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Joint Coefficient and Solution Estimation for the 1D Wave Equation:
An Observer-Based Solution to Inverse Problems

Constantinos Kitsos, Mathieu Bajodek, and Lucie Baudouin

Abstract—The estimation of an unknown source coefficient
and of the solution to a 1-dimensional (1D) wave equation via
exponentially convergent state observers is the problem under
consideration in this work. The coefficient is assumed to depend
on the space variable only and to be polynomial. The main
observation information for this inverse problem is the value of
the solution to the wave equation in a subinterval of the domain,
including also some of its higher-order spatial derivatives. In
order to estimate the source coefficient, we turn it into a new state
as in finite-dimensional parameter identification approaches.
However in this infinite-dimensional setting, this requires the
introduction of a novel indirect approach involving an infinite-
dimensional state transformation. Sufficient conditions allow the
design of a composite observer consisting of an internal observer,
which estimates in higher regularity spatial norms both the
source term and the solution on a subinterval, and a boundary
observer, in order to eventually provide the estimation of the
solution everywhere. The observer convergence is proven by
means of Lyapunov analysis. An extension of this approach to the
case of the identification of a potential in the wave equation is
finally considered, which is a nonlinear inverse problem since
here, in the equation, the unknown coefficient multiplies the
solution.

Index Terms—coefficient identification/estimation in the wave
equation, inverse problems, observers for PDEs

I. INTRODUCTION

The inverse problem of determining unknown coefficients
in partial differential equations (PDEs) has been extensively
studied during the last decades, see [21]. A lot of the recent
results rely on the use of Carleman estimates for the PDE
operator under consideration, dating back to the seminal work
of [11]. In our work, we are interested in the study of
inverse problems for the wave equation, for which Carleman
estimates approaches have already given a lot of answers,
from uniqueness and stability in the determination of source or
potential term (see [35] or [22]) to reconstruction algorithms
(e.g. [5]). Other techniques also exist for the same kind of
problem, see e.g. [9] for a spectral estimation of eigenvalues
approach. For this equation, applications may concern the
recovery of properties of the medium when dealing with
acoustic waves, ocean and seismic prospection, medical imag-
ing, or geophysics, see [15], [32], see also [2] for the 1D
wave equation (inverse problems for bridges, antennas, space-
structures, steel-grid reinforcements etc).

This article has the ambition to propose a different kind
of answer to the inverse problem of the determination of a
time independent source term in the wave equation. The main
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goal here will be to design an online estimation of the source
coefficient by means of an appropriate observer.

Observation and observer design results for the wave equa-
tion have already been given for instance in [27], [31].
Estimating the initial state of infinite-dimensional systems
from measurements on a finite interval is solved by use of
a sequence of forward and backward observers in [30], see
also [17]. One can also mention [13] or [10] for the so-called
back-and-forth algorithms. In [18] and references therein, the
problem of reconstruction of initial data using observers is
considered. In all these works, the reconstruction algorithms
are either performed offline or lead to asymptotic, but not
exponential, estimation.

The present paper deals with the estimation through time of
a source coefficient of the 1D wave equation via Luenberger
observers. A novel approach for this rather classical question is
proposed here, method that is initially based on a standard trick
for constant parameter estimation in finite dimensions: the
state of the system is extended with the unknown parameter,
in order to get a system in a canonical form, for which an
observer can be easily designed, see for instance [8, Chaps.
1,3]. In the present case, where the role of the parameter
is played by a space-varying source coefficient, a similar
approach turns out not to be so direct due to the properties
of the differential operator of the extended coupled system.
An indirect approach is thus proposed, that eventually leads
to the exponential estimation in time of the coefficient. In
[20], an in-domain constant parameter is estimated for a
hyperbolic system via adaptive observer, however, similarly as
in finite dimension (see [34]), the estimation is not necessarily
exponential. Contrary to that approach, in the present work, the
estimation of the potential is exponentially convergent, while
the solution to the wave equation is simultaneously estimated.

The so-called indirect approach we will describe in this
paper includes the introduction of an infinite-dimensional
transformation that maps the wave equation into a system
of three coupled PDEs, whose differential operator is decom-
posed into a part with the same elements on the diagonal and
a part acting on the observation of the solution (considered as
measurement). Aiming at the final observer design, we assume
that the coefficient we seek is a polynomial of the space
variable and that observations include the solution and its
higher order spatial derivatives in a subinterval of the domain
coming from appropriately strong regularity assumptions. An
exponentially convergent composite observer is then designed.
It consists of two components: an “internal observer” (or
alternatively called “distributed observer”) on the observed
subinterval, providing the estimation of the potential arbitrarily
fast, and of the solution in this subinterval, and a “boundary
observer” for the rest of the domain, bringing the estimation of
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the rest of the solution. The stability proof in higher regularity
spatial norms is based on the introduction of appropriate
Lyapunov functionals. The current approach is inspired by
a recently introduced methodology in [25] to deal with the
observer design of under-observed systems of coupled PDEs.

In summary, this work introduces a first extension of
the classical parameter identification/estimation methodology
from finite dimensions to infinite dimensions, more precisely
to the problem of coefficient estimation for the wave equation.

The paper is organized as follows: In Section II, we intro-
duce the estimation problem and we present our approach that
leads to solvability of the main observer problem. In Section
III, we present the joint estimation of a source term and
the solution to the wave equation via the proposed observer,
which is stated in Theorem 1. We extend this approach to a
related nonlinear inverse problem in Section IV, concerning
the recovery of a potential in a wave equation under compa-
rable technical assumptions as stated in Theorem 2. Section
V includes an illustrative simulation, and we provide some
conclusions and perspectives in Section VI.

Notation: For a given w in Rn, |w| denotes its usual
Euclidean norm. For a matrix A in Rn×n, A> denotes its
transpose, |A| := sup {|Aw| , |w| = 1} is its induced norm
and Sym(A) = A+A>

2 stands for its symmetric part. If A is
symmetric, eig(A) is its minimum eigenvalue. In and 0n are
the identity and zero matrix of dimension n, respectively, and
antidiagk(Ai)i=1,...,k denotes the block matrix consisting of k
matrices Ai placed on antidiagonal block-row i. By {j, . . . , k}
we denote the set of k − j + 1 consecutive integers from j
to k. For given u : [0,+∞) × [l, L] → Rn and time t ≥ 0
we use the notation u(t)(x) := u(t, x), for all x in [l, L]
to refer to the profile at certain time and ∂itu (resp. ∂ixu)
is its partial derivative with respect to t (resp. x) of order
i. For a q - times continuously differentiable mapping u we
denote ‖u‖Cq [l,L] :=

∑q
i=0 max{

∣∣∂ixu(x)
∣∣ , x ∈ [l, L]} for the

q-norm. Any element u : [l, L] → Rn of the Hilbert space
L2 (l, L;Rn) satisfies ‖u‖2L2(l,L) :=

∫ L
l
|u(x)|2dx < +∞.

From there, the Sobolev space Hq (l, L;Rn) gathers functions
u such that all their weak derivatives up to order q are also in
L2 (l, L;Rn), and is equipped with the norm ‖u‖Hq(l,L;Rn) :=∑q
i=0

(∫ L
l
|∂ixu(x)|2dx

)1/2
. Finally, L(X ) denotes the space

of bounded linear operators from X to X and RN [x] denotes
the vector space of polynomials over R in the variable x and
of degree less than or equal to N .

II. PROBLEM STATEMENT AND ASSUMPTIONS

Let us consider the following wave equation: ∂2t z(t, x) = ∂2xz(t, x)+ F (t, x), t ∈ R+, x ∈(0, L)
z(t, 0) = h1(t), z(t, L) = h2(t), t ∈ R+,
z(0, x) = z0(x), ∂tz(0, x) = z1(x), x ∈ (0, L),

(1)

where F (t, x) is a source term that takes the shape

F (t, x) = f(x)R(t, x), (2)

where f is an unknown coefficient and R is known. The
boundary data h1 and h2 are also given, but

(
z0, z1

)
are

unknown initial data (contrary to several other approaches of
inverse problems where they are usually known). The problem
we wish to solve here is summarized as follows.

Problem 1: Determine sufficient conditions and define
appropriate observations on the solution of the wave equation
that will allow the design of an observer system leading to
estimation of the unknown coefficient f(x) and the solution
z(t, x) of the wave equation simultaneously, converging expo-
nentially in time.

