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Joint Coefficient and Solution Estimation for the 1D
Wave Equation: An Observer-Based Solution to

Inverse Problems
Constantinos Kitsos, Mathieu Bajodek, and Lucie Baudouin

Abstract—The estimation of an unknown source coefficient
and of the solution to a 1-dimensional (1D) wave equation
via exponentially convergent state observers is the problem
under consideration in this work. The coefficient is assumed
to depend on the space variable only and to be polynomial.
The main observation information for this inverse problem is
the value of the solution to the wave equation in a subinterval
of the domain, including also some of its higher-order spatial
derivatives. In order to estimate the source coefficient, we turn it
into a new state as in finite-dimensional parameter identification
approaches. However in this infinite-dimensional setting,
this requires the introduction of a novel indirect approach
involving an infinite-dimensional state transformation. Sufficient
conditions allow the design of a composite observer consisting of
an internal observer, which estimates in higher regularity spatial
norms both the source term and the solution on a subinterval,
and a boundary observer, in order to eventually provide the
estimation of the solution everywhere. The observer convergence
is proven by means of Lyapunov analysis. An extension of this
approach to the case of the identification of a potential in the
wave equation is finally considered, which is a nonlinear inverse
problem since here, in the equation, the unknown coefficient
multiplies the solution.

Keywords: coefficient identification/estimation in the wave
equation, inverse problems, observers for PDEs

I. INTRODUCTION

The inverse problem of determining unknown coefficients
in partial differential equations (PDEs) has been extensively
studied during the last decades, see [22]. A lot of the recent
results rely on the use of Carleman estimates for the PDE
operator under consideration, dating back to the seminal work
of [11]. In our work, we are interested in the study of
inverse problems for the wave equation, for which Carleman
estimates approaches have already given a lot of answers,
from uniqueness and stability in the determination of source or
potential term (see [35] or [21]) to reconstruction algorithms
(e.g. [6]). Other techniques also exist for the same kind of
problem, see e.g. [9] for a spectral estimation of eigenvalues
approach. For this equation, applications may concern the
recovery of properties of the medium when dealing with
acoustic waves, ocean and seismic prospection, medical imag-
ing, or geophysics, see [15], [32], see also [2] for the 1D
wave equation (inverse problems for bridges, antennas, space-
structures, steel-grid reinforcements etc).
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This research was funded by the French Grant ANR ODISSE (ANR-19-CE48-
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This article has the ambition to propose a different kind
of answer to the inverse problem of the determination of a
time independent source term in the wave equation. The main
goal here will be to design an online estimation of the source
coefficient by means of an appropriate observer.

Observation and observer design results for the wave equa-
tion have already been given for instance in [27], [31].
Estimating the initial state of infinite-dimensional systems
from measurements on a finite interval is solved by use of
a sequence of forward and backward observers in [30], see
also [17]. One can also mention [13] or [10] for the so-called
back-and-forth algorithms. In [18] and references therein, the
problem of reconstruction of initial data using observers is
considered. In all these works, the reconstruction algorithms
are either performed offline or lead to asymptotic, but not
exponential, estimation.

The present paper deals with the estimation through time of
a source coefficient of the 1D wave equation via Luenberger
observers. A novel approach for this rather classical question is
proposed here, method that is initially based on a standard trick
for constant parameter estimation in finite dimensions: the
state of the system is extended with the unknown parameter,
in order to get a cascade system in a canonical form, for
which an observer can be easily designed, see for instance
[8]. In the present case, where the role of the parameter
is played by a space-varying source coefficient, a similar
approach turns out not to be so direct due to the properties
of the differential operator of the extended coupled system.
An indirect approach is thus proposed, that eventually leads
to the exponential estimation in time of the coefficient. In
[20], an in-domain constant parameter is estimated for a
hyperbolic system via adaptive observer, however, similarly as
in finite dimension (see [34]), the estimation is not necessarily
exponential. Contrary to this approach, in the present work, the
estimation of the potential is exponentially convergent, while
the solution to the wave equation is simultaneously estimated.

