for rolling stock and crew to
be modified.

Rescheduling the traffic is an important task for limiting the inconvenience for passen-
gers (e.g., delays, broken connections, and crowded trains) and the operator (additional
costs). Currently, this task is performed manually, but a lot of research is being conducted
to develop numerical optimization methods and provide intelligent decision support. A
key problem is the development of fast methods for real-time operations. Contingency
plans may also be built in advance, but they cannot be optimal for all situations. In [1], the
authors provide a good introduction to the subject.

The present paper deals with disruption due to the failure of electrical equipment that
limits the power available for the trains, and consequently affects the traffic in the area.
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While the literature on disturbance management is abundant (see for example [2–5]), less
work has been published on disruption management. Most studies deal with the impact
of the unavailability of one or several tracks during a certain time. In [6], the partial or
complete blockage of a track is managed using three types of rescheduling action: delaying,
cancelling, and reversing trains at the blockage. An integer programming formulation is
proposed. The test case is a part of the Netherlands network and it is shown that delaying
some trains can significantly reduce the number of cancelled trains. In [7], the outcome
of short-turning management in the case of a complete blockage is considered. The paper
considers short-turning time and short-turning before the blockage is introduced. Mixed
integer linear programming is used to minimize a cost function with cancellation and
arrival delay penalties. In [8], a mixed-integer linear programming model is also used,
but in the case of the complete blockage of a high-speed line in China. Trains do not turn
back and wait in a station. The issue is deciding in which station each train must wait,
in which order trains must go when the blockage is over, and which trains should be
cancelled. In [9], the authors consider the temporary blockage of a two-way track and
choose to reschedule only the trains that conflict due to the blockage. Train cancellation
is not considered and the test case remains rather simple. In [10], three objectives are
considered: passenger satisfaction, the operational costs, and the deviation from the initial
schedule. MILP optimization is performed with respect to the first objective, under the
constraint of maximum values for the two others. A three-dimensional Pareto frontier is
then built, and this demonstrates that a reasonable tradeoff between the three objectives
can be reached. These examples of work do not constitute an exhaustive review and we
refer the reader to [11,12] for in-depth surveys on train timetabling problems.

All these studies are based on simplified models of the railway network, namely
graphs, whose branches are the tracks between stations or bifurcations and are character-
ized by given train flux capacities (e.g., train/hour). Such models are well suited for the
construction of schedules for given track capacities, but detailed models that account for
all physical and technical constraints of the system must be used afterwards to check the
feasibility of the proposed solution.

The present work addresses the specific case of the loss of electrical equipment, such
as a feeding substation. This loss can be due to either a technical failure or a planned
maintenance operation. It decreases the electric power available for the train traction, and
consequently requires the traffic to be reduced. This is a disruption problem that can be
managed with rescheduling actions, such as increasing the time interval between trains
or locally reducing their speed. The key problem is optimally rescheduling the traffic
within the physical limits imposed by the power supply system. Unlike the previously
mentioned research papers, this problem requires a detailed electro-mechanical model of
the system, able to calculate the instantaneous power required by each train and account for
the physical, nonlinear behavior of the power network. Such models are computationaly
intensive and the optimization methods used for usual scheduling problems do not apply.
To the best of our knowledge, this type of disruption problem is not addressed in the
scientific literature.

Direct optimization would involve solving a computationally intensive, nonlinear, non-
differentiable, multi-objective problem, with constraints on the model outputs. As this is a
too difficult problem, the first contribution of this paper is to propose a methodology based
on global sensitivity analysis to rank the rescheduling variables according to their influence
on the output voltage, choose the most important ones, and simplify the optimization
problem.

Choosing the right sensitivity analysis method is a problem in itself, because we are
dealing with a nonlinear, black box model, whose outputs are time series that are subjected
to inequality constraints. Our second contribution is an extensive literature search and the
identification of three global sensitivity analysis methods suitable for this type of problem:
generalized Sobol indices, energy distance-based indices, and regional sensitivity analysis.
A comparative analysis of these methods is presented, and their performances are assessed
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in the case of a simplified rescheduling test problem. The third contribution is to apply
the proposed methodology to a test case that is representative of a real rescheduling study.
The results provide the decision maker with objective indicators for choosing the most
efficient rescheduling actions. Beyond the specific problem of train traffic rescheduling,
the proposed methodology can be applied to power engineering problems with similar
characteristics, while the comparative analysis provides guidelines for choosing a suitable
sensitivity analysis method.

The remainder of the paper is organized as follows. Section 2 describes the railway
system, as well as the rescheduling problem and how it is formalized as an adjustment
model. Section 3 presents a sensitivity analysis review and identifies three sensitivity
analysis methods suitable for multivariate outputs. In Section 4, the three methods are
applied to a simple traffic rescheduling test case and their performances are compared.
Section 5 considers a complex test case and shows that our methodology provides useful
information for the management of real incidents. Section 6 summarizes the work and its
conclusions.

2. Problem Statement
2.1. System Description

Railway electrical networks (either AC or DC ) are complex system that provide the
power needed by the trains. The main elements are the power substations, the overhead
lines (catenary), the trains, and the rails (return conductor). Paralleling stations allow the
line resistance to be adjusted according to the position of the trains. In an AC network,
switching elements separate the portions of lines supplied by different substations.

Railway electrical networks are complex systems with many components. The trains
are moving loads and the network topology changes according to their positions. Fur-
thermore, the trains themselves become power sources during the process of regenerative
braking. The analysis of railway networks requires detailed models and relies on numerical
simulation.

2.2. Simulator Description

Railway simulators calculate all the physical quantities needed by the engineer for
given infrastructures and scheduled traffic: voltages, currents, train position and speed,
and heatings. In the present work, we use ESMERALDA NG, a simulator developed and
distributed by SNCF Réseau [13].

ESMERALDA NG relies on models that result from the SNCF’s expertise and are
detailed enough to allow precise determination of all the quantities aforementioned, with
a strong coupling between mechanical and electrical equations. The input data are the
physical characteristics of the railway infrastructure (tracks and electrical equipment), the
rolling stock (locomotives, cars, and engines), and the scheduled traffic (type of trains,
departure and arrival times at various points, and speed profiles). Given this data, the
equations of the electrical circuit are coupled with the equations of the train dynamics, and
are solved step by step in order to determine the voltage at all nodes of the circuit and the
position of the different trains at all time steps (Figure 1). All other quantities of interest
(catenary current, substations power, transformer heating, etc.) are post-processed.
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Figure 1. Railway simulator ESMERALDA NG.

ESMERALDA NG is used by SNCF Réseau and other service companies for electricity
infrastructure-sizing studies involving all types of traffic: urban (RER), regional, high speed
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(TGV), and freight. Depending on the size of the studied network, the simulation time
varies from a few minutes to an hour, with a typical duration of around ten minutes for the
simulation of two hours of traffic at a regional scale.

An important feature of ESMERALDA NG is that it accounts for the engine regulation
mechanisms that prevent an excessive voltage drop along the catenary. At each step of
time, if the catenary voltage of a train drops below a critical value, the power supplied to
this train is limited in order to keep the catenary voltage within a range defined according
to specific standards. Consequently, the speed of a train in this position would be smaller
than expected. This situation means that the electrical network is overloaded and that
one should either reinforce the electrical infrastructure (in a design and sizing study) or
reschedule the traffic within the limits of the feeding network capacity (in an incident
management study).

2.3. Managing the Unavailability of an Electrical Equipement

Technical problems or maintenance operations can cause the loss of electrical
equipment—a feeding substation, for example—and reduce the power that the feeding
network can deliver to the trains in the area affected by the incident. If the power still
available in this degraded mode is too low for the scheduled traffic, the traffic must be
adjusted to ensure that the electrical network always operates under good conditions, or,
more specifically, that the catenary voltage never drops below the critical value defined by
particular standards.