To the best of our knowledge, this problem has not been
given solutions yet. The problem of finding a source coefficient
is a linear inverse problem as the operator mapping the solu-
tion to the unknown coefficient is linear (see [35]). Previous
approaches to solve initial state or source reconstruction have
led to offline estimation (back-and-forth observers), in contrast
with the aim of this work. In [20], an in-domain constant
uncertainty is estimated for a class of hyperbolic systems via
an adaptive observer with a measurement of the state in the
entire domain based on a standard approach for parameter
identification in finite-dimensional systems (see also [36]), that
we avoid in the present work. Such approaches or observer-
based approaches as in [13] might lead to asymptotic conver-
gence of the observer scheme to the unknown parameters, but
not necessarily exponentially, as we plan here. Additionally,
the problem of estimation of a spatially varying parameter, as
the source term f(x) here, is even more complicated.

Remark 1: Note that the first part of Problem 1 on
the coefficient estimation has been given a solution in our
introductory work [23]. However, here we provide a solution
to the complete problem of joint estimation of the solution
and coefficient, which is more complex. At the same time, we
have some weaker conditions and we present the results in a
more concrete manner compared to this preliminary work, in
order for the reader to obtain a complete framework on the
solvability of this problem.

The answer we will be able to give to Problem 1 will
require strong assumptions such as the polynomial nature of
f and some high regularity of the solution. Dropping these
assumptions is still an open problem.

We first assume that the unknown coefficient f belongs to
RN [x], with N ∈ {0, 2, 4, . . .}, meaning:

f(x) =

N∑
i=0

fix
i, ∀x ∈ [0, L], (3)

with degree less than or equal to N and completely unknown
coefficients fi ∈ R. This assumption on restriction of the space
of admissible coefficients f to the finite-dimensional space
RN [x] is a sufficient condition for the design of an infinite-
dimensional observer in the subsequent section. Note also that
the assumption f ∈ RN [x] with N even does not require a
priori knowledge of the exact degree or of the parity of the
degree of the unknown polynomial but only of an even upper
bound of its degree, equal to N . Choosing this maximal degree
to be even leads to Lyapunov stabilization of the observer error
equations as it is fully revealed in the next section.

Consider now a given δ ∈ (0, L] that determines the
observation interval [0, δ] in which we assume availability
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of the observations. This constant δ can be chosen close
to zero. We will also make the hypothesis that the initial
data and the boundary conditions of the system have some
additional regularity than the usual one assumed for the wave
equation. This will induce existence of solutions of sufficiently
strong regularity. Prior to the main assumptions, let us define
compatibility conditions of higher order for initial conditions
of the wave equation, that will be invoked later.

Definition 1: Assume that N̄ ≥ 3 is odd. We say that initial
conditions

(
z0, z1

)
of wave equation (1) satisfy compatibility

conditions of order N̄ if the following conditions are satisfied:


dih1(t)
dti |t=0 = diz0(x)

dxi |x=0

+
∑i/2
j=1 ∂

i−2j
t ∂2j−2x F (t, x)|t=0,x=0,

dih2(t)
dti |t=0 = diz0(x)

dxi |x=L
+
∑i/2
j=1 ∂

i−2j
t ∂2j−2x F (t, x)|t=0,x=L,

for all i ∈ {0, 2, 4, . . . , N̄ − 1}, (4a)
dih1(t)
dti |t=0 = di−1z1(x)

dxi−1 |x=0

+
∑(i−1)/2
j=1 ∂i−2jt ∂2j−2x F (t, x)|t=0,x=0,

dih2(t)
dti |t=0 = di−1z1(x)

dxi−1 |x=L
+
∑(i−1)/2
j=1 ∂i−2jt ∂2j−2x F (t, x)|t=0,x=L,

for all i ∈ {3, 5, 7, . . . , N̄}. (4b)

To see how the above relations are deduced, we need
to differentiate i-times with respect to time the wave
equation (1) and then substitute successively expressions
for ∂i−2t ∂2xz, . . . , ∂

i−2d i−1
2 e+1

t ∂
2d i−1

2 e−1
x z by using again

the dynamics of the wave equation, in order to retain
∂
i−2d i−1

2 e
t ∂

2d i−1
2 e

x z as a principal term in the right-hand side.
Then, in the corresponding equations, we set t = 0 and
x = 0, x = L and we readily obtain (4). In the following, N̄
appearing in Definition 1 is taking the value 3N + 3, which
is odd thanks to the assumption in (3) that N is even.

We now make two crucial assumptions.
Assumption 1 (Regularity): The function R, part of the

source term in (2), satisfies

R ∈C3N+3
(
R+;H3N+3(0, L)

)
∩ L∞

(
R+;H3N+3(0, L)

)
.

Moreover, a bound c > 0 is a priori known for which

‖R‖L∞(R+;HN+1(0,δ)) ≤ c. (5)

Simultaneously, R satisfies

inf
(t,x)∈R+×[0,δ]

|R(t, x)| > 0. (6)

In the sequel, a positive lower bound of |R| coming from (6)
is considered a priori known.

We furthermore assume that

z0 ∈ H3N+3(0, L), z1 ∈ H3N+2(0, L).

We also suppose that h1 and h2 are of class H3N+3 (R+).
Finally, we assume that initial conditions

(
z0, z1

)
satisfy

compatibility conditions of order 3N + 3 (see Definition 1).
Assumptions on R given by (5)-(6) are stronger versions

of classical assumptions in the solvability of linear inverse

problems (see e.g. [18]). From Assumption 1, we may invoke
well-known existence/uniqueness arguments (see for instance
[28], following also a transposition method, since we have
inhomogeneous boundary conditions), along with the extra
regularity and, thus, we can easily deduce the existence of
a unique solution

z ∈ C3N+1
(
R+;H3N+3(0, L)

)
∩ C3N+2

(
R+;H3N+2(0, L)

)
∩ C3N+3

(
R+;H3N+1(0, L)

)
.

Actually, one can see in the sequel that strong regularity
of the solution is only needed on (0, δ) and not on the
whole domain (0, L). However, to ensure that singularities do
not propagate over (0, L), we demanded strong regularity of
initial and boundary conditions everywhere. The following
assumption concerns the main observations that we consider
to be available in the output of the system.

Assumption 2 (Observations): As output observations, we
consider several measurements of the solution to the wave
equation. To start with, the solution on [0, δ]:

z(t, ·) |[0,δ], t ∈ R+. (7a)

Given the extra regularity of the system, we also consider as
output the spatial derivatives of the state (in the weak sense)
of higher order on {x = 0} and {x = δ}:

∂ix∂tz(t, l), i ∈ {0, . . . , 2N + 1}, l = 0, δ. (7b)

We further use the internal spatial derivatives (in the weak
sense) of order up to 3N+3 of the solution localized in [0, δ]:

∂ixz(t, ·) |[0,δ], i ∈ {1, . . . , 3N + 3}. (7c)

Finally, we assume observation of the following state compo-
nents on the right boundary x = L:

z(t, L), ∂tz(t, L), ∂xz(t, L), (7d)

which are common in observation problems for the wave
equation.

Notice that the appearing observations z(t, 0) and z(t, L)
in Assumption 2 correspond to h1(t) and h2(t), respectively.
Note also that we avoid observations of noncausal nature,
namely, time derivatives of the solution, except for the first
time derivative (7b) on the boundaries, which is of course
natural as it is a part of the state (z, ∂tz) of the wave.
Time derivatives are not in general available as measurements
in observer designs. However, the spatial derivatives of the
solution in a part of the domain, which are assumed to be
known, can be measured causally and one can consider them
as observations in conjunction with the extra regularity of
the system. Note also that to solve the inverse problems
for the potential of the wave equation as in [6], we need
the first spatial derivative of the solution on the boundaries
as observation. However, this online estimation problem via
observers appears to be more demanding, requiring stronger
assumptions. Finally, notice that the observations on the right
boundary x = L, given by (7d), are only essential for the
estimation of the solution to the wave equation and not for
the estimation of the source term.
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A convenient and standard approach in the parameter iden-
tification to design an observer is to write (1) as a system of
coupled PDEs, as we are trying to recover the trick followed
in finite dimension, where the system’s equations are extended
by ∂tf = 0, see [8, Chap. 3]. In a first step, let us rewrite (1)
as a first-order hyperbolic system as follows: ∂tu1(t, x) = −∂xu1(t, x) + u2(t, x),

∂tu2(t, x) = ∂xu2(t, x) + |R(t, x)|u3(t, x),
∂tu3(x) = 0,

(8)

where

u1 = z, u2 = ∂tz + ∂xz, u3 = fsgn (R(0, 0)) . (9)

Remark that sgn (R(0, 0)) = sgn (R(t, x)), for all (t, x) in
R+ × [0, δ] as a result of (6) in Assumption 1. It is worth
noting at this step that (8) satisfies a cascade form similarly
as in the finite dimensions but up to the differential operator.
For finite dimensions, such a cascade form (observability
canonical form) allows Luenberger observer design, which is
not yet the case here. Considering an abstract realization of (8),
the diagonal part of system’s operator is written as follows:−∂x 0 0

0 ∂x 0
0 0 −∂N+1

x

 .