The so-called indirect approach we will describe in this
paper includes the introduction of an infinite-dimensional
transformation that maps the wave equation into a cascade
system of three coupled PDEs, whose differential operator
is decomposed into a part with the same elements on the
diagonal and a part acting on the observation of the solution
(considered as measurement). Aiming at the final observer
design, we assume that the coefficient we seek is a polynomial
of the space variable and of even degree, and that observations
include the solution and its higher order spatial derivatives in
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a subinterval of the domain coming from appropriately strong
regularity assumptions. An exponentially convergent compos-
ite observer is then designed. It consists of two components :
an internal observer on the observed subinterval, providing the
estimation of the potential arbitrarily fast, and of the solution
in this subinterval, and a boundary observer for the rest of the
domain, bringing the rest of the estimation of the solution. The
stability proof in higher regularity spatial norms is based on the
introduction of appropriate Lyapunov functionals. The current
approach is inspired by a recently introduced methodology
in [24] to deal with the observer design of under-observed
systems of coupled PDEs.

In summary, this work introduces an extension of the clas-
sical parameter identification/estimation methodology from
finite dimensions to infinite dimensions, more precisely to the
problem of coefficient estimation for the wave equation.

The paper is organized as follows. In Section II, we intro-
duce the estimation problem and we present our approach that
leads to solvability of the main observer problem. In Section
III, we present the joint estimation of a source term and the
solution to the wave equation via the proposed observer. We
extend this approach to a related nonlinear inverse problem in
Section IV, concerning the recovery of a potential in a wave
equation under comparable technical assumptions. Section
V includes an illustrative simulation, and we provide some
conclusions and perspectives in Section VI.

Notation: For a given w in Rn, |w| denotes its usual
Euclidean norm. For a matrix A in Rn×n, A> denotes its
transpose, |A| := sup {|Aw| , |w| = 1} is its induced norm
and Sym(A) = A+A>

2 stands for its symmetric part. If
A is symmetric, eig(A) is its minimum eigenvalue. In and
0n are the identity and zero matrix of dimension n, and
antidiagk(Ai)i=1,...,k denotes the block matrix consisting of k
matrices Ai placed on antidiagonal block-row i. By {k, . . . , l}
we denote the set of l− k+ 1 consecutive integers from k to
l. For given u : [0,+∞) × [l, L] → Rn and time t ≥ 0
we use the notation u(t)(x) := u(t, x), for all x in [l, L]
to refer to the profile at certain time and ∂itu (resp. ∂ixu)
is its partial derivative with respect to t (resp. x) of order
i. For a q - times continuously differentiable mapping u we
denote ‖u‖Cq [l,L] :=

∑q
i=0 max{

∣∣∂ixu(x)
∣∣ , x ∈ [l, L]} for the

q-norm. Any element u : [l, L] → Rn of the Hilbert space
L2 (l, L;Rn) satisfies ‖u‖2L2(l,L) =

∫ L
l
|u(x)|2dx < +∞.

From there, the Sobolev space Hq (l, L;Rn) gathers functions
u such that all their weak derivatives up to order q are also in
L2 (l, L;Rn), and is equipped with the norm ‖u‖Hq(l,L;Rn) =∑q
i=0

(∫ L
l
|∂ixu(x)|2dx

)1/2
. Finally, L(X ) denotes the space

of bounded linear operators from X to X and RN [x] denotes
the space of polynomials of the variable x and of degree N .

II. PROBLEM STATEMENT AND ASSUMPTIONS

Let us consider the following wave equation: ∂2t z(t, x) = ∂2xz(t, x)+ F (t, x), t ∈ R+, x ∈(0, L)
z(t, 0) = h1(t), z(t, L) = h2(t), t ∈ R+,
z(0, x) = z0(x), ∂tz(0, x) = z1(x), x ∈ (0, L),

(1)

where F (t, x) is a source term that takes the shape

F (t, x) = f(x)R(t, x), (2)

where f is an unknown coefficient and R is known. The
boundary data h1 and h2 are also given, but

(
z0, z1

)
are

unknown initial data (contrary to several other approaches of
inverse problems where they are usually known). The problem
we wish to solve here is summarized as follows.