Operators in charge of handling such incidents adjust the traffic schedule as best as
possible and try to limit the loss of transportation capacity of the affected lines. Based on
their expertise, they define adjustment actions, such as increasing the time interval between
consecutive trains, or reducing the speed limit in the area affected by the incident. These
actions modify the spatiotemporal profile of the network load, and the goal is to determine
various possible combinations of actions such that the catenary voltage remains within the
prescribed limits. Following a trial-and-error approach, operators run simulations in order
to determine acceptable sets of adjustement actions and choose the most performant one.
Several performance criteria can be considered: train density (i.e., the number of trains
that can circulate during a given time interval), global electric consumption, substation
transformer heating, etc.

The present trial-and-error approach relies on operator know-how and is not efficient,
especially because it requires computationally intensive simulations. Given the financial
cost of incidents on electrical infrastructure, SNCF Réseau, the company responsible for the
management and maintenance of railway infrastructure in France, has launched a project
whose goal is to develop numerical tools for improving the rescheduling process. The
proposed approach and the results are presented in this paper.

2.4. Mathematical Formalization of the Traffic Adjustment Problem

Rescheduling traffic consists of modifying the scheduled traffic so as to to adjust
the spatiotemporal load of the feeding network and keep the catenary voltage within
acceptable limits at all points and at all times.

In practice, rescheduling operators do not act train-by-train, but define global adjust-
ment actions that preserve the regularity of schedules and train speed profiles. Each action
is modeled by a macroscopic adjustment variable, denoted as Xi hereafter. For example, the
action of spacing out train departures is modeled by a variable that quantifies the increase
in the time interval between two successive departures of a series of trains. The action
of slowing down trains between two given points on the line is modeled by a variable
that quantifies the reduction of the limiting speed. A set of actions is represented by the
vector X =

(
X1, . . . , Xp

)
and interval constraints (Xi min ≤ Xi ≤ Xi max)i=1,p, where p is

the number of adjustment variables.
The adjustment model is a layer that encompasses the simulator (Figure 2). A pre-

processing step consists of modifying the initial traffic data in accordance with the ac-
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tions defined by the adjustment variables. Then, the simulation itself is run and the
outputs of the adjustment model are directly the outputs of the simulator, of the shape
Y = (Y(t1), Y(t2), . . . , Y(tm)), where m is the number of time steps. The catenary voltages
shown on Section 4 are examples of such dynamic outputs, with one voltage series per
train. The simulator outputs are supplemented by post-processed performance criteria.
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2.5. Inadequacy of Classical Optimization Methods and Proposed Methodology

The adjustment model is complex, in the sense that it is based on a nonlinear railway
simulator with a large number of variables, dynamic outputs, and a high computational
cost (typically around ten minutes for the simulation of two hours of traffic on a regional
network). For example, suppose a traffic of 200 trains, fed by a network with 10 substations.
The number of simulator input variables is greater than 1000. The number of dynamic
outputs (time series) is also important: at least one for each train. One hour of simulated
traffic corresponds to approximately 5000 time steps, and the operational constraints need
to be checked at each time step (catenary voltage, cable and transformer heating, etc.).

Given the characteristics of the traffic adjustment problem, direct optimization cannot
be envisaged, and so we have chosen to use sensitivity analysis in order to quantify the
influence of the different adjustment variables on the catenary voltage and identify the
most important adjustment actions that allow an efficient rescheduling. This allows us to
reduce the number of adjustment variables and to solve a simplified optimization problem.

The next section presents an overview of sensitivity analysis methods, before focusing
on three global sensitivity analysis methods that are suitable for black box models with
dynamic outputs. Each method uses a specific characteristic of the output to build global
sensitivity indices.

3. Global Sensitivity Analysis for Multivariate Outputs
3.1. Overview of Sensitivity Analysis

Sensitivity analysis aims at studying the behavior of a model by assessing how the
input variations impact the output variations, both in a qualitative and quantitative way.
The reader can find a general introduction to sensitivity analysis in [14] and complete
reviews in [15–17]. The present section gives a quick overview of the different existing
methods.

The first historical approach is known as local sensitivity analysis. This deterministic
approach quantifies the impact of small input perturbations by estimating the partial
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derivatives of the model [18]. This approach is valid only around the analyzed point. It
does not perform any exploration of the variation space of the inputs. To overcome this
limitation, global approaches were constructed within a statistical framework that can
account for the whole range of input variation.

Among global methods, screening techniques are based on a discretization of the
inputs in levels. Dedicated to models with a large number of inputs (several tens), they
perform a fast exploration of the model behavior over the entire input space in order
to identify the non-influential inputs and simplify the model by fixing these inputs to
nominal values. The most widely used screening approach is the “one at a time” method,
where input variables are modified in turn [19]. Screening methods provide qualitative
information that can be used to diminish the number of inputs and simplify the model, but
the results should be carefully interpreted when dealing with nonlinear models [20]. A
more general approach is to use quantitative methods based on statistics. There are indices
based on linear regression, and others on linear or quadratic ANOVA (analysis of variance).
In the case of nonlinear models, Sobol indices [21–23], based on the concept of functional
decomposition of variance, are widely used [24].

Sobol indices provide sensitivity indices which account for the whole range of the
input variation globally. Other methods have been proposed in order to identify the parts
of the input range which contribute the most to the output variation. The so-called “contri-
bution to the sample mean” plot (CSM) [25] and “contribution to the sample variance” plot
(CSV) [1,26] are graphical tools which allow researchers to localize specific regions of the
input space that contribute greatly to the output variation. This information can be used to
reduce the output variance by adjusting the range of input variation. Other examples of
works where the authors analyze the output variance in order to measure the influence of
different regions of the input space are [27,28].

Sensitivity analysis was first developed for scalar output variables, but the outputs
of computational models are often time (or space) series. In such cases, time-dependent
sensitivity indices can be defined, but these fail to give any synthetic information about the
whole output time series, despite the strong redundancy of the information. In [29], the
authors propose performing a sensitivity analysis on the expansion of the output on a well-
chosen functional basis. An approach based on polynomial chaos expansion is proposed
in [30]. In [31,32], a problem-independent approach based on covariance decomposition is
proposed in order to define global indices accounting for the whole temporal domain, and
this approach is compared to a principal component analysis. This concept of generalized
Sobol indices is further mathematically developed in [33,34].

Sobol's indices are based on the comparison of variances. Except for Gaussian distribu-
tions, this information is not sufficient to characterize the distributions of the output, which
leads to a loss of information [18]. To overcome this limitation, ”moment-independent
methods”, accounting for the entire output distribution, have emerged. These methods are
based on the concept of distance between distributions. The cumulative distributions or
the probability densities are used in [35–37], but this approach is limited to scalar outputs.
An interesting approach based on “energy distance” which is suitable for series outputs
has been introduced in [38].

Another issue with sensitivity analysis is identifying which part of the input space
is responsible for leading the model output in a given region of the output space. This
issue typically arises when the model output must meet some constraint, such as being
above or below a given threshold. In terms of sensitivity analysis, it is necessary to
determine whether a given input has an influence on wheather this output constraint is met.
Regional sensitivity analysis, based on Monte Carlo filtering, was proposed to adress this
issue [39–41].

In the case of the traffic adjustment problem, we are dealing with outputs that are time
series which are subjected to particular constraints. Hence, we have successively tested
generalized Sobol indices (Section 3.3), energy distance-based indices (Section 3.4), and
regional sensitivity analysis (Section 3.5).
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Sensitivity analysis methods differ from each other in the way they define the sensitiv-
ity measurement, but they all rely on the following three phases: (i) sampling of the input
variation space, (ii) computation of the model for each sample of the input space, and (iii)
computation of sensitivity indices according to the considered principle. The sampling
phase is crucial for an efficient estimate of the sensitivity indices. A short review of the
main techniques is given in the Section 3.2.