Its third element −∂N+1
x is placed there instead of zero,

contrary to what seen in (8), however in accordance with
the fact that -∂N+1

x u3 = −sgn (R(0, 0)) ∂N+1
x f = 0, due

to the polynomial nature of f (see (3)). This placement of the
differential operator −∂N+1

x is made in order to obtain later
a differential operator for the observer error equation of the
shape −I3∂N+1

x in contrast with the three distinct elements
appearing above. In fact, the differential operator −∂N+1

x in
the third equation, which should be nonzero, is achieved to
appear in the remaining two equations via an appropriate
infinite-dimensional transformation. This is explicitly given in
a second step as it is explained below.

Internal observability of under-observed linear systems in
cascade has been studied for instance in [3] or [29]. In these
works, it is shown that the presence of distinct elements on
the diagonal of the main differential operator creates technical
obstructions coming from a problem of algebraic solvability.
This observability problem reveals the difficulty that will sub-
sequently appear in observer designs for such systems. Besides
this, particular solutions to the problem of observer design
of under-observed nonlinear infinite-dimensional systems have
been given in [24]. Here, inspired by this work, we employ an
analogous strategy noting that (8) is under-observed, since we
only measure the first state instead of all its three components.
The goal is to write system (8) in a form where its differential
operator is decomposed into a part with the same elements on
its diagonal, namely −∂N+1

x , plus an operator acting on the
first state only, which is actually the observation z. Following
this change of dynamics, the problem of observer design can
be solved in the spirit of the techniques introduced in [24] for
several coupled systems of PDEs.

As a result of the previous reasoning, in order to write the
system in an appropriate form for observer design, let us apply

an infinite-dimensional state transformation of triangular shape
T : u |[0,δ] 7→ T u satisfying

T u =

 1 0 0
−∂x − ∂N+1

x 1 0
0 0 1

u1u2
u3

 . (10)

We can see that T ∈ L(X ), where X =
H3N+3(0, δ) × H2N+2(0, δ) × H3N+3(0, δ) with norm
‖u‖X := ‖u1‖H3N+3(0,δ) +‖u2‖H2N+2(0,δ) +‖u3‖H3N+3(0,δ),
since ‖Tu‖X ≤ C‖u‖X for some C > 0. Then, T :
(X , ‖ · ‖X ) → (X , ‖ · ‖X ) is invertible and its inverse has
the same triangular shape, namely,

T −1 =

 1 0 0
∂x + ∂N+1

x 1 0
0 0 1


satisfying T −1 ∈ L(X ).

This type of transformation is inspired by the previous
works [24], [25], where such transformations were subject to
generalized Sylvester operator equations. Thanks to trans-
formation (10), which is a lower triangular matrix operator
involving higher order differentiations in its domain, we obtain
a desired form for target system (see below), that allows us
later to prove Lyapunov stabilization of the observer error
equations.

Now, system (8) writes in the new state variable

v = T u |[0,δ] (11)

as a system of PDEs of order 2N + 2 as follows:
∂tv1(t, x) = + ∂N+1

x v1(t, x) + v2(t, x),

∂tv2(t, x) =− ∂N+1
x v2(t, x) + |R(t, x)|v3(t, x)

+ ∂2xv1(t, x) + ∂2N+2
x v1(t, x),

∂tv3(t, x) =− ∂N+1
x v3(t, x), in (0,+∞)× (0, δ),

which amounts to

∂tv(t, x)=− ∂N+1
x v(t, x)

+A [R(t)] (x)v(t, x)+KCv(t)(x), (12)

where

A[R] :=

0 1 0
0 0 |R|
0 0 0

 , K :=

 2∂N+1
x

∂2x + ∂2N+2
x

0

 ,

C :=
(
1 0 0

)
. (13)

System (12) is written as a system of three coupled PDEs.
As we noted earlier, we managed to decompose our differential
operator associated to this system in a part of the form
−I3∂N+1

x (same differential operators on the diagonal), which
is desired for the the Lyapunov stabilization of the observer
error, plus an undesired operator K acting on the first state
v1 = z only. To get rid of it in the observer error dynamics,
this second part will be copied in the observer dynamics
assumed to be acting on the measurement z |[0,δ]. Up to
the perturbation term KCv, system satisfies a cascade form
with zero-order coupling coefficient A[R], whose stabilization
will lead to exponential stability of the observer error later.
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The decomposition of the differential operator into these two
parts and the subsequent elimination of KCv reveals why we
demanded knowledge of z and of its spatial derivatives in
[0, δ] from Assumption 2. In fact, even higher-order derivatives
than the ones contained in the domain of K are considered as
observations, as the estimation needs to be proven in higher
regularity norms. It is worth also noting that the coefficients
fi of the polynomial f are written as follows:

fi =
1

i!sgn (R(0, 0))
∂ixv3(t, 0),

which are our target in the estimation problem.
To complete the initial value-boundary conditions problem,

we associate to system (12) the following boundary conditions,
which stem from boundary conditions of (1) in conjunction
with transformations (9)-(10):
∀j∈{0, . . . , N},

∂jxv1(t, 0) = ∂jxz(t, 0), (14a)

∂jxv2(t, 0) = ∂t∂
j
xz(t, 0)− ∂N+1+j

x z(t, 0), (14b)

∂jxv3(0) =

N∑
k=j

σjk∂
k
xv3(δ), (14c)

where

σjk :=
(−δ)k−j

(k − j)!
, ∀j ≤ k ≤ N, (15)

while (14c) is in view of the polynomial properties of
v3 = f coming from its Taylor representation. Notice also
that boundary conditions (14a)-(14b) are induced naturally
from transformation (10). These boundary conditions involve
mappings that have been already considered as measurements
by Assumption 2.

III. OBSERVER AND MAIN RESULT

In this section, we present our observer of composite form
consisting of an internal observer on the subinterval [0, δ] and a
boundary one for its complement [δ, L]. This observer provides
a solution to Problem 1 of Section II.

A. Observer design

We first present the internal observer corresponding to the
observed subinterval [0, δ], see Assumption 2. For system (12),
written in such an appropriate form as explained previously,
we are in a position to propose the following Luenberger
internal observer localized in [0, δ]:

∂tv̂(t, x) = −∂N+1
x v̂(t, x) +A [R(t)] (x)v̂(t, x)

+Kz(t)(x) + ΘP−1C> (z(t, x)− Cv̂(t, x)) ,

∀(t, x) ∈ (0,+∞)× (0, δ). (16)

Taking into account the stronger regularity from Assumption
1, we additionally associate to observer state v̂ its spatial
derivatives ∂ixv̂ up to order i = N + 1. Overall, the observer
state v̂[N+1] := col{v̂, ∂xv̂, . . . , ∂N+1

x v̂} satisfies the follow-
ing (N + 2) systems resulting from (N + 1) differentiations

of (16) (incorporating also the case i = 0, which corresponds
to (16)):

∂t∂
i
xv̂ = −∂N+1+i

x v̂ +

i∑
k=0

(
i
k

)
A
[
∂i−kx R

]
∂kx v̂ +K∂ixz

+ ΘP−1C>
(
∂ixz − C∂ixv̂

)
, i ∈ {0, . . . , N + 1}. (17)

Boundary conditions for each of the states v̂1, v̂2, v̂3 of (17)
are assumed to be of the following form:

∂jxv̂1(t, 0) = ∂jxz(t, 0) +
∑N
k=j σjk∂

k
x (v̂1(t, δ)− z(t, δ)) ,

∀j∈{i, . . . , N},
∂jxv̂1(t, δ) = ∂jxz(t, δ), ∀j∈{N + 1, . . . , N + i};
∂jxv̂2(t, 0) = ∂t∂

j
xz(t, 0)− ∂N+1+j

x z(t, 0)

+
∑N
k=j σjk∂

k
x

[
v̂2(t, δ)−

(
∂t − ∂N+1

x

)
z(t, δ)