Problem 1: Determine sufficient conditions and define
appropriate observations on the solution of the wave equation
that will allow the design of an observer system leading to
estimation of the unknown coefficient f(x) and the solution
z(t, x) of the wave equation simultaneously, converging expo-
nentially in time.

To the best of our knowledge, this problem has not been
given solutions yet. The problem of finding a source coefficient
is a linear inverse problem as the operator mapping the solu-
tion to the unknown coefficient is linear (see [35]). Previous
approaches to solve initial state or source reconstruction have
lead to offline estimation (back-and-forth observers), in con-
trast with the aim of this work. In [20], an in-domain constant
uncertainty is estimated for a class of hyperbolic systems via
an adaptive observer with a measurement of the state in the
entire domain based on a standard approach for parameter
identification in finite-dimensional systems (see also [36]), that
we avoid in the present work. Such approaches or observer-
based approaches as in [13] might lead to asymptotic conver-
gence of the observer scheme to the unknown parameters, but
not necessarily exponentially, as we plan here. Additionally,
the problem of estimation of a spatially varying parameter, as
the source term f(x) here, is even more complicated.

Remark 1: Note that the first part of Problem 1 on
the coefficient estimation has been given a solution in our
introductory work [25]. However, here we provide a solution
to the complete problem of joint estimation of the solution
and coefficient, which is more complex. At the same time, we
have some weaker conditions and we present the results in a
more concrete manner compared to this preliminary work, in
order for the reader to obtain a complete framework on the
solvability of this problem.

The answer we will be able to give to Problem 1 will
require strong assumptions such as the polynomial nature of
f and some high regularity of the solution. Dropping these
assumptions is still an open problem.

We first assume that the unknown coefficient f belongs to
RN [x], with N ∈ {0, 2, 4, . . .}, meaning:

f(x) =

N∑
i=0

fix
i, ∀x ∈ [0, L], (3)

with a priori known even degree N and completely unknown
coefficients fi ∈ R. This assumption on restriction of the space
of admissible coefficients f to the finite-dimensional space
RN [x] is a sufficient condition for the design of an infinite-
dimensional observer in the subsequent section.

Consider now a given δ ∈ (0, L] that determines the
observation interval [0, δ] in which we assume availability of
the observations in the sequel. We will also make the hypoth-
esis that the initial data localized on [0, δ] and the boundary
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conditions of the system have some additional regularity than
the usual one assumed for the wave equation. This will induce
existence of solutions in [0, δ] of sufficiently strong regularity.
More precisely, we make the following two assumptions.

Assumption 1 (Regularity): The function R, part of the
source term in (2), satisfies

R ∈C3N+3
(
R+;H3N+3(0, δ)

)
∩ L∞

(
R+;H3N+3(0, δ)

)
,

R ∈C1
(
R+;H1(0, L)

)
∩ L∞

(
R+;H1(0, L)

)
.

Moreover, a bound c > 0 is a priori known for which

‖R‖L∞(R+;HN+1(0,δ)) ≤ c. (4)

Simultaneously, R satisfies

inf
(t,x)∈R+×[0,δ]

|R(t, x)| > 0. (5)

In the sequel, a positive lower bound of |R| coming from (5)
is considered a priori known.

We furthermore assume that

z0 ∈ H3N+3(0, δ), z1 ∈ H3N+2(0, δ)

while in the rest of the domain we assume more commonly

z0 ∈ H1(0, L), z1 ∈ L2(0, L).

We also suppose that h1 and z(·, δ) are of class H3N+3 (R+)
and that on the right boundary (x = L) we have h2 ∈
H1 (R+). For initial condition restricted to [0, δ], namely,
for z0 |[0,δ], z1 |[0,δ] we finally assume that they satisfy
compatibility conditions of order 3N + 3.