3.2. Sampling Phase

Global sensitivity analysis methods are based on statistics and the Monte Carlo simu-
lation. A sample of N points is randomly generated in the input space, forming a matrix of
N rows and p columns, where p is the number of inputs. The model is applied to each of
the points and each dynamic output forms a matrix of N rows and m columns, where m is
the dimension of the considered output. Figure 3 defines the notations that will be used in
the rest of the text, for a single output Y (for example, the catenary voltage series of one
particular train). The reader should keep in mind that there are many such outputs.
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To be meaningful, sensitivity analysis must rely on a good sampling, with enough
points that are well distributed across the whole input space. Different techniques exist for
sampling independent variables. The challenge is to obtain a good compromise between
accurate sensitivity indices and reasonable computation time.

The historical Monte Carlo method relies on the basic random sampling of each
input. In practice, this results in a non-uniform coverage of the space, with clusters
and gaps. Stratified sampling [42] mitigates the problem by partitioning the space into
subsets from which samples are selected with given probabilities. The difficulty lies in
the choice of the space partitioning and the associated probabilities. Latin hypercube
sampling [43] was designed as a combination of the random and stratified techniques and
was designed to generate a better sampling of the input than random sampling with an
easier implementation than the stratified method. Details of the methods and a comparison
of their performances can be found in [43,44], for example. Another widespread method
is quasi-random sampling, also known as low discrepancy sampling, based on the Sobol
sequences [45]. This last method provides a good distribution of the samples by taking
into account the points previously sampled, thus avoiding the appearance of clusters and
gaps. Comparisons show that quasi-random sampling allows faster statistic convergence
than Latin hypercube sampling [46,47]. For this reason, quasi-random sampling has been
used in the present work. Details on the method implementation can be found in [48,49].
Different implementations can be found in C, C++, Python, Fortran 90 [50], and Julia [51].

3.3. Generalized Sobol Indices
3.3.1. Sobol Indices for Scalar Outputs

Sobol indices were developped for nonlinear black box models with a limited number
of independent input variables. They facilitate the ordering of inputs according to their
influence on the output. They can also characterize interactions between the inputs.

Sobol indices were first proposed in 1993 [21] and improved during the following
decade [22,23,52,53]. They are based on the Hoeffding decomposition [54] of the model
being studied, and the decomposition of the output variance into a combination of con-
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ditional variances based on the independent inputs (ANOVA representation). First and
second order Sobol indices, denoted respectively by Si and Sij, are defined by:

Si =
Var[E(Y|Xi)]

Var(Y)

and

Sij =
Var

[
E
(
Y
∣∣Xi, Xj

)]
−Var[E(Y|Xi)]−Var

[
E
(
Y
∣∣Xj
)]

Var(Y)

Higher order indices can also be defined. The values of the coefficients are between 0
and 1, and the sum of all coefficients is 1. Generally, for computational cost reasons, only
the first order indices are estimated.

Interestingly, first order Sobol indices can be introduced in the following intuitive
way [53]. The influence of the input variable Xi on the output Y can be assessed by
observing V

(
Y
∣∣Xi = x∗i

)
, the conditional variance of Y, Xi being fixed to a given value x∗i .

As x∗i may take any value in its variation range, its global influence is given by E[V(Y|Xi)],
the expectation of the conditional variance for all possible values of x∗i . The more important
the contribution of Xi to the variance of Y, the smaller the value of E[V(Y|Xi)]. The total
variance can be written as: V(Y) = V(E[Y|Xi]) + E[V(Y|Xi)]. Hence, the term V(E[Y|Xi])
is also an indicator of the sensitivity of Y with respect to Xi. The more Xi contributes to
V(Y), the higher V(E[Y|Xi]) will be. The normalization of V(E[Y|Xi]) allows the retrieval
of Si.

3.3.2. Generalized Sobol Indices

When the model output is a time series, generalized Sobol indices can be used to
provide sensitivity information accounting for the whole temporal domain [33,34]. Gen-
eralized Sobol indices are based on the covariance matrix of Y, which characterizes the
statistical interactions between the values of the output at different time steps. This matrix
is defined by:

Cov(Y) = [Cov(Y(tk), Y(tl))] 1 ≤ k ≤ m
1 ≤ l ≤ m

Using the Hoeffding decomposition of the model Y = f (Xi) [54], the covariance
matrix of Y is partitioned into a sum of covariance matrices that characterize the influence
of each input and their interactions. This matrix relation is projected into the space of real
numbers by taking its trace, while generalized first order indices are defined by:

Si(Y) =
∑m

k=1 Var[E(Y(tk)|Xi)]

∑m
k=1 Var(Y(tk))

The numerator is the sum of the first order effects of Xi at the different time steps, and
the denominator is the sum of the variances of the model output at the different time steps.
Classical Sobol indices are retrieved for m = 1.

3.3.3. First Order Sobol Indices Estimation

The papers [55,56] compare different numerical techniques that have been proposed
to estimate the Sobol indices. In the present work, we use the most efficient one, proposed
in [53]. The principle of the computation is as follows. The variances are calculated from
the mathematical expectations according to the general relation:

Var(Y) = E
(

Y2
)
− E(Y)2
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and the expectations are approximated by the mean estimator:

E(Y) ≈ 1
N

N

∑
i=1

yi

where the yi represents N realizations of the random variable Y.
We must estimate:

Si =
Var[E(Y|Xi)]

Var(Y)
=

E
[

E(Y|Xi)
2
]
− E[E(Y|Xi)]

2

E(Y2)− E(Y)2

Four mathematical expectations are to be estimated, two of which are conditional
on the given Xi. The terms of the denominator are straightforward, but the terms of the
numerator require freezing the input variable Xi. For this, the algorithm uses (p + 1)
sample matrices of identical sizes, according to the procedure described in Appendix A.
The computation of the indices themselves is straightforward, but it requires N×(p + 1)
evaluations of the model. The algorithm also applies to generalized indices.

The sensitivity analysis method proposed by Sobol allows the calculation of all the
sensitivity indices, including the interaction indices and the total effect indices relating to
the input variables. As these sensitivity indices are based on the variance of the outputs,
however, they may lack accuracy. To overcome this limitation, moment-independent
methods have been proposed. The next section presents a method based on energy distance.

3.4. Sensitivity Analysis Based on Energy Distance between Distributions
3.4.1. Energy Distance

The energy distance is a statistical distance between two distributions of random
vectors that can be used to test if these distributions are identically distributed [38]. This
distance has the advantage of being moment independant.

Let us denote by X and Y two independent random vectors of size N. The energy
distance between X and Y is define by:

E(X, Y) = 2E ‖ X−Y ‖ −E ‖ X− X′ ‖ −E ‖ Y−Y′ ‖

where E is the expectation, ||.|| is the Euclidian norm, X′ and Y′ are identically distributed
copies of X and Y, and E ‖ X ‖ and E||Y|| are finite.

A fundamental property of energy distance is that E(X, Y) = 0 ii f X and Y are iden-
tically distributed [57]. This function can be expressed by the characteristic function (the
inverse Fourier transformation of the density) [58,59]. The energy distance is indepen-
dent of the shape of the distribution, and therefore accurately characterizes any type of
distribution.

Practically, the energy distance between two samples is simply expressed using the
means (expectations). The samples do not necessarily have the same size.