]
,

∀j∈{i, . . . , N},
∂jxv̂2(t, δ) = ∂t∂

j
xz(t, δ)− ∂N+1+j

x z(t, δ),
∀j ∈ {N + 1, . . . , N + i};

∂jxv̂3(t, 0) =
∑N
k=j σjk∂

k
x v̂3(t, δ), ∀j ∈ {i, . . . , N},

∂jxv̂3(t, δ) = 0, ∀j ∈ {N + 1, . . . , N + i}.
(18)

We can interpret observer equations (17)-(18) as a family
of observers parametrized by i and corresponding to each
spatial derivative ∂ixv̂. Notice that in both (17) and (18), we
injected output correction terms. The ones injected in boundary
conditions (18) are needed for the elimination of the boundary
terms in the Lyapunov analysis, while the one in the internal
dynamics, (16) multiplied by a suitable gain, is used in the
observer convergence. This gain consists of matrix Θ given
by

Θ := diag
{
θ, θ2, θ3

}
(19)

with θ > 0 a tuning parameter and P a positive definite
symmetric matrix satisfying for all (t, x) ∈ R+ × [0, δ] a
Lyapunov matrix inequality of the following form:

Sym (PA [R(t)] (x))− C>C ≤ −ηI3, (20)

for some constant η > 0. Such an inequality is always feasible
for A and C given by (13) (structured as an observability
canonical form of a finite-dimensional system) and under
conditions (5)-(6) in Assumption 1 for function R. The reader
can refer to [19] for the feasibility of inequalities of such a type
in finite-dimensional observer design and the extension to the
present formulation is direct. Matrix P chosen as a solution
of (20) will serve as a Lyapunov matrix in the sequel. Note
here the necessity of Assumption 2 on the observations as the
assumed measurements (7a)-(7c) intervene in the dynamics of
observer equation (17), particularly in mapping K and in the
output correction term, while the boundary measurements (7b)
intervene in observer boundary conditions (18).

Remark 2: The determination of matrix P solving (20)
depends only on the knowledge of the bounds of A[R] coming
from (5)-(6) in Assumption 1 without this requiring a priori
knowledge of R(t, x) however. In order to weaken this assump-
tion even more and avoid a priori knowledge of these bounds,
we might alternatively follow a different approach as in [7]
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concerning finite dimensions, where a time-varying Lyapunov
matrix P (t) is considered instead.

Remark 3: In this work, an elevated regularity is required
in order to solve the observer problem, in contrast to the
classical solvability requirements of the wave equation (see
Assumption 1). Strong regularity is still required even for the
case of constant unknown coefficient, namely, when N = 0.
This assumption is required to perform transformations (9)-
(10) in order to achieve an appropriate form for observer
design and it is needed in order to inject spatial derivatives
of higher order of the solution in the observer dynamics.
To the best of our knowledge, there exists no previous work
in the literature aiming at exponential in time estimation
of a coefficient in the wave equation and it does not seem
straightforward how to weaken such regularity assumptions.

We now note that the observer system (17)-(18) is localized
in the space subinterval [0, δ] and not in the whole space [0, L].
This observer provides an estimate of the source coefficient f
and the solution z to the wave equation in the part [0, δ] only,
as it is proven in the sequel. However, since f is polynomial,
it is written as

f(x) =

N∑
i=0

∂ixv3(0)

i!sgn (R(0, 0))
xi, x ∈ [0, L]. (21)

Additionally, its estimation in [0, δ] is extended everywhere in
[0, L] by analytic continuation and it is given by

f̂(t, x) =

N∑
i=0

∂ixv̂3(t, 0)

i!sgn (R(0, 0))
xi, in R+ × [0, L]. (22)

In this way, we get the estimation of the source term f on the
whole spatial domain.

As a final step, we propose a boundary observer of sys-
tem (8) on the partition [δ, L]. This boundary observer is
constructed by copying standard techniques from Lyapunov
analysis for hyperbolic systems (e.g. [4]). In such a way, we
obtain the estimation of the yet unknown solution z to the
wave equation on the whole spatial domain. The proposed
boundary observer with state ǔ =

(
ǔ1 ǔ2

)>
satisfies the

following equations in R+ × (δ, L):{
∂tǔ1(t, x) = −∂xǔ1(t, x) + ǔ2(t, x),

∂tǔ2(t, x) = ∂xǔ2(t, x) +R(t, x)f̂(t, x),
(23)

with the following boundary conditions:(
ǔ1(t, δ)
ǔ2(t, L)

)
=

(
v̂1(t, δ)

∂tz(t, L) + ∂xz(t, L)

)
+ k

(
0

ǔ1(t, L)− z(t, L),

)
(24)

where k ∈ R is an appropriately chosen constant gain.
This second observer (23)-(24) of state ǔ ∈ H1(δ, L) ×

L2(δ, L) can be seen as a boundary observer of the wave
equation. It exploits the estimates f̂(t, x) and v̂1(t, δ) coming
from the internal observer equations (17)-(18) and also the
observations z(t, L), ∂tz(t, L), and ∂xz(t, L) coming from
Assumption 2. In other words, state components of the internal
observer are used as inputs for the boundary observer, while

system’s output (boundary observations) are utilized in the
output correction term inside boundary conditions (24). Gain k
can be tuned to increase the exponential decay of the observer
or even to draw near a finite time observer for the case k = 0.

This work elaborates the convergence of the composite
observer, consisting of parts (17)-(18) and (23)-(24), which
estimates the source component f and the solution z in the
whole space domain. The overall observer state ξ is written
as

ξ := (ẑ, f̂)>, with ẑ :=

{
v̂1, x ∈ [0, δ]
ǔ1, x ∈ [δ, L]

and f̂ =

N∑
i=0

∂ixv̂3(0)

i!sgn (R(0, 0))
xi, x ∈ [0, L],

(25)

where v̂ satisfies (17)-(18), and ǔ satisfies (23)-(24). Note that
Note that by virtue of the first boundary condition in (24)

(on x = δ) and of internal observer boundary conditions
(18), observer state ẑ is continuous with respect to the
space variable. This was a result of the appropriate choice
of transformation T in order to get −I3∂N+1

x as principal
differential operator of (12) (and consequently of internal
observer (16)) instead of +I3∂

N+1
x in our preliminary work

[23] concerning just the estimation of the coefficient. As a
consequence, boundary conditions (14) of system and, thus,
the ones of internal observer (see (18)) were formed in such
a way that continuity of observer state ẑ with respect to the
state variable is guaranteed, i.e., v̂1(t, δ) = ǔ1(t, δ),∀t ≥ 0.

We are now in a position to state our main result, which
gives a solution to Problem 1 in Section II.

Theorem 1: Consider wave equation (1) with unknown
source term F given by (2) consisting of a known func-
tion R and an unknown polynomial f ∈ RN [x] written
as f(x) =

∑N
i=0 fix

i of degree less than or equal to N ,
where N is even. Suppose that Assumption 1 holds and that
observations in Assumption 2 are available at system’s output.
Let P � 0 satisfying (20) for some η > 0. Denote also
v0 =

(
z0, z1 − ∂N+1

x z0, f
)>

with (z0, z1) the unknown initial
conditions of the wave equation. Then, the following results
(i) and (ii) hold about the unique solutions ξ to composite ob-
server (25) assuming also that initial condition v̂0(·) := v̂(0, ·)
of internal observer (17)-(18) belongs to H2N+2

(
0, δ;R3

)
and satisfies compatibility conditions of order 2N+2 and also
that initial condition (ǔ1(0, ·), ǔ2(0, ·)) of boundary observer
(23)-(24) belongs to H1(δ, L)× L2(δ, L).