Assumptions on R given by (4)-(5) are stronger versions
of classical assumptions in the solvability of linear inverse
problems (see e.g. [18]). From Assumption 1, we may invoke
well-known existence/uniqueness arguments (see for instance
[28], following also a transposition method, since we have
inhomogeneous boundary conditions), along with the extra
regularity and, thus, we can easily deduce the unique existence
of solutions

z ∈ C3N+1
(
R+;H3N+3(0, δ)

)
∩ C3N+2

(
R+;H3N+2(0, δ)

)
∩ C3N+3

(
R+;H3N+1(0, δ)

)
,

z ∈ C0
(
R+, H

1(0, L)
)
∩ C1

(
R+, L

2(0, L)
)
.

The following assumption concerns the main observations
that we consider in this work to be available in the output of
the system.

Assumption 2 (Observations): As output observations, we
consider several measurements of the solution of the wave
equation. To start with, the solution on [0, δ]:

z(t, ·) |[0,δ], t ∈ R+. (6a)

Given the extra regularity of the system, we also consider as
output the spatial derivatives of the state (in the weak sense)
of higher order on {x = 0} and {x = δ}:

∂ix∂tz(t, l), i ∈ {0, . . . , 2N + 1}, l = 0, δ. (6b)

We further use the internal spatial derivatives (in the weak
sense) of order up to 3N + 3 of the solution localized on
[0, δ]:

∂ixz(t, ·) |[0,δ], i ∈ {1, . . . , 3N + 3}. (6c)

Finally, we assume observation of the following state compo-
nents on the right boundary x = L:

z(t, L), ∂tz(t, L), ∂xz(t, L), (6d)

which are common in observation problems for the wave
equation.

Notice that the appearing observations z(t, 0) and z(t, L)
in Assumption 2 correspond to h1(t) and h2(t), respectively.
Note also that we avoid observations of noncausal nature,
namely, time-derivatives of the solution, except for the first
time derivative (6b) on the boundaries, which is natural as it
is a part of the state (z, ∂tz) of the wave. Time-derivatives
are not in general available as measurements in observer
designs. However, the spatial derivatives of the solution in
a part of the domain, which are assumed to be known, can be
measured causally and one can consider them as observations
in conjunction with the extra regularity of the system. Note
also that to solve the inverse problems for the potential of the
wave equation as in [5], we need the first spatial derivative of
the solution on the boundaries as observation. However, this
online estimation problem via observers appears to be more
demanding, requiring stronger assumptions. Finally, notice that
the observations on the right boundary x = L, given by (6d),
are only essential for the estimation of the solution to the wave
equation and not for the estimation of the source term.

A convenient and standard approach in the parameter iden-
tification to design an observer is to write (1) as a cascade
system of PDEs, as we are trying to recover the trick followed
in finite dimension, where the system’s equations are extended
by ∂tf = 0, see [8]. In a first step, let us rewrite (1) as a first-
order hyperbolic system as follows: ∂tu1(t, x) = −∂xu1(t, x) + u2(t, x),

∂tu2(t, x) = ∂xu2(t, x) + |R(t, x)|u3(t, x),
∂tu3(x) = 0,

(7)

where

u1 = z, u2 = ∂tz + ∂xz, u3 = fsgn (R(0, 0)) . (8)

Remark that sgn (R(0, 0)) = sgn (R(t, x)), for all (t, x) in
R+ × [0, δ] as a result of (5) in Assumption 1. It is worth
noting at this step that (7) satisfies a cascade form similarly
as in the finite dimensions but up to the differential operator.
For finite dimensions, such a cascade form (observability
canonical form) allows Luenberger observer design. Using
the abstract realization of (7), the diagonal part of system’s
operator is written as follows:−∂x 0 0

0 ∂x 0
0 0 −∂N+1

x

 .

Its third element −∂N+1
x is placed there instead of zero,

contrary to what seen in (7), however in accordance with
the fact that ∂N+1

x v3 = ∂N+1
x f = 0, due to the polynomial
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nature of f . This placement of the nonzero element −∂N+1
x

is made in order to obtain later a differential operator for
the observer error equation of the shape −I3∂N+1

x in contrast
with the three distinct elements appearing above. In fact, the
differential operator in the third equation, which should be
nonzero, is achieved to appear in the remaining two equations
via an appropriate infinite-dimensional transformation, which
is explicitly given in a second step as it is explained below.