Consider x1, . . . , xn1 , a sample of X, and y1, . . . , yn2 , a sample of Y with possibly
n1 6= n2. We can estimate each term of E(X, Y) as follows:

E ‖ X− Y ‖= 1
n1n2

∑n1
i=1 ∑n2

j=1 ‖ xi − yj ‖

E ‖ X− X′ ‖= 1
n2

1
∑n1

i=1 ∑n1
j=1 ‖ xi − xj ‖

E ‖ Y−Y′ ‖= 1
n2

2
∑n1

i=1 ∑n1
j=1 ‖ yi − yj ‖

The L2 norm (euclidian norm) is used to calculate the distance between two vectors xi
and yj.
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Using the assumption that E ‖ X ‖ and E||Y|| are finite, we can normalize the distance
thusly:

Enorm(X, Y) = 2E‖X−Y‖−E‖X−X′‖−E‖Y−Y′‖
2E‖X−Y‖

(1)0 ≤ Enorm(X, Y) ≤ 1

We keep the property of null distance Enorm(X, Y) = 0 ii f X and Y are identically
distributed.

3.4.2. Application to Sensitivity Analysis

In the context of sensitivity analysis, the energy distance can be used to compare
the output distribution Y and the conditional output distribution Y|Xi [59]. The distance
between Y and Y|Xi = xi , denoted by dXi (xi), is given by:

dXi (xi) = Enorm(Y, Y
∣∣Xi = xi).

This distance characterizes the local influence of Xi on the output: the larger it is, the
more influential Xi = xi. is. The expectation of dXi represents the mean distance between Y
and Y|Xi = xi and can be used as a sensitivity index. Because Xi is a random variable of
density fXi , the energy distance-based sensitivity index is defined by:

Si = EXi

(
dXi

)
=
∫

dXi (xi). fXi (xi)dxi.

Similarly, multivariate global sensitivity indices can be defined as:

Si1,i2,...,ip = EXi1
,Xi2 ,...,Xip

(
d
(

Xi1 , Xi2 , . . . , Xip

))
= EXi1

,Xi2 ,...,Xip

(
Enorm

(
Y, Y

∣∣(Xi1, Xi2, . . . , Xip
))

The proposed indices respect the following properties:

- they belong to the interval [0, 1].
- Si = 0 if Y and Y|Xi are identically distributed, i.e., Xi. has no influence on Y.

3.4.3. Practical Implementation

For practical implementation, different methods can be used to estimate the sensitivity
indices [60]. As mentioned in [61,62], we chose a method that allows the computation of
the indices from one sample. The calculation steps are as follows:

1. Generate a p-input sample matrix and apply the model to calculate the corresponding
m-output matrix (see Section 2.2 and Figure 3).

2. For each Xi:

i. Partition the variation interval of Xi into L disjoint consecutive subintervals
Al = [al−1, al ], l = 1, . . . , L and estimate Pl = p(Xi ∈ Al).

ii. Partition the outputs of the model into L subsets Yl corresponding to the
partition of Xi:

Yl =
{ (

yj(t1) yj(t2) . . . yj(tm)
) ∣∣ xi,j ∈ Al

}
, l = 1, 2, . . . , L

iii. For each Al , estimate the energy distance Enorm(Y, Y|Xi ∈ Al).

iv. Calculate the sensitivity index Si =
L
∑

l=1
Pl .Enorm(Z, Z/Xi ∈ Al).

To obtain a good tradeoff between the number of samples and the number of subinter-
vals, it is recommended by [63] to take L =

[√
N
]

(integer part of) where N is the sample
size.
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This method has a number of interesting advantages. It takes into account the probabil-
ity distribution as a whole. Therefore, the indices carry more information than indices based
on the variance alone. These indices can be easily estimated in the case of high-dimensional
outputs. Furthermore, the calculation of all the sensitivity indices only requires a single
input–output N-sample, whereas p + 1 are required for the Sobol indices. This advantage
is cumulative, with a faster convergence of indices, requiring a smaller sample size for
variance-based methods. On the other hand, the calculation of the indices themselves is
longer than that for Sobol indices. The pros and cons will be further discussed in Section 4,
in the case of a detailed example.

3.5. Regional Sensitivity Analysis
3.5.1. Principle of Regional Sensitivity Analysis

Regional sensitivity analysis (RSA) is a moment-independent method based on Monte
Carlo filtering (MCF). This method answers the following questions [15]: which variable
or group of variables are influential in leading the model output in a given region of the
output space defined by a given acceptability criterion? How does changing an input
variable lead to an acceptable or unacceptable realization of the output, according to the
acceptability criterion? RSA focuses on the sensitivity of the model in the output region
defined by acceptability criterion rather than on the whole output space.

The concept of regional sensitivity analysis based on Monte Carlo filtering was first
proposed by Hornberger and Spear in the field of environmental science studies, with
dynamic outputs [39–41]. It has later been extensively detailed and commented upon
in [14].

Let us remind ourselves that we are interested in meeting some targets in the output
space (e.g., thresholds and constraint satisfaction). The first step is to state a binary
acceptability criterion which defines the desired target (acceptable solutions). Then, like
for other sensitivity methods, the input space is sampled and simulations are run for all
the sample points. After that, the filtering step consists of checking the ouput acceptability
criterion and partitioning the input sample into two subsets: A (acceptable points, for
which the model output meets the acceptability criterion) and A (non acceptable points, for
which the model output does not meet the acceptability criterion). Figure 4 summarizes
the MC filtering principle. The respective sizes of A and A are denoted by n and n, and
N = n + n is the size of the sample and the total number of runs.
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Figure 4. Monte Carlo filtering: the model is applied to the input sample and the acceptability
criteron is checked. Then, the input sample is partitioned into the acceptable subset A (blue points,
whose outputs meet the acceptability criterion), and the non acceptable subset A (red points, whose
outputs do not meet the acceptability criterion).

The last step is to analyze and interpret the results. If the input variable Xi has
no influence on meeting the criterion, then its statistical distribution will be identical
within sets A and A. Hence, in order to detect the influence of the input variable Xi on
the compliance with the criterion, we need to compare the statistical distributions of Xi
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within the A set and the A set. These distributions are naturally denoted by Xi|A and
Xi
∣∣A . Their empirical cumulative distribution functions, denoted respectively by Fn(Xi|A)

and Fn
(
Xi
∣∣A), are computed and plotted for each input and then compared. Figure 5

illustrates this principle for a simple example with two input variables. The model is
f (X1, X2) = 2X1 − X2 + 0.5, with X1 and X2 uniformly distributed between 0 and 1, while
the acceptability criterion is f (X1, X2) < 0.
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(
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∣∣A) indicate a high sensitivity to X1, especially around
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Visual comparison between Fn(Xi|A) and Fn
(
Xi
∣∣A) gives a global view of the in-

fluence of each input variable with respect to the acceptability criterion. The larger the
distance between these curves, the larger the influence of Xi. Conversely, cumulative
distributions that are very close indicate that the input parameter has no influence because
the distribution of Xi is the same in the behavioral and the non-behavioral groups.

The shape and the relative positions of the curves also contain information, as illus-
trated by the example of Figure 5. The fact that Fn(X2|A) lies above Fn

(
X2
∣∣A) indicates

that the criterion is statistically more respected for smaller values of X2: increasing X2 has a
negative impact on the respect of the criterion. Conversely, Fn(X1|A) lies under Fn

(
X1
∣∣A),

indicating that increasing X1 has a positive impact. One also notices that Fn(X1|A) is
zero for X1 < 0.31. This means that X1 starts to have a positive effect at X1 = 0.31 (the
subset A starts growing). On the other hand, the fact that Fn

(
X1
∣∣A) reaches 1 at X1 = 0.74

indicates that no points within X1 > 0.74 belong to A, and hence that they are all acceptable.
Increasing X1 above 0.74 has no influence on the respect of the acceptability criterion.