(i) For gain θ ≥ 1, internal observer (17)-(18) provides an
estimate for the source component via v̂3, in the sense that
there exist κ, ` > 0 such that∣∣∣∣fi − 1

i!sgn (R(0, 0))
∂ixv̂3(t, 0)

∣∣∣∣
≤ `θ2e−θκt‖v0 − v̂0‖HN+1(0,δ;R3), (26)

for i = 0, . . . , N .
(ii) For appropriate choice of boundary observer gain k

small enough and choice of internal observer gain θ large
enough, composite observer (25) provides an exponential
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estimation of the solution z, namely, there exist α, β > 0 such
that

‖z(t, ·)− ẑ(t, ·)‖L2(0,L) ≤ αe−βt
(
θ2‖v0− v̂0‖HN+1(0,δ;R3)

+ ‖u(0, ·)− ǔ(0, ·)‖L2(δ,L;R2)

)
. (27)

Prior to presenting the proof of Theorem 1, note that compat-
ibility conditions of order 2N + 2 for initial condition v̂0 of
the observer system (17) are explicitly written as follows:

dj

dxj z
1(x)|x=0 +

∑N
k=j σjk

(
η1,k − dk

dxk
z1(x)|x=δ

)

dj+2

dxj+2
z0(x)|x=0 + ∂jxF (t, x)|t=0,x=0

− dN+1+j

dxN+1+j
z1(x)|x=0

+

N∑
k=j

σjk

[
η2,k −

dk+2

dxk+2
z0(x)|x=δ

−∂kxF (t, x)|t=0,x=0 −
dk+N+1

dxk+N+1
z1(x)|x=δ

]

∑N
k=j σjkη3,k


= − dN+1+j

dxN+1+j
v̂0(x)|x=0 +

j∑
k=0

(
j
k

)
A
[
∂j−kx R

]
|t=0,x=0

× dk

dxk
v̂0(x)|x=0 +K∂jxz0(x)|x=0

+ ΘP−1C>
(
dj

dxj
z0(x)|x=0 − C

dj

dxj
v̂0(x)|x=0

)
,

∀j ∈ {0, . . . , N}, (28a)

dj

dxj
v̂0(x)|x=δ =

 dj

dxj z
0(x)|x=δ

dj

dxj z
1(x)|x=δ − dN+1+j

dxN+1+j z
0(x)|x=δ

0

 ,

∀j ∈ {N + 1, . . . , 2N + 1}, (28b)

where

η1,iη2,i
η3,i

 := − dN+1+i

dxN+1+i
v̂0(x)|x=δ

+

i∑
k=0

(
i
k

)
A
[
∂i−kx R

]
|t=0,x=δ

dk

dxk
v̂0(x)|x=δ

+K∂ixz0(x)|x=δ + ΘP−1C>
(
di

dxi
z0(x)|x=δ

−C di

dxi
v̂0(x)|x=δ

)
, i = 0, . . . , N.

B. Proof of the Observer Convergence

We prove here both parts (i) and (ii) of Theorem 1.
(i) Let us prove the convergence of the internal observer

(17)-(18). First, we easily deduce global existence and unique-
ness of solutions to (17)-(18) under Assumption 1 by invok-
ing classical arguments from the theory of PDEs (Lumers-
Philipps theorem for instance). More particularly, for initial
condition v̂0 ∈ H2N+2

(
0, δ;R3

)
satisfying compatibility con-

ditions of order 2N + 2, there exist unique classical solutions
v̂ to (17)-(18) belonging to C0

(
R+;H2N+2

(
0, δ;R3

))
∩

C1
(
R+;HN+1

(
0, δ;R3

))
. Next, let us define the scaled

observer error by

ε := Θ−1 (v̂ − v)

recalling Θ given by (19) and also define

E[N+1] := col{ε, ∂xε, . . . , ∂N+1
x ε}.

We can easily see that E[N+1] satisfies the following equations
in R+ × (0, δ):

∂ix∂tε = −∂N+1+i
x ε+ θ

i−1∑
k=0

(
i
k

)
A
[
∂i−kx R

]
∂kxε

+ θ
(
A [R]− P−1C>C

)
∂ixε, (29a)

and for all i ∈ {0, . . . , N + 1} and boundary conditions

∂jxε(t, 0) =

N∑
k=j

σjk∂
k
xε(t, δ), ∀j ∈ {i, . . . , N},

∂jxε(t, δ) =0, ∀j ∈ {N + 1, . . . , N + i},

(29b)

which by virtue of the dynamics (29a), lead additionally to
the following implicit boundary conditions:

∂jxε(t, 0) = 0, ∀j ∈ {N + 1, . . . , N + i}. (30)

To see how we obtained the above implicit boundary condi-
tions, we first differentiate with respect to t the first equation
in (29b) and we obtain

∂jx∂tε(t, 0) =

N∑
k=j

σjk∂
k
x∂tε(t, δ), ∀j ∈ {i, . . . , N}.

After substituting (29a) in the above equation, we get

− ∂N+1+j
x ε(t, 0) + θ

j−1∑
k=0

(
j
k

)
A
[
∂j−kx R(t)

]
(0)∂kxε(t, 0)

+ θ
(
A [R(t)] (0)− P−1C>C

)
∂jxε(t, 0)

=

N∑
k=j

σjk

(
− ∂N+1+k

x ε(t, δ)

+ θ

k−1∑
i=0

(
k
i

)
A
[
∂k−ix R(t)

]
(δ)∂ixε(t, δ)

+ θ
(
A [R(t)] (δ)− P−1C>C

)
∂kxε(t, δ)

)
,

which corresponds to a system of three equations. Now,
by virtue of the second equation in (29b), the first term∑N
k=j σkj∂

N+1+k
x ε(t, δ) of the right-hand side of the above

equation is equal to zero. Starting from the third equation of
the above system, we readily obtain ∂N+1+j

x ε3(t, 0) = 0, for
all j = 0, . . . , N . Also, by virtue of the first equation in (29b),
the second and third term of the left-hand side of the first
equation of the above system is cancelled out with the second
and third term of its right-hand side, respectively, implying
∂N+1+j
x ε1(t, 0) = 0, for all j = 0, . . . , N . In a similar

fashion, ∂N+1+j
x ε3(t, 0) = 0, for all j = 0, . . . , N . As a

consequence of the previous steps, we get ∂N+1+j
x ε(t, 0) = 0,

for all j = 0, . . . , N, which in turn leads to implicit boundary
conditions (30).
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It is clear now that we achieved the main goal described
already in the reasoning for the choice of transformation
(10), since in the observer error dynamics (29) (for i = 0),
differential operator associated to the system consists only of
−I3∂N+1

x (same differential operators on the diagonal), while
the undesired perturbation term KC in (12) has completely
disappeared. This leads to Lyapunov stabilization of the error
system, as it is seen below. The latter is a result (i) of the
presence of the same differential operators on the diagonal,
which allows to perform integration by parts when taking the
Lyapunov derivative and simultaneously, (ii) of the stabiliza-
tion of zero-order coupling coefficient A[R].

Let us now introduce a Lyapunov functional V1 :
HN+1(0, δ)→ R+ by

V1[ε] =

N+1∑
i=0

ρi

∫ δ

0

∂ixε
>(x)P∂ixε(x)dx, (31)

with ρ0 = 1, ρi > 0, for all i in {1, . . . , N+1} to be chosen
appropriately, and matrix P � 0 satisfying (20). Taking the
time derivative of V1(t) := V1[ε(t)], t ≥ 0 along the solutions
of (29) and substituting the corresponding dynamics, we obtain

V̇1 = −
N+1∑
i=0

ρi

∫ δ

0

(
∂N+1+i
x ε>(x)P∂ixε(x)

+∂ixε
>(x)P∂N+1+i

x ε(x)
)
dx

− θ
∫ δ

0

(
E[N+1](x)

)>
M [R] (x)E[N+1](x)dx, (32)

where M [R] = (Mij)(N+2)×(N+2) [R] with

Mii [R] =− 2ρi−1
(
Sym (PA [R])− C>C

)
,

∀i ∈ {1, . . . , N + 2},

Mij [R] =M>ji[R] = −ρi−1
(
i− 1
j − 1

)
PA

[
∂i−jx R

]
,

∀i ∈ {j + 1, . . . , N + 2}, j ∈ {1, . . . , N + 2}.

Notice that by using the Schur complement, Lyapunov
inequality (20), and the uniform boundedness of R in
HN+1(0, δ), we can always choose ρi ∈ (0, 1], for i in
{1, . . . , N + 1} such that M becomes positive for all R
satisfying (5)-(6) in Assumption 1. More precisely, we choose
constants ρi ∈ (0, 1] such that

γ := inf
R∈L∞(R+;HN+1(0,δ))

w>M[R]w

|w|2
> 0,∀w ∈ R3N+6 \ 0.