Internal observability of under-observed linear cascade sys-
tems has been studied for instance in [3] or [29]. In these
works, it is shown that the presence of distinct elements
on the diagonal of the main differential operator creates
technical obstructions coming from a problem of algebraic
solvability. This observability problem reveals the difficulty
that will subsequently appear in observer designs for such
systems. Besides this, particular solutions to the problem of
observer design of under-observed cascade nonlinear infinite-
dimensional systems have been given in [23]. Here, inspired
by this work, we employ an analogous strategy noting that (7)
is under-observed, since we only measure the first state instead
of all its three components. The goal is to write system (7) in a
form where its differential operator is decomposed into a part
with the same elements on its diagonal plus an operator acting
on the first state only, which is the observation z. Following
this change of dynamics, the problem of observer design can
be solved as in [23] for other coupled systems of PDEs.

As a result of the previous reasoning, in order to write the
system in an appropriate form for observer design, let us apply
a lower triangular state transformation T ∈ L(X ) invertible
with inverse T −1 ∈ L(X ), where X = H3N+3(0, δ) ×
H3N+2(0, δ)×H3N+2(0, δ). The transformation T : u |[0,δ] 7→
T u satisfies

T u =

 1 0 0
−∂x − ∂N+1

x 1 0
0 0 1

u1u2
u3

 . (9)

This type of transformation is inspired by the previous works
[23], [24]. Notice that for the particular case N = 0, corre-
sponding to constant f in the space variable, we have T = I3
implying that we keep the original variables unchanged and
system is written as a first-order hyperbolic system.

Now, system (7) writes in the new state variable

v = T u |[0,δ] (10)

as a cascade system of PDEs of order 2N + 2 as follows:
∂tv1(t, x) = + ∂N+1

x v1(t, x) + v2(t, x),

∂tv2(t, x) =− ∂N+1
x v2(t, x) + |R(t, x)|v3(t, x)

+ ∂2xv1(t, x) + ∂2N+2
x v1(t, x),

∂tv3(t, x) =− ∂N+1
x v3(t, x), in (0,+∞)× (0, δ),

which amounts to

∂tv(t, x)=− ∂N+1
x v(t, x)

+A [R(t)] (x)v(t, x)+KCv(t)(x), (11)

where

A[R] :=

0 1 0
0 0 |R|
0 0 0

 , K :=

 2∂N+1
x

∂2x + ∂2N+2
x

0

 ,

C :=
(
1 0 0

)
. (12)

System (11) is written as a cascade system of three coupled
PDEs via coupling coefficient A[R]. As we noted earlier,
differential operator associated to this system consists of a
part −I3∂N+1

x , which is desired for the observer convergence
proof, plus an undesired operator K acting on the first state
v1 = z only. To get rid of it in the observer error dynamics,
this second part will be copied in the observer dynamics acting
on the measurement z |[0,δ].

The decomposition of the differential operator into these
two parts and the subsequent elimination of KCv reveals why
we demanded knowledge of z and of its spatial derivatives in
[0, δ] from Assumption 2. In fact, even higher-order derivatives
than the ones contained in the domain of K are considered as
observations, as the estimation needs to be proven in higher
regularity norms. It is worth also noting that the coefficients
fi of the polynomial f are written as follows:

fi =
1

i!sgn (R(0, 0))
∂ixv3(t, 0),

which are our target in the estimation problem.
To complete the initial value-boundary conditions problem,

we associate to system (11) the following boundary conditions,
which stem from boundary conditions of (1) in conjunction
with transformations (8)-(9):
∀j∈{0, . . . , N},

∂jxv1(t, 0) = ∂jxz(t, 0), (13a)

∂jxv2(t, 0) = ∂t∂
j
xz(t, 0)− ∂N+1+j

x z(t, 0), (13b)

∂jxv3(0) =

N∑
k=j

σjk∂
k
xv3(δ), (13c)

where

σjk :=
(−δ)k−j

(k − j)!
, ∀j ≤ k ≤ N, (14)

while (13c) is in view of the polynomial properties of
v3 = f coming from its Taylor representation. Notice also
that boundary conditions (13a)-(13b) are induced naturally
from transformation (9). These boundary conditions involve
mappings that have been already considered as measurements
by Assumption 2.