3.5.2. Two-Sample Kolmogorov–Smirnov Test

Visual comparison between the empirical cumulative distribution functions Fn(Xi|A)
and Fn

(
Xi
∣∣A) provides interesting qualitative information, but a quantitative index is

required for a rigorous interpretation of the distance between these curves. Hornberger



Energies 2021, 14, 6420 13 of 29

and Spear proposed using the two-sided Kolmogorov–Smirnov test in order to decide
if the two distributions Xi|A and Xi

∣∣A come from the same continuous distribution or
not [39–41].

The Kolmogorov–Smirnov test compares the statistical distribution of two samples,
based on their empirical distribution functions [64–66]. The problem is formulated as
follows. Let (x1, . . . , xm) and (y1, . . . , yn) be samples of independent observations from
random variables with continuous distribution functions F and G, and let Fm and Gn be
the corresponding empirical distribution function. The null hypothesis H0 to be tested is
that F = G. The Kolmogorov–Smirnov statistic is defined by:

D = supu|Fn(u)− Gm(u)|

Large values of D are significant enough to reject H0, but the question is “at what
level of significance α does the calculated value of D determines the rejection of H0?”.
For a given a priori distance d, the significance probability α, defined as the probability of
rejecting H0 when it is true, is given by:

α = Pr(D ≥ d | F = G)

A large distance d corresponds to a low value of α and a low risk when rejecting
H0, i.e., when accepting that F 6= G. Conversely, a small distance d corresponds to a
higher risk of error when rejecting H0. The relationship between the significance level α
and the distance d depends on the sample sizes. If the sample size is large, close forms
exist, otherwise tables are used. In practice, the Kolmogorov–Smirnov test is a classical
tool available in many programing langages (Mathematica, Matlab, R, Python, Java, Julia,
etc.). The user provides the two samples to the Kolmogorov–Smirnov test function and
the function returns the distance D and the level of significance associated to it, i.e., the
probability of rejecting H0 when it is true.

3.5.3. Practical Implementation and Comments

The different steps for the practical implementation of RSA are as follows:

1. Generate a p-input sample that properly covers the input and output spaces and
apply the model to calculate the corresponding m-output set. The procedure and the
notations are detailed in Section 2.2 and Figure 3. The “rules of art” are the same as
for the sensitivity analysis method presented before.

2. Classify the sample set into behavioral and non-behavioral subsets A and A, according
to the operational constraints (e.g, pantograph voltages within prescribed limits at all
times of simulation).

3. For each Xi:

i. Sort each subset A and A with respect to Xi, build and plot the distribution
functions Fn(Xi|A) and Fn

(
Xi
∣∣A). Proceed to qualitative visual analysis.

ii. Apply the Kolmogorov–Smirnov two-sample test (two-side version) to Fn(Xi|A)

and Fn
(
Xi
∣∣A) and calculate D and the corresponding significance level α.

iii. Categorize Xi as “critical”, “important”, or “insignificant”, according to the
significance level α [14]. Xi is said to be a “critical” input if α is below 1%.
In other words, the probability of wrongly stating that Xi|A and Xi

∣∣A are
different, and hence that Xi is an influential variable, is less than 1%. An
“insignificant” input corresponds to a significance level α above 10%: the risk
of wrongly rejecting H0 is deemed too high to conclude about the influence of
Xi. In between, inputs are categorized as “important”.

Regional sensitivity analysis, based on Monte Carlo filtering and the Kolgomirov–
Smirnov test, is an interesting approach to globally characterize the sensitivity of the model
to the respect of a given constraint on the output model. This method is conceptually simple
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and very easy to implement, while the computational cost of the Kolgomirov–Smirnov test
is low. Yet, its interpretation requires some precautions [67,68].

Like all statistical methods, it requires a good sampling of the input space, but the
fraction of points that meet the behavioral criterion should also be statistically significant.

The Kolgomirov–Smirnov test makes it possible to identify “critical” inputs (the
influential ones) and to rank them according to the distance D (the higher D is, the smaller
the probability of error). A more delicate point is that one can conclude about the influence
of Xi only if H0 is rejected (i.e., if Xi is influential), because the test does not give the
probability of wrongly accepting H0. In particular, interaction between input parameters
may induce identical Xi|A and Xi

∣∣A distributions, even if Xi is influential. Hence, it
is recommended that researchers complete regional sensitivity analysis alongside other
sensitivity analysis indices in order to detect possible interactions between the inputs [67].
Furthermore, it has been reported that the distribution functions tend to be more difficult
to interpret when the number of inputs increases.

When properly used, regional sensitivity analysis is a powerful tool [69]. It has been
used for various applications (see, for example, [70–72]). The authors of [73] present an
interesting extension of the filtering principle coupled with optimization, with the partition
of the sample into 10 subsets defined by different performance indices.

4. Comparative Analysis

In this section, the three sensitivity analysis methods are applied to a simple test case
in order to compare their performances. The power shortage test case is presented and
the traffic adjustment problem is specified. Then the influence of the different adjustment
actions are established and the results are discussed.

4.1. Test Case Presentation

The test case consists of a 80 km long, 25 kV AC single-track line (Figure 6). The traffic
consists of ten high speed trains (TGV) with identical missions (speed setpoints). The
line is fed by three substations (SST) and the incident under examination is the loss of the
substation located in the middle of the line. The traffic must be rescheduled in order to
respect the pantograph voltage operational constraint so that traction engines are operated
safely. Specifically, the pantograph voltage must be between 19 kV and 27.5 kV at all times.
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Figure 6. Position of the feeding substations (SST) along the test case line. The substation at 40 km 
is out of order. The variables X1 to X5 model the traffic adjustment actions (see Section 4.2.1). X1 is 
the increase of time between successive train departures, whereas X2 to X5 are speed reductions 
along different line segments. 

In the nominal case, trains depart every five minutes from point pk0. Figure 7 shows 
the simulation results for the nominal situation. The top curve (a) represents the speed 
profiles of the ten trains. These curves perfectly overlap because the speed setpoints are 
the same for all the trains, and therefore the line can transmit enough power to all trains. 
The bottom curve (b) represents the train catenary voltages, and it is worth some com-
ment. The shape of the voltage curves is correlated with the speed profile. The acceleration 
phases (for example between pk10 and pk15) correspond to high power demands and 
result in a drop in the voltage at the catenary. Conversely, during the braking phase (for 
example between pk58 and pk60), part of the kinetic energy of the train is returned to the 
line and the voltage rises sharply. The curves do not all overlap because the catenary volt-
age of each train depends not just on the power drawn by the train itself, but also on that 
drawn by the other trains traveling along the line. Typically, the catenary voltage of the 

Figure 6. Position of the feeding substations (SST) along the test case line. The substation at 40 km is
out of order. The variables X1 to X5 model the traffic adjustment actions (see Section 4.2.1). X1 is the
increase of time between successive train departures, whereas X2 to X5 are speed reductions along
different line segments.

In the nominal case, trains depart every five minutes from point pk0. Figure 7 shows
the simulation results for the nominal situation. The top curve (a) represents the speed
profiles of the ten trains. These curves perfectly overlap because the speed setpoints are the
same for all the trains, and therefore the line can transmit enough power to all trains. The
bottom curve (b) represents the train catenary voltages, and it is worth some comment. The
shape of the voltage curves is correlated with the speed profile. The acceleration phases
(for example between pk10 and pk15) correspond to high power demands and result in
a drop in the voltage at the catenary. Conversely, during the braking phase (for example
between pk58 and pk60), part of the kinetic energy of the train is returned to the line and
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the voltage rises sharply. The curves do not all overlap because the catenary voltage of each
train depends not just on the power drawn by the train itself, but also on that drawn by the
other trains traveling along the line. Typically, the catenary voltage of the first train will be
higher than the catenary voltage of the following ones. The overall shape of the curves also
reflects the position of the supply substations, with a rise in voltage at each substation. The
graph does not indicate which train corresponds to each curve, but the important point is
that the voltage is always within the desired range (between 19 kV and 27.5 kV).
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heating in the cable, and therefore additional operating costs. These results indicate that 
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Figure 7. Simulation results for the nominal case: (a) speed profiles (10 overlapping curves); (b) catenary voltage. The
voltage must remain between the lower limit (19 kV, red continuous line) and the upper limit (27.5 kV, red dashed line).