Therefore, applying repeated integration by parts in (32) and
by the fact that N is even, we obtain

V̇1 ≤
N+1∑
i=0

ρi [Πi(x)]
δ
0 − θ

γ

|P |
V1, (33)

where

Πi(x) :=
(
∂ixE

[N ](x)
)>
P∂ixE[N ](x),

with P := antidiagN+1

(
(−1)jP

)
j=1,...,N+1

. Next, substitut-
ing boundary conditions of ε given by (29b) and by use of
(30), we obtain the following for Πi, i ∈ {0, . . . , N+1}:

[Πi(x)]
δ
0 =

(
∂ixE

[N ](δ)
)>

Ωi∂
i
xE

[N ](δ);

Ωi :=antidiagN+1 (Ξij)j=1,...,N+1

− Σ>i antidiagN+1 (Ξij)j=1,...,N+1 Σi,

where

Ξij :=

{
03, j = 1, . . . , i and j = N + 2− i, . . . , N + 1
(−1)jP, j = i+ 1, . . . , N + 1− i ,

Σi is a block matrix given by

Σi := (σjkI3)j,k=i,...,N+i,

while σjk are given by (15) for j ≤ k ≤ N and σjk ≡ 0 for
k ≤ j − 1 ≤ N and for k = j ∈ {N + 1, . . . , 2N + 1}. After
appropriate calculations, it turns out that

Ωi = 0, ∀i = 0, . . . , N + 1, (34)

leading eventually to

V̇1 ≤ −2θκV1; κ :=
γ

2|P |
. (35)

Remark 4: In this work, we chose N even (f ∈ RN [x]
with N even, see below (3)). Obviously, if our polynomial
has degree less than or equal to an odd number Ñ , we may
choose N = Ñ + 1. The reason why we need N even is
revealed in (32), where we performed repeated integration
by parts. After this, we obtained (33) consisting of boundary
terms Πi that are eventually annihilated, see (34). Thanks
to the latter, we obtained (35), which is essential to deduce
stabilization of the error equation. In fact, the previously
described requirements are fulfilled if implication (32)⇒ (33)
holds true. This implication holds only if N is even and to
see this, recall the following general formula on repeated
integration by parts holding for sufficiently smooth scalar
functions g, h:∫

h(N+1)gdx =

N∑
k=0

(−1)kg(k)h(N−k)

+ (−1)N+1

∫
g(N+1)hdx. (36)

Indeed, adapting the above general formula to our expres-
sion

∫ δ
0

(
∂N+1+i
x ε>P∂ixε+ ∂ixε

>P∂N+1+i
x ε

)
dx in (32) and

choosing N even, we can verify the virtue of (32) ⇒ (33).
Next, by use of the Grönwall Lemma and also (35), (9), (11),
and (35), we obtain

θ−1‖ (z(t, ·)− v̂1(t, ·)) ‖HN+1(0,δ)

+ θ−2‖∂tz(t, ·)− ∂N+1
x z(t, ·)− v̂2(t, ·)‖HN+1(0,δ)

+ θ−3‖f(·)sgn (R(0, 0))− v̂3(t, ·)‖HN+1(0,δ)

≤ γ1θ−1e−θκt‖v0 − v̂0‖HN+1(0,δ;R3), (37)

where γ1 := 1
min{ρi,i=0,...,N+1}

√
3 |P |
eig(P ) .

Stability inequality (37) indicates that v̂1 and v̂3 provide
an estimate of z |[0,δ] and of the unknown f , respectively, in
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the HN+1 spatial norm. We also observe that (37) has led
to a phenomenon of loss of derivatives. Indeed, in order to
estimate the solution of the wave equation, we demand higher
order of regularity (3N + 3) of the solution than the order
of the convergent derivatives of the observer error (N + 1).
Such phenomena appear when studying the controllability of
underactuated coupled systems (see [3]).

Finally, by invoking the continuous embedding
HN+1(0, δ) ↪→ CN ([0, δ]) (see [1] on Sobolev embeddings
and Morrey’s inequality), we get by (37)

‖z(t, ·)−v̂1(t, ·)‖CN ([0,δ])

≤ c0γ1e−θκt‖v0 − v̂0‖HN+1(0,δ;R3), (38)

‖f(·)sgn (R(0, 0))− v̂3(t, ·)‖CN ([0,δ])

≤ c0γ1θ2e−θκt‖v0 − v̂0‖HN+1(0,δ;R3), (39)

with c0 > 0 an embedding constant.
The latter shows that the coefficients of polynomial f(·), given
by fi = f(i)(0)

i! , are approximated by 1
i!sgn(R(0,0))∂

i
xv̂3(t, 0) for

all i in {0, . . . , N} in an exponentially fast manner. Then, by
use of (9)-(10), we deduce (26) with ` = c0γ1.

(ii) Focusing next on the spatial subdomain [δ, L], we define
observer error by

ũ =

(
ǔ1 − u1
ǔ2 − u2

)
, x ∈ [δ, L].

For systems of conservation laws, an observer-based method
for estimation has been developed in [12] and we are inspired
by this work. The error ũ satisfies the following equations in
R+ × (δ, L):

∂tũ(t, x) =

(
−1 0
0 1

)
∂xũ(t, x) +

(
0 1
0 0

)
ũ(t, x)

+R(t, x)

(
0
1

)(
f̂(t, x)− f(x)

)
, (40)

with boundary conditions

ũ1(t, δ) =θε1(t, δ),

ũ2(t, L) =kũ1(t, L).
(41)

Introduce a Lyapunov functional V2 : H1(δ, L)→ R+ as

V2[ũ] =
1

2

∫ L

δ

ũ>(x)diag{e−µx, eµx}ũ(x)dx, (42)

with µ > 0 to be chosen appropriately. Taking the time
derivative of V2(t) := V2[ũ(t)], along the dynamics (40) for
t ≥ 0, one obtains

V̇2 =

∫ L

δ

ũ>(x)diag{−e−µx, eµx}∂xũ(x)dx

+
1

2

∫ L

δ

e−µxũ>(x)

(
0 1
1 0

)
ũ(x)dx

+

∫ L

δ

eµxR(t, x)f̃(x)ũ2(x)dx,

=I1 + I2 + I3, (43)

where f̃ := f̂ − f and each of I1, I2, and I3 corresponds
to each of the three integral terms in (43) consecutively. The

first integral term can be rewritten after applying integration
by parts as

I1 = [G(x)]
L
δ −

µ

2

∫ L

δ

ũ>(x)diag{e−µx, eµx}ũ(x)dx, (44)

where G(x) := 1
2 ũ
>(x)diag{−e−µx, eµx}ũ(x).

The boundary term [G(x)]
L
δ is written after using boundary

conditions (41) as follows:

[G(x)]
L
δ =ũ21(L)

(
k2eµL − e−µL

)
+ θ2e−µδε21(δ)− ũ22(δ)eµδ.

Then, for choice of gain parameter k small enough, namely,
for

|k| ≤ e−µL,

we obtain

[G(x)]
L
δ ≤ θ

2e−µδε21(δ). (45)

Considering the second integral term, it is easy to see that it
can be bounded as follows:

I2 ≤
e−µδ

2

∫ L

δ

ũ>(x)diag{e−µx, eµx}ũ(x)dx = e−µδV2.

(46)

Moreover, the third term of the time derivative (43) can be
bounded as a result of Assumption 1 on function R, the
Cauchy-Schwartz and Young’s inequalities, and (42) in the
following manner:

I3 =

∫ L

δ

eµxR(t, x)f̃(x)ũ2(x)dx

≤ c̄e
µ
2L‖f̃‖L2(δ,L)

(∫ L

δ

eµxũ22(x)dx

)1/2

≤ 1

2ε0
c̄eµL‖f̃‖2L2(δ,L) +

ε0
2

∫ L

δ

eµxũ22(x)dx

≤ 1

2ε0
c̄eµL‖f̃‖2L2(δ,L) + ε0V2, (47)

for some ε0 chosen in (0, 1) and

c̄ := sup
(t,x)∈R+×[δ,L]

|R(t, x)|,

which makes sense from Assumption 1.
Overall, V̇2 is bounded by use of (43)-(47) as follows:

V̇2 ≤ −
(
µ− e−µδ − ε0

)
V2 + Ω(t),

with

Ω(t) :=
1

2ε0
c̄eµL‖f̃‖2L2(δ,L) + θ2e−µδε21(t, δ).

By choosing parameter µ large enough such that

µ− e−µδ > ε0,

we obtain after applying the Grönwall Lemma

V2(t) ≤ e−µ0tV2(0) +

∫ t

0

e−µ0(t−s)Ω(s)ds, (48)

for some 0 < µ0 < µ − e−µδ − ε0. We now notice that the
difference ‖f̃‖L2(δ,L) is bounded by use of (37), in conjunction



10

with (21)-(22), whereas the trace of the error of the internal
observer ε1(t, δ) is bounded, according to (38), as follows:

|ε1(t, δ)| ≤‖ε1(t, ·)‖C0[0,δ]

≤ c0γ1θ−1e−θκt‖v0 − v̂0‖HN+1(0,δ;R3).