III. OBSERVER AND MAIN RESULT

In this section, we present our observer of composite form
consisting of an internal observer on the subinterval [0, δ] and a
boundary one for its complement [δ, L]. This observer provides
a solution to Problem 1 of Section II.
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A. Observer design

We first present the internal observer corresponding to the
observed subinterval [0, δ], see Assumption 2. For system (11),
written in such an appropriate form as explained previously,
we are in a position to propose the following Luenberger
internal observer localized in [0, δ]:

∂tv̂(t, x) = −∂N+1
x v̂(t, x) +A [R(t)] (x)v̂(t, x)

+Kz(t)(x) + ΘP−1C> (z(t, x)− Cv̂(t, x)) ,

∀(t, x) ∈ (0,+∞)× (0, δ). (15)

Taking into account the stronger regularity from Assumption 1,
we additionally associate to observer state v̂ its spatial deriva-
tives ∂ixv̂ up to order i = N + 1. Overall, the observer state
v̂[N+1] :=

(
v̂, ∂xv̂, · · · , ∂N+1

x v̂
)>

satisfies the following
(N+2) systems resulting from (N+1) differentiations of (15)
(incorporating also the case i = 0, which corresponds to (15)):

∂t∂
i
xv̂ = −∂N+1+i

x v̂ +
i∑

k=0

(
i
k

)
A
[
∂i−kx R

]
∂kx v̂ +K∂ixz

+ ΘP−1C>
(
∂ixz − C∂ixv̂

)
, i ∈ {0, . . . , N + 1}. (16)

Boundary conditions for each of the states v̂1, v̂2, v̂3 of (16)
are assumed to be of the following form:

∂jxv̂1(t, 0) = ∂jxz(t, 0) +
∑N
k=j σjk∂

k
x (v̂1(t, δ)− z(t, δ)) ,

∀j∈{i, . . . , N},
∂jxv̂1(t, δ) = ∂jxz(t, δ), ∀j∈{N + 1, . . . , N + i};
∂jxv̂2(t, 0) = ∂t∂

j
xz(t, 0)− ∂N+1+j

x z(t, 0)

+
∑N
k=j σjk∂

k
x

[
v̂2(t, δ)−

(
∂t − ∂N+1

x

)
z(t, δ)

]
,

∀j∈{i, . . . , N},
∂jxv̂2(t, δ) = ∂t∂

j
xz(t, δ)− ∂N+1+j

x z(t, δ),
∀j ∈ {N + 1, . . . , N + i};

∂jxv̂3(t, 0) =
∑N
k=j σjk∂

k
x v̂3(t, δ), ∀j ∈ {i, . . . , N},

∂jxv̂3(t, δ) = 0, ∀j ∈ {N + 1, . . . , N + i}.
(17)

We can see observer equations (16)-(17) as a family of
observers parametrized by i and corresponding to each spatial
derivative ∂ixv̂. Notice that in both (16) and (17), we injected
output correction terms. The ones injected in boundary con-
ditions (17) are needed for the elimination of the boundary
terms in the Lyapunov analysis, while the one in the internal
dynamics, (15) multiplied by a suitable gain, is used in the
observer convergence. This gain consists of matrix Θ given
by

Θ := diag
{
θ, θ2, θ3

}
(18)

with θ > 0 a tuning parameter and P a positive definite
symmetric matrix satisfying for all (t, x) ∈ R+ × [0, δ] a
Lyapunov matrix inequality of the following form:

Sym (PA [R(t)] (x))− C>C ≤ −ηI3,

for some constant η > 0. Such an inequality is always feasible
for A and C given by (12) (structured as an observability
canonical form of a finite-dimensional system) and under
conditions (4)-(5) in Assumption 1 for function R. The reader
can refer to [19] for the feasibility of inequalities of such a

type in finite-dimensional observer design and the extension to
the present formulation is direct. Matrix P that we choose as
a solution of (24) serves as a Lyapunov matrix in the sequel.
Note here the necessity of Assumption 2 on the observations as
the assumed measurements (6a)-(6c) intervene in the dynamics
of observer equation (16), particularly in mapping K and in
the output correction term, while the boundary measurements
(6b) intervene in observer boundary conditions (17).