In the default case, the substation located in the middle of the line is out of order.
Figure 8 shows the simulation results for the same traffic as before. Curve (a) shows that the
speed profiles of the trains are affected especially between pk40 and pk50, when the trains
accelerate just after the faulty substation. The catenary voltages (b) are much lower than in
the nominal case and locally drop below the minimum threshold (19 kV). In addition to
restricting the power supplied to the trains, this generates significant losses and heating in
the cable, and therefore additional operating costs. These results indicate that the electrical
network cannot supply the power required by the initial traffic and that the load must be
lightened by traffic adjustment actions.
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4.2. Adjustment Problem Specification 
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on the catenary voltage. These quantities are the adjustment model outputs. For each train, 
the sliding 10-second average value must always lie between 19 kV and 27.5 kV. The ad-
justment model has as many outputs as there are trains, and each output corresponds to 
a time series. Note that the catenary voltage time series are actually handled as functions 
of the train positions pk. 
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4.2. Adjustment Problem Specification

The first step in rescheduling the traffic is a technical analysis. Based on their expertise
and the simulation results, the operator defines traffic adjustment variables as well as
the acceptability and performance criteria of the solutions. By doing this, they build an
adjustment model, the inputs of which are the adjustment variables and the outputs of
which are the physical quantities from which the traffic performance and the constraints
are defined.

4.2.1. Adjustment Variables

The comparison of the traffic simulation results in the nominal case and in the de-
graded case guides the choice of traffic adjustment actions. An initial way to reduce the
load on the line is to space the trains apart by increasing the time interval between two suc-
cessive departures. Furthermore, the voltage and speed profiles indicate that it is between
pk40 and pk60 that the train power is the most disturbed. It is therefore useful to study the
influence of speed reduction in this part of the line.

The five following adjustment variables have been defined:

- X1 ε[0, 20] min: time interval increase between successive departures;
- X2 ε [0, 20] m/s: speed setpoint reduction between pk40 and pk45;
- X3 ε [0, 20] m/s: speed setpoint reduction between pk45 and pk50;
- X4 ε [0, 20] m/s: speed setpoint reduction between pk50 and pk55;
- X5 ε [0, 20] m/s: speed setpoint reduction between pk55 and pk60.

4.2.2. Outputs and Acceptability Criterion

The acceptability criterion chosen in this study relates to the operational constraint
on the catenary voltage. These quantities are the adjustment model outputs. For each
train, the sliding 10-second average value must always lie between 19 kV and 27.5 kV. The
adjustment model has as many outputs as there are trains, and each output corresponds to
a time series. Note that the catenary voltage time series are actually handled as functions
of the train positions pk.
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4.3. Generalized Sobol Indices

Generalized first-order Sobol indices were calculated for each of the 10 trains, and for
each of the five adjustment variables, for a total of 50 indices.

The Sobol indices computation requires to first build two sampling matrices of dimen-
sion N × p, where N is the number of samples and p the number of adjustment variables
(here p = 5). Each row of the matrix corresponds to an adjustment scenario to be tested.
Quasi-random sampling is used for a good coverage of the input space. The two sampling
matrices are combined as described in Appendix A, and a total of N × (p + 1) simulations
are run. The five Sobol indices (Si)i=1,5 are then calculated.

Sobol indices were calculated for an increasing sample size N in order to study the
influence of this parameter on the quality of the indices estimate. The memory capacity
required for the storage of the outputs necessary for the calculation of the indices did not
make it possible to go beyond N = 3000. Indeed, the catenary voltages must be saved at
each pk, for all the trains, and for all simulations. The volume of data to be kept in dynamic
memory is proportional to the size of the sample, and ends up saturating the RAM of the
computer. Details will be given in Section 4.6.

The results are shown in Figure 9. As results are very similar for the different trains,
only the indices corresponding to train no. 3 are presented here. It can be seen that even
with N = 3000, the sensitivity indices do not seem to have reached convergence. However,
despite the estimation error, the variable X1 (time delay between trains) appears to have
a preponderant influence over the other variables (speed reductions). Among the speed
reductions, the variable X3 seems to stand out a bit from the others, although one would
expect X2 to be more influential, since it acts closer to the faulty substation, in a region
where the speed and the voltage appear to be strongly affected.
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4.4. Energy Distance-Based Indices

The energy distance approach was applied to calculate another series of sensitivity
indices related to the input Xi. Figure 10 shows the results for an increasing sample size.
As before, these indices are related to train no. 3. The same trends are observed, with the
dominant influence of X1. The ranking between the speed reductions (X2 to X5) better
corresponds to what is intuitively expected.

This method requires only one N × p sample matrix and N evaluations of the model
instead of 6N for Sobol indices, which is a significant gain.

Figure 10 shows that this method has a fast convergence, with significant results from
a sample size of 500. The gain is obvious compared to the Sobol method. However, the
computation time of the indices themselves (in the post-processing phase) increases rapidly
with the number of adjustment variables. If the method is applied to a very fast model, the
conclusion may be more balanced.
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4.5. Regional Sensitivity Analysis

The last method tested, regional sensitivity analysis, focuses on the influence of the
adjustment variables in relation to the catenary voltage constraint. This voltage must
remain between 19 kV and 27.5 kV throughout the journey of all trains.

This method requires an N × p sample matrix and N evaluations of the model. The
sample matrix is partitioned into two groups, denoted by A and A, depending on whether
the constraint on the voltage output is satisfied or not. For each input Xi, the empirical
cumulative densities of both groups, denoted respectively by F(Xi|A) and F

(
Xi
∣∣A), are

computed. Figure 11 shows the graphs of the functions F(Xi|A) (blue curve) and F
(
Xi
∣∣A)

(red curve) for the five input variables. These curves are calculated for a sample size of
N = 1000.

Energies 2021, 14, 6420 19 of 29 
 

 

 
Figure 11. Cumulated density functions 𝑭𝐗𝒊|𝑨 and 𝑭𝐗𝒊|𝑨 for each input 𝑿𝒊.  

The two-sample Kolmogorov–Smirnov test provides a statistical interpretation of the 
distance between 𝐹(𝑋 |𝐴) and 𝐹 𝑋 |𝐴 . Figure 12 plots the statistic 𝐷 as a function of the 
sample size 𝑁 and quantifies the qualitative observations made in the previous paragraph. 
Table 1 reports the corresponding values of statistical significance 𝛼, also called the p-
Value, and classifies the variables 𝑋 , 𝑋 , and 𝑋  as critical (𝛼 < 0.01) and the variables 𝑋  
and 𝑋  as insignificant (𝛼 > 0.1). 

 
Figure 12. D-stat values versus sample size N. 

Table 1. Significance level 𝛼 for the different input variables and sample sizes. 

Sample  
Size N 

𝜶𝐗𝟏 𝜶𝐗𝟐 𝜶𝐗𝟑 𝜶𝐗𝟒 𝛂𝐗𝟓 

100 0.0 0.05 0.09 0.59 0.7 

100 500 1000 2000 3000 4000
Size of sample, N

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

K
S 

di
st

an
ce d1

d2
d3
d4
d5

Figure 11. Cumulated density functions FXi|A and FXi|A for each input Xi.