By virtue of these bounds, we can bound Ω(s) for all s ≥ 0
as follows:

Ω(s)≤
(

1

2ε0
c̄eµLθ4+c20

)
γ21e
−2θκs‖v0 − v̂0‖2HN+1(0,δ;R3).

(49)

From there, and choosing the gain θ large enough, namely,

θ >
µ0

2κ
,

(48) brings

V2(t) ≤e−µ0tV2(0) +

(
1

2ε0
c̄eµLθ4 + c20

)
γ21

× e−2θκt − e−µ0t

µ0 − 2θκ
‖v0 − v̂0‖2HN+1(0,δ;R3).

Therefore, by use of (42) and also trivial inequalities we get

‖ũ(t, ·)‖L2(δ,L;R2) ≤ eµLe−
µ0
2 t‖u(0, ·)− ǔ(0, ·)‖L2(δ,L;R2)

+

√
1

2ε0
c̄eµLθ4 + c20

2θκ− µ0
γ1e

µ
2Le−

µ0
2 t‖v0 − v̂0‖HN+1(0,δ;R3).

(50)

The above corresponds to the exponential estimation of the
solution u1 = z on the subinterval [δ, L]. The latter concludes
part (ii) of Theorem 1.

Overall, combining (50) (for the part of the solution on
[δ, L], proven above) with (37) (for the part [0, δ] proven in
the part (i)), we deduce (27).

The proof is complete. �
Remark 5: Composite observer (25) provides an exponen-

tially fast estimation of the source coefficient f and the solu-
tion z. For the coefficient f , the estimation can be arbitrarily
fast by appropriately tuning parameter θ in the dynamics
of the internal observer (17)-(24) (see (26)). However, for
the solution z to the wave equation, whose estimation relies
on boundary observer (23)-(24) in (δ, L), its estimation on
the whole domain cannot become arbitrarily fast and it is
limited by the wave propagation. In (50), we see that the
maximal convergence rate (finite-time convergence achieved
for observer gain k = 0) is independent of the choice of
observer gain θ and, thus, cannot be tuned. Finally, note that
the choice of the right endpoint δ of the observation interval
[0, δ] plays a role in the estimation of the coefficient, as seen
by (35), where convergence rate coefficient κ depends on γ,
which in turn depends on δ, noting that the further R(t, x) is
away from zero on [0, δ], the larger κ is. This means that the
value of δ has an effect on the convergence rate coefficient κ
and therefore on the choice of observer gain θ, which might
be needed to be large enough when κ is small in order to
obtain a desired convergence rate θκ.

Remark 6: We designed the first internal observer with a
structure resembling to high-gain observers for finite dimen-
sions (see (17)-(18) and the form of observer gain matrix Θ

(19)). High-gain observer designs have been extended to infi-
nite dimensions (see for instance [24], [25]) aiming at tackling
the presence of nonlinearities and unknown perturbations in
system dynamics. In Section III, this design could be seemingly
replaced by a standard Luenberger observer design. However,
we use this high-gain design that would be indispensable to
deal with possible perturbations appearing in the error dy-
namics if we intended to prove an Input-to-State (ISS) estimate
with respect to a generic (not essentially polynomial) source
coefficient. Additionally, the high-gain observer structure that
we introduced in this work could be used to deal with an
alternative setting where the wave equation was semilinear
with Lipschitz nonlinear perturbations of the form h (z, ∂tz).
The stabilization of the coupling coefficient A[R] along with
the cascade structure of the observer error and the use of the
high-gain technique permits the consideration of such more
general cases. These topics are left for future works.

Remark 7: We notice that by (37), additionally to the
solution z, its time derivative ∂tz is also estimated in [0, δ],
hence the full state of the wave (z, ∂tz) is estimated, whereas
in the subinterval [δ, L] such an estimation is not obtained,
since we used a weighted L2 spatial norm (instead of an H1

one) as a Lyapunov functional (42) leading exclusively to an
estimation of z.

IV. EXTENSION TO A NONLINEAR INVERSE PROBLEM

In this section, we discuss the solvability of a closely
related inverse problem for the wave equation via exponential
observers for the case of an unknown parameter multiplying
the state. Solutions to such a nonlinear inverse problem [26]
involve the recovery of the potential of the wave equation (see
e.g. [35], [5]).

Consider again wave equation (1). In the present formula-
tion, term F is no longer considered a source term but it is
assumed to be state-dependent and be written as follows:

F (t, x) = −q(x)z(t, x), (51)

where q represents the unknown parameter, called potential,
to be estimated.

We wish here to solve the first part of Problem 1 with
unknown source f substituted by potential q. We provide a
solution to this problem concerning the exponential estimation
of the potential, but not yet the simultaneous estimation of
the solution to the wave equation. Intuition coming from the
solvability of inverse problems (see [26]) suggests that this
nonlinear inverse problem would require stronger assumptions
on the solution to the wave equation than the ones in Section
II. Indeed, to deal with this problem, we replace the conditions
on R(t, x) in Section II with similar conditions on z(t, x). The
result of this section is a consequence of the analysis presented
in our preliminary work [23] concerning the recovery of the
potential. Compared to [23], the conditions here are slightly
weaker. The proof is not given in full details as it is a direct
adaptation of the proof of Theorem 1. We keep here the
same assumptions on the polynomial nature of the unknown
parameter q as in Section II, namely, q ∈ RN [x] with N
even and the same observation of the solution on a part of the
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domain [0, δ] (avoiding nevertheless the observations on x = L
given in (7d), which are only needed for the estimation of the
solution). Note that the case of polynomial-type potential is
not uncommon in physical realizations, especially in quantum
mechanics, see for instance [16], where a use of a polynomial
as a potential is justified in the Schrödinger equation.

Let us now state the main hypothesis of this section.
Assumption 3: We assume that

z0 ∈ H3N+3(0, L), z1 ∈ H3N+2(0, L).

We also suppose that h1, h2 ∈ H3N+3 (R+) and that initial
conditions (z0, z1) satisfy compatibility conditions of order
3N + 3.

Furthermore, we suppose that the solution to the wave
equation is uniformly bounded on [0, δ] as follows:

z ∈ L∞
(
R+;HN+1(0, δ)

)
(52)

and that it also holds

inf
(t,x)∈R+×[0,δ]

|z(t, x)| > 0 (53)

implying simultaneously the compatibility with z0.
Some positive upper and lower bounds of |z| coming from

(52)-(53) are considered a priori known.
The nature of assumptions in (52)-(53) are revealed in

classical works on the solvability of inverse problems for the
potential of the wave equation, where some slightly weaker
conditions are assumed (see [5], [6]), i.e. that only the infimum
of a norm of the initial condition is strictly positive. Notice
also that if one assumes a priori that z0(x) 6= 0,∀x ∈ [0, δ]
and inft∈R+

|h1(t)| > 0, by continuity arguments, there always
exists a δ > 0 near zero such that (53) is satisfied.

Next, consider P � 0 satisfying for all (t, x) ∈ R+ × [0, δ]

Sym (PA [z(t)] (x))− C>C ≤ −ηI3 (54)

for some η > 0, with A[z] given by (13). Similarly, as in the
reasoning of Section III, the above inequality is feasible for z
satisfying (52)-(53).

Now, we propose an internal observer to estimate the
unknown potential q satisfying the following equation in
R+ × (0, δ), for all i ∈ {0, . . . , N + 1},

∂t∂
i
xv̂ = −∂N+1+i

x v̂ +

i∑
k=0

(
i
k

)
A
[
∂i−kx z

]
∂kx v̂ +K∂ixz

+ ΘP−1C>
(
∂ixz − C∂ixv̂

)
(55)

with Θ given by (19), C and K as in (13). We also associate
to this observer the same boundary conditions as in (18).

The result of this section is stated as follows.
Theorem 2: Consider wave equation (1) where F is given

by (51) with potential q ∈ RN [x], namely, q(x) =
∑N
i=0 qix

i

an unknown polynomial of degree less than or equal to N
with N even. Suppose that Assumption 3 holds and that
observations in Assumption 2 of the previous section are
available in system’s output. Let P � 0 satisfy (54) for
some η > 0. Denote also v0 = (z0, z1 − ∂N+1

x z0, q)>,
where (z0, z1) is the unknown initial conditions of the wave
equation. Then, the following result holds about the unique

solution v̂ to internal observer (55)-(18) with initial condition
v̂0(·) := v̂(0, ·) belonging to H2N+2

(
0, δ;R3

)
and satisfying

compatibility conditions of order 2N + 2.
For gain θ ≥ 1, v̂ provides an estimate for the potential

via v̂3, in the sense that there exist κ, ` > 0 such that for
i = 0, . . . , N ,∣∣∣∣qi − 1

i!sgn (z0(0))
∂ixv̂3(t, 0)

∣∣∣∣
≤ `θ2e−θκt‖v0 − v̂0‖HN+1(0,δ;R3).