Remark 2: The determination of matrix P solving (24)
depends only on the knowledge of the bounds of A[R] coming
from (4)-(5) in Assumption 1 without this requiring a priori
knowledge of R(t, x) however. In order to weaken this assump-
tion even more and avoid a priori knowledge of these bounds,
we might alternatively follow a different approach as in [7]
concerning finite dimensions, where a time-varying Lyapunov
matrix P (t) is considered instead.

We now note that the observer system (16)-(17) is localized
in the space subinterval [0, δ] and not in the whole space [0, L].
This observer provides an estimate of the source coefficient f
and the solution z to the wave equation in the part [0, δ] only,
as it is proven in the sequel. However, since f is polynomial,
it is written as

f(x) =

N∑
i=0

∂ixv3(0)

i!sgn (R(0, 0))
xi, x ∈ [0, L] (19)

and, also, its estimation in [0, δ] is extended everywhere in
[0, L] by analytic continuation and is given by

f̂(t, x) =

N∑
i=0

∂ixv̂3(t, 0)

i!sgn (R(0, 0))
xi, in R+ × [0, L]. (20)

This way, we get the estimation of the source term f on the
whole spatial domain.

As a final step, we propose a boundary observer of sys-
tem (7) on the partition [δ, L]. This boundary observer is
constructed by copying standard techniques from Lyapunov
analysis for hyperbolic systems (e.g. [4]). In such a way, we
obtain the estimation of the yet unknown solution z to the
wave equation on the whole spatial domain. The proposed
boundary observer with state ˆ̂u =

(
ˆ̂u1 ˆ̂u2

)>
satisfies the

following equations in R+ × (δ, L):{
∂t ˆ̂u1(t, x) = −∂x ˆ̂u1(t, x) + ˆ̂u2(t, x),

∂t ˆ̂u2(t, x) = ∂x ˆ̂u2(t, x) +R(t, x)f̂(t, x),
(21)

with the following boundary conditions:(
ˆ̂u1(t, δ)
ˆ̂u2(t, L)

)
=

(
v̂1(t, δ)

∂tz(t, L) + ∂xz(t, L)

)
+ k

(
0

ˆ̂u1(t, L)− z(t, L)

)
(22)

where k ∈ R is an appropriately chosen constant gain.
This second observer (21)-(22) of state ˆ̂u ∈ H1(δ, L) ×

L2(δ, L) can be seen as a boundary observer of the wave
equation. It exploits the estimates f̂(t, x) and v̂1(t, δ) com-
ing from the internal observer equations (16)-(17) and also
the observations z(t, L), ∂tz(t, L), and ∂x(t, L) coming from
Assumption 2. In other words, state components of the internal
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observer are used as inputs for the boundary observer, while
system’s output (boundary observations) are utilized in the
output correction term inside boundary conditions (22). Gain k
can be tuned to increase the exponential decay of the observer
or even to draw near a finite time observer for case k = 0.

This work elaborates the convergence of the composite
observer, consisting of parts (16)-(17) and (21)-(22), which
estimates the source component f and the solution z in the
whole space domain. The overall observer state ξ is written
as

ξ := (ẑ, f̂)>, with ẑ :=

{
v̂1, x ∈ [0, δ]
ˆ̂u1, x ∈ [δ, L]

and f̂ =

N∑
i=0

∂ixv̂3(0)

i!sgn (R(0, 0))
xi, x ∈ [0, L],

(23)

where v̂ satisfies (16)-(17), and ˆ̂u satisfies (21)-(22).
Note that by virtue of the first boundary condition in (22)

(on x = δ), observer state ẑ is continuous with respect to the
space variable.

We are now in a position to state our main result, which
gives a solution to Problem 1 in Section II.