Energies 2021, 14, 6420 19 of 29

Visual comparison between F(Xi|A) and F
(
Xi
∣∣A) gives a global overview of the

influence of each input variable: the greater the difference between between F(Xi|A) and
F
(
Xi
∣∣A), the greater the influence of Xi. Again, X1 is found to be the most influential

variable, whereas X4 and X5 do not show any influence.
Other interesting information is provided by these curves. For X1, the shape of

F(X1|A) (plot (a), blue curve) indicate that no sample with X1 < 8mn respects the voltage
constraint. The graphs also show that the variables X1 and X3 have a positive influence
on the output: increasing them increases compliance with the catenary voltage constraint.
On the contrary, the variable X2 is found to have a negative influence: reducing the speed
on the 40–45 km section is not favorable. This non-intuitive result is due to the fact that
this speed reduction causes trains to get closer to each other in a section of line where the
power supply is low.

The two-sample Kolmogorov–Smirnov test provides a statistical interpretation of the
distance between F(Xi|A) and F

(
Xi
∣∣A). Figure 12 plots the statistic D as a function of the

sample size N and quantifies the qualitative observations made in the previous paragraph.
Table 1 reports the corresponding values of statistical significance α, also called the p-Value,
and classifies the variables X1, X2, and X3 as critical (α < 0.01) and the variables X4 and
X5 as insignificant (α > 0.1).
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Table 1. Significance level α for the different input variables and sample sizes.

Sample
Size N αX1 αX2 αX3 αX4 αX5

100 0.0 0.05 0.09 0.59 0.7

500 0.0 0.0 0.0 1.0 0.99

1000 0.0 0.0 0.0 1.0 1.0

2000 0.0 0.0 0.0 0.98 1.0

3000 0.0 0.0 0.0 0.7 1.0

4000 0.0 0.0 0.0 0.57 1.0

Class critical critical critical insignificant insignificant

Regional sensitivity analysis requires an N × p sample matrix and N evaluations of
the model, like the energy distance method. However, the post-processing of the simulation
results and the indices computation is much faster and requires less memory. Furthermore,
the convergence is satisfactory, provided that there are enough points in each subset A
and A.
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4.6. Assessment and Comparison of the Tested Methods

Regardless of the sensitivity analysis method used, the conclusion is the same. Train
spacing always appears to be a much more influential variable than the others. As might be
expected, speed reductions are more influential the closer they are to the faulty substation.
The small influence of the train speed reduction parameter is explained by the fact that this
reduction does not change the acceleration of the trains, but the duration of the acceleration
phase. Therefore, it does not affect the load peaks and the voltage drop due to acceleration,
but their duration.

The three methods are now compared on the following criteria: overall calculation
time (model and indices computation), memory space required to store the data needed
for the indices calculation, and convergence speed. The convergence speed corresponds to
the sample size N required to obtain a good statistical estimate of the sensitivity indices
(i.e., the point at which adding samples no longer creates a significant variation on the
calculated indices).

Table 2 compares the computation cost of the three tested methods. The computation
was performed on a laptop with the following specifications: DELL Latitude 7480, CPU:
Intel Core i7-7600U (2 cores/4 threads/4 MB cache/2.8 GHz), RAM: 16 GB.

Table 2. Computation cost of the tested methods.

N = 500 N = 1000

Time (Min) Memory (MB) Time (Min) Memory (MB)

Sobol 256 495 901 907

Energy distance 40 340 150 611

Regional 35 280 121 547

Sobol indices computation requires N(p + 1) calls to the simulator, i.e., 6N calls in
the present case. Moreover, convergence requires a larger number of samples. The other
two methods require only N calls to the model and convergence is therefore faster. For the
considered problem, for N = 1000, it takes 15 hours to calculate the Sobol indices, for an
imprecise result, while 2 hours are enough for a good result with the other methods.

Table 3 summarizes the performances and the specificity of the three sensitivity analy-
sis methods under examination. This criteria are intended to generalize the conclusions of
the present study and guide the choice of the sensitivity analysis method best suited to a
given problem.

Table 3. Performances and specificity of the different methods.

Calculation
Time

Convergence
Speed

Storage
Space Specificity

Generalized
Sobol High Slow High Can characterize

interaction

Energy distance Average Fast Average Moment independant

Regional
analysis Low Average Low Based on acceptability

criterion

4.7. Empirical Pareto Set

When conducting a sensitivity analysis, one actually runs Monte Carlo simulations
with a wide coverage of the input space. Hence, it is natural to exploit these results to build
empirical Pareto plots.

In this section, the simulation results are processed in order to find optimal solutions
among the acceptable solutions generated from the regional sensitivity method. Two cost
functions are considered:
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• F1: traffic density.
• F2: total energy supplied by the substations.

F1 should be maximized, whereas F2 should be minimized, and so the objectives are
contradictory. Figure 13 shows the empirical Pareto plot. Each dot represents an acceptable
solution. Blue dots represent dominated solutions and red dots represent compromised
solutions. This plot shows that increasing the traffic density also increases the total energy
consumed by the traffic. This is due to the increasing part played by losses.
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5. Application to a Real Case

The comparison made in Section 4 shows that regional sensitivity analysis is the most
suitable method for our traffic rescheduling problem. In the present section, a test case
representative of a real study is considered. The network has several branches, and many
different types of trains travel back and forth. This example is intended to assess the
capability of the proposed methodology to highlight efficient rescheduling actions and
provide objective information to the decision maker.

5.1. Test Case Description

The test case corresponds to a suburban railway network in the Paris region. The
traffic consists of more than 300 trains with various missions. Figure 14 shows the network
topology. The power supply system is in 1500 V DC mode, with 83 feeding substations.
The study deals with the loss of the substation "GRIAULT" on Line 5. The catenary voltage
must remain between 1750 V and 1000 V.
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Simulations were run in for the nominal case (Griault substation operational) and
the degraded case (Griault substation out of order). Figures 15 and 16 show the speed
profiles of the trains along Line 5, and the corresponding catenary voltage profile. In the
degraded case, trains are slowed down between the positions at 60 and 70 km, and the
catenary voltage drops locally below the minimum threshold (1000 V). This indicates that
the electrical network cannot provide the power necessary to achieve the speed instructions
on Line 5 and that the traffic must be adjusted.
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5.2. Rescheduling Process

The principle of adjustment actions is simple to state, but more delicate to implement
because of the heterogeneity of traffic and the multiplicity of lines and tracks. In practice,
the trains are gathered into groups and subgroups, according to common characteristics:
line, track, type of train, departure point, etc. For the present situation, six adjustment
actions were defined by the operator in charge of rescheduling the traffic:

1. Delete comfort auxiliaries for suburb trains, type 1;
2. Delete comfort auxiliaries for suburb trains, type 2;
3. Space the consecutive trains of group G1;
4. Space the consecutive trains of group G2;
5. Space the consecutive trains of group G3;
6. Space the consecutive trains of group G6.

Each adjustment is modeled by a variable in a range of variation chosen by the
operator. A sample of N = 400 scenarios was drawn and corresponding simulations were
run, for a total computation time of 4 hours. A subset of 311 scenarios were found to
respect the operational constraint on the catenary voltage (acceptable solutions). Table 4
gives the results of the regional sensitivity analysis. Among the six actions, three are found
to be critical (adjustment 1, adjustment 5 and adjustment 6).

Table 4. Results of regional sensitivity analysis.

Adjustment Distance D Significance Level α Class

Adjustment 1 0.34 0.0 Critical
Adjustment 2 0.04 1 Insignificant
Adjustment 3 0.08 0.63 Insignificant
Adjustment 4 0.1 0.37 Insignificant
Adjustment 5 0.27 0.0 Critical
Adjustment 6 0.6 0.0 Critical
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Significance Among the 400 tested solutions, the acceptable solution with the highest
train density (335 against 346 in the initial case) and the lowest energy consumption
was adjustment 3, which is considered as the best one. This solution corresponds to the
following transport plan:

1. Delete comfort auxiliaries for suburb trains, type 1: yes;
2. Delete comfort auxiliaries for suburb trains, type 2: yes;
3. Space the consecutive trains of group G1: 4 minutes;
4. Space the consecutive trains of group G2: 1 minute;
5. Space the consecutive trains of group G3: 11 minutes;
6. Space the consecutive trains of group G6: 2 minutes.