We present here a sketch of the proof of Theorem 2.
Proof: The proof follows the steps of the one given in

[23]. The objective is to adopt the same methodology as in
the part (i) of the proof in Section III-B, except for the fact
that z substitutes R in the observer equations. First, notice
that under Assumption 3, similarly as in the reasoning in the
proof of Theorem 1 (see Section III-B), existence/uniqueness
of solutions to the wave and to the observer equations are
guaranteed for all times t ≥ 0. These solutions are regular
enough as in the proof of Theorem 1. Second, for the stability
analysis, we need to transform the wave equation into a first-
order hyperbolic system, similarly as in Section II by using
the transformation

u1 = z, u2 = ∂tz + ∂xz, u3 = −qsgn
(
z0(0)

)
,

noting that as a consequence of (53) in Assumption 3, we
have sgn (z(t, x)) = sgn

(
z0(0)

)
, for all (t, x) in R+ × [0, δ].

Then, system writes exactly as (8) and by applying the same
transformation as in Section II given by (11), system amounts
to

∂tv(t, x)=− ∂N+1
x v(t, x)

+A [v1(t)] (x)v(t, x)+KCv(t)(x), (56)

with boundary conditions given again by (14). Notice that the
above transformed cascade system of PDEs is semilinear in
contrast to (12), which was linear. Then, the stability analysis
is similar to the one in the proof of part (i) of Theorem 1
in Section III-B noting that we ought to substitute R(t, x)
by z(t, x) taking also into account sufficient conditions in
Assumption 3.

Remark 8: In Theorem 2, we presented the estimation of
the potential q of the wave equation via an internal observer,
similarly as in the part (i) of Theorem 1 in Section III on
the estimation of the source coefficient. However, we did not
answer completely to Problem 1, since we did not provide a
simultaneous estimation for the solution z to the wave equation
as in the second part (ii) of Theorem 1. It seems that a similar
global estimation result cannot hold for this case and only a
local result might be proven, as this is limited by the nonlinear
nature of the present problem.

Remark 9: In both Assumption 3 and Theorem 2, we
utilised the term “compatibility conditions” for initial con-
ditions of the wave equation and the internal observer. For
the wave equation, these are in the spirit of Definition 1
of Section II but with some adaptation to the present case,
since in this section, (51) holds. One can follow the algorithm
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described below Definition 1 in order to precise these condi-
tions. More details are left to the reader, since this point is
out of the main scope of this work. Notice also that z0, h1
should be chosen such that z0(x) 6= 0,∀x ∈ [0, δ] and
inft∈R+

|h1(t)| > 0 (see (53)). In this work, we are mostly
interested in compatibility conditions for the observer system
as observer design is the main goal. These conditions of order
2N + 2, that the initial condition of the observer system (55)-
(18) should satisfy, are exactly as in relations (28) of Section
III but with A[∂lxR] therein substituted by A[ d

l

dxl
z0].

V. SIMULATION

In this section, the composite observer designed in this
paper for the joint estimation of the source coefficient and the
solution in Section III is set up numerically for an example
of polynomial of order N = 2. To avoid numerical issues,
consistent and unconditionally stable schemes are chosen.
For the first observer, which is an Airy’s type equation, the
Crank Nicholson right-winded numerical schema D+D+D−
is selected. For the second observer, which is constituted of
two transport equations, states û1, û2 are discretized with D−
and D+, respectively. For more details in that direction, one
can refer to [14] which deals with Courant-Friedrich-Lewy
conditions for several “finite-difference θ-schemes” dedicated
to hyperbolic systems of type (∂t + ∂2p+1

x )u = 0, according
to the parity of p.

Consider system (1) on the interval [0, 10] with source
term F (t, x) = x(x− 10), homogeneous boundary conditions
h1 = h2 = 0 and compatible initial conditions

(
z0(x)

z1(x)

)
=(

100sin(πx10 )
0

)
(see Definition 1). On Fig. 1a, the corresponding

solution is drawn. The main goal is to reconstruct the three
polynomial coefficients {1,−10, 0} as well as the solution. For
that, measurements as the ones in Assumption 2 are available
only on [0, δ = 1] and on the right boundary at L = 10.
Thanks to the composite observer (25), the task can be realized
and Fig. 1b represents the observer errors: both internal and
boundary observers converge.

It is also worth noticing that the convergence is faster on
[0, 1] than the one on [1, 10]. This is always possible since the
decay rate of the internal observer, namely, θκ (see (26)) can
be larger than the decay rate of the second observer β (see
(27)).

Let us now present more details on the behavior of each
observer separately. By selecting our simple example, the main
idea is also to highlight the relevance of each gain parameter
and to understand their influence on the reconstruction process.

For the internal observer on [0, 1], observer error sys-
tem (29) is considered for some compatible initial condition
of the observer (see compatibility conditions (28)). Error com-
ponents gather the estimate of the state of the wave equation(
ṽ1
ṽ2

)
=
(

ẑ−z
∂tẑ−∂3

xẑ−∂tz+∂
3
xz

)
|[0,1] and the estimate of the

source term ṽ3 = v̂3− v3. On Fig. 2a, the H3 norm of ṽ with
respect to the time is depicted and it converges exponentially
to zero, as demonstrated in (37). An underlying result is the
exponential convergence of each polynomial coefficient v̂

(i)
3 (0)
i!

for i ∈ {0, 1, 2} towards the expected ones.

(a) Solution of system (1). (b) Error on the solution.

Fig. 1: Simulations on the whole interval [0, L].
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(a) State error for θ = 5.
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(b) Coefficient error.

Fig. 2: First observer on [0, δ] (internal observer).

(a) k = 0. (b) k = 0.1.

Fig. 3: Second observer on [δ, L] (boundary observer).

Then, on Fig. 2b the norm of
∑2
i=0

v̂
(i)
3 (0)
i! is drawn in

log scale and illustrates the statement (i) in Theorem 1. By
increasing the control gain θ (see dashed curve), one also
confirms that the decay rate increases. Moreover, as an expo-
nential observer, it converges with the same convergence rate
independently of initial condition (see dotted curve). Thanks
to these coefficient estimations and (21)-(22), the source term
can finally be reconstructed on the whole domain.

For the boundary observer on [1, 10], the solution ǔ1 −
u1 |[1,10] of the difference between (23) and (8) is represented
on Fig. 1b with k = 0.1. Once again, the state converges
exponentially to zero, as mentioned in Theorem 1 (ii). Nev-
ertheless, it is interesting to note that the dynamics of the
observer are enforced by the dynamics of the system itself,
associated to a characteristic time τ > 20, which leads to
much slower convergence than the previous internal observer.
Lastly, the role played by the observer gain can be interpreted.
On Fig. 3, the estimation seems to be faster when control gain
|k| of the boundary observer decreases, probably at the price
of robustness with respect to parameter uncertainties.

Simulations have been also done for a nonlinear inverse
problem on the estimation of the potential (see Section IV)
and can be found in [23].
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VI. CONCLUSION

The problem of simultaneous estimation of an unknown
polynomial coefficient and the solution of the 1D wave equa-
tion was solved via a composite exponential observer. The first
internal observer is performed in an observed subinterval of
the domain and provides an estimate of the source coefficient
and of a localized part of the solution. At the same time, in
combination with a boundary observer, an estimation of the
wave solution is obtained on the rest of the spatial domain.
For this purpose, after augmenting the state with the unknown
coefficient, the wave equation was written as a system of
coupled PDEs of higher order. The measurement included the
solution of the wave equation and its spatial derivatives on a
subinterval of the domain. Some extensions were finally given
on the estimation of a potential (nonlinear inverse problem).

Since solutions for nonlinear inverse problems were only
partially established here, in our future works we will examine
an alternative strategy on observer design for such problems
inspired by a finite-dimensional approach for nonlinear sys-
tems appearing in [33]. Future research might also include the
extension of this approach to 2-dimensional domains, which is
more appealing for applications (see elastography), and some
links of such an observer design approach with the internal
observability of systems of coupled PDEs.
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