The next step is to refine the analysis in the vicinity of the best solution. For this step,
all non-important adjustments in the reorganization process are removed and set to zero,
and a random sample of only 40 scenarios is considered. As a results, the best solution
corresponds to a train density of 345.

5.3. Conclusions

This test case is representative of a real rescheduling problem that SNCF Réseau
has had to handle. The formalization of the problem and the use of regional sensitivity
anaslysis provide objective indicators to guide the operator in charge of the rescheduling
process and simplify the optimization problem. In this test, the optimization criterion is the
traffic density, but the operator can choose another criterion or multi-criteria. The execution
time of the research process depends on the size of the studied area and the size of the
sample. SNCF Réseau is currently integrating this method into its numerical toolset for the
resolution of incident, either for real-time or upstream studies.

6. Conclusions

Railway networks are complex systems and their analysis relies on heavy simulations.
In the event of electrical equipment failure, the power that can be delivered to the trains is
restricted and the traffic should be optimally rescheduled within the physical limits of the
power system. Namely, traffic adjustment actions, such as train spacing or train slowing
must be assessed, so that the train supply voltage never drops below a critical value given
by technical standards. This rescheduling task is an important decision-making process
for the smooth operation of the network, and it requires a complete and accurate physical
simulation (no assumptions can be made).

The studied system is a complex one, with nonlinear behavior, a large number of input
and output variables, and a computationally intensive simulation code. Furthermore, the
output variables are large time series. As direct optimization is too difficult, we propose
performing sensitivity analysis in order to identify the most influential traffic adjustement
variables and drop the variables with negligible influence.

A review of sensitivity analysis methods has been conducted, and three global sen-
sitivity analysis methods suitable for black box, multivariate, nonlinear models have
been identified: generalized Sobol indices, energy distance-based indices, and regional
sensitivity analysis. The three methods have been described, applied to a simple traffic
rescheduling test case, and their performances have been compared. The conclusions are
as follows:

• Variance-based method: Sobol indices are sensitivity indices based on the output
variance. They are widespread for scalar outputs and have been generalized for vector
outputs, such as time series. Second order indices can provide information about the
interactions between inputs, but usually only the first-order indices are calculated.
The computation of Sobol indices requires large samples in order to reach convergence,
and, furthermore, the number of model evaluations is proportional to the number of
tested inputs. Hence, the computation time may become prohibitive in the case of
numerically intensive models.
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• Energy distance-based method: The energy distance is used to quantify the distance
between the output Y and the conditional distributions Y|Xi over the whole domain.
This distance facilitates the definition of normalized sensitivity. The method was
initially proposed for scalar outputs, but it naturally generalizes to series outputs.
As this method is moment independent, it is more general than Sobol indices. Fur-
thermore, its computation cost is significantly lower because of faster convergence of
the estimates and because the number of model evaluations does not depend on the
number of input variables.

• Regional sensitivity analysis: This method applies to problems involving an accept-
ability criterion on the output, and tests the influence of the input variables in respect
to this criterion. So-called Monte Carlo filtering is used to partition the input space
into an acceptable set and a non-acceptable set. Then the two sets are compared
statistically in order to highlight the influence of each input variable. This method is
the fastest and the easiest one to implement.

• The results of the three methods are consistent: they lead to the same input ranking of
the input, but the cost of Sobol indices is much higher than the two other methods.
Regional sensitivity analysis appears to be the most suitable method for the present
application: it is relatively easy to implement, rather fast, and accounts for constraints
on the system output, a key feature for electrical incident management.

Hence, regional sensitivity analysis has been applied to a test case representative of a
real rescheduling problem. The results show which traffic adjustment actions are the most
efficient for keeping the catenary voltage within the prescribed limits. Subsequently, the
actions that are not important can be frozen for a simplified optimization. The proposed
approach provides objective information for rescheduling traffic in an efficient way and is
a useful tool to guide the traffic manager.

The sensitivity analysis methods that have been described in the present paper can
be applied to any problem with the same characteristics; i.e., nonlinear, black box models
with multivariate outputs (and possibly constraints on the outputs). Such problems are
to be encountered in the design of optimal power systems involving temporal or spatial
outputs, heavy models, and/or constraints on the outputs. It can be applied for sizing
power systems (electrical machines and regulators). For example, one may think of battery
sizing and management problems in hybrid systems, or electrical vehicle systems in their
environment (e.g., regulation or driving cycles).
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Appendix A. Numerical Estimate of First Order Sobol Indices

The first order Sobol indices are given by:

Si =
Var[E(Y|Xi)]

Var(Y)
=

E
[

E(Y|Xi)
2
]
− E[E(Y|Xi)]

2

E(Y2)− E(Y)2 .
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Four mathematical expectations are to be estimated, two of which are conditional
on the given Xi. The terms of the denominator are straightforward, but the terms of the
numerator require freezing the input variable Xi. For this, the algorithm uses two samples
of identical sizes, according to the procedure described in detail below.

i. Two input sample matrices A and B (size N × p) are generated using a quasi-random
algorithm (see Section 3.2).

M =


x(M)

1,1 . . . x(M)
1,i . . . x(M)

1,p
...

x(M)
N−1,1

...
. . . x(M)

N−1,i . . .

...
x(M)

N−1,p

x(M)
N,1 . . . x(M)

N,i . . . x(M)
N,p

, with M = A and B

ii. For each parameter Xi, a sample matrix Ci is built by replacing the ith column of
matrix B with the ith column of matrix A.

Ci =


x(B)

1,1 . . . x(A)
1,i . . . x(B)

1,p
...

x(B)
N−1,1

...
. . . x(A)

N−1,i . . .

...
x(B)

N−1,i

x(B)
N,1 . . . x(A)

N,i . . . x(B)
N,p


iii. The model is applied to the sample matrices A and Ci, and one obtains the corre-

sponding vector outputs YA = f (A) and YCi = f (Ci).

YM =


f
(

x(M)
1,1 , x(M)

1,2 , . . . , x(M)
1,p

)
...

f
(

x(M)
N−1,1, x(M)

N−1,2, . . . , x(M)
N−1,p

)
f
(

x(M)
N,1 , x(M)

N,2 , . . . , x(M)
N,p

)

 =


y(M)

1
...

y(M)
N−1

y(M)
N

, with M = A and Ci

iv. The expectation estimators are calculated as follows:

E(Y) ∼= 1
N ∑N

j=1 y(A)
j

E
(
Y2) ∼= 1

N ∑N
j=1

[
y(A)

j

]2

E[E(Y|Xi)] = E(Y) ∼= 1
N ∑N

j=1
1
2

(
y(A)

j

)
E
[

E(Y|Xi)
2
]
∼= 1

N ∑N
j=1 y(A)

j .y(Ci)
j

The generalized indices are estimated according to the same principle, but in step (iii),
the output is an (N ×m) matrix, where m is the number of terms in the output series.

YM =


yM

1,1 yM
1,2 · · · yM

1,m
yM

2,1 yM
2,2 · · · yM

2,m
...

yM
N,1

...
yM

N,2

. . .
· · ·

...
yM

N,m

, with M = A and Ci
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The first order indices are defined by:

Si(Y) =
∑m

k=1 Var[E(Y(tk)|Xi)]

∑m
k=1 Var(Y(tk))

.

Their computation requires the estimation of the variances of the output at different
time tk: Var[E(Y(tk)|Xi)] and Var(Y(tk)). For this, we apply at each time the estimators
defined in the case of a scalar output.
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