Theorem 1: Consider wave equation (1) with unknown
source term F given by (2) consisting of a known function
R and an unknown polynomial f(x) =

∑N
i=0 fix

i of known
even degree N . Suppose that Assumption 1 holds and that
observations in Assumption 2 are available at system’s output.
Let P � 0 satisfying

Sym (PA [R(t)] (x))− C>C ≤ −ηI3, (24)

for some η > 0. Denote also v0 =
(
z0, z1 − ∂N+1

x z0, f
)>

with (z0, z1) the unknown initial condition of the wave equa-
tion. Then, the following results (i) and (ii) hold about the
unique solutions ξ to composite observer (23) assuming also
that initial condition v̂0(·) := v̂(0, ·) of internal observer (16)-
(17) belongs to H2N+2

(
0, δ;R3

)
and satisfies compatibility

conditions of order 2N + 2 and also that initial condition
(ˆ̂u1(0, ·), ˆ̂u2(0, ·)) of boundary observer (21)-(22) belongs to
H1(δ, L)× L2(δ, L).

(i) For gain θ ≥ 1, internal observer (16)-(17) provides an
estimate for the source component via v̂3, in the sense that
there exist κ, ` > 0 such that∣∣∣∣fi − 1

i!sgn (R(0, 0))
∂ixv̂3(t, 0)

∣∣∣∣
≤ `θ2e−θκt‖v0 − v̂0‖HN+1(0,δ;R3), (25)

for i = 0, . . . , N .
(ii) For appropriate choice of boundary observer gain k

small enough and choice of internal observer gain θ large
enough, composite observer (23) provides an exponential
estimation of the solution z, namely, there exist α, β > 0 such
that

‖z(t, ·)− ẑ(t, ·)‖L2(0,L) ≤ αe−βt
(
θ2‖v0− v̂0‖HN+1(0,δ;R3)

+ ‖u(0, ·)− ˆ̂u(0, ·)‖L2(δ,L;R2)

)
. (26)

B. Proof of the Observer Convergence

We prove here both parts (i) and (ii) of Theorem 1.
(i) We prove the convergence of the internal observer (16)-

(17). First, we easily deduce global existence and uniqueness
of solutions to (16)-(17) under Assumption 1 by invoking
classical arguments from the theory of PDEs (Lumers-Philipps
theorem for instance). More particularly, for initial condi-
tion v̂0 ∈ H2N+2

(
0, δ;R3

)
satisfying compatibility condi-

tions of order 2N + 2 there exist unique classical solutions
v̂ to (16)-(17) belonging to C0

(
R+;H2N+2

(
0, δ;R3

))
∩

C1
(
R+;HN+1

(
0, δ;R3

))
.

Let us define a the scaled observer error by

ε := Θ−1 (v̂ − v)

and also define

E[N+1] :=
(
ε ∂xε · · · ∂N+1

x ε
)>
.

We can easily see that E[N+1] satisfies the following equations
in R+ × (0, δ):

∂ix∂tε = −∂N+1+i
x ε+ θ

i−1∑
k=0

(
i
k

)
A
[
∂i−kx R

]
∂kxε

+ θ
(
A [R]− P−1C>C

)
∂ixε, (27a)

and for all i ∈ {0, . . . , N + 1} and boundary conditions

∂jxε(t, 0) =

N∑
k=j

σjk∂
k
xε(t, δ), ∀j ∈ {i, . . . , N},

∂jxε(t, δ) =0, ∀j ∈ {N + 1, . . . , N + i},

(27b)

which by virtue the dynamics (27a), lead additionally to the
following implicit boundary conditions:

∂jxε(t, 0) = 0, ∀j ∈ {N + 1, . . . , N + i}. (28)

To obtain these implicit boundary conditions (28), we first
differentiate with respect to t the first equation in (27b) and
we obtain

∂jx∂tε(t, 0) =

N∑
k=j

σjk∂
k
x∂tε(t, δ), ∀j ∈ {i, . . . , N}.

After substituting (27a) in the above equation, we get

− ∂N+1+j
x ε(t, 0) + θ

j−1∑
k=0

(
j
k

)
A
[
∂j−kx R(t)

]
(0)∂kxε(t, 0)

+ θ
(
A [R(t)] (0)− P−1C>C

)
∂jxε(t, 0)

=

N∑
k=j

σkj

(
− ∂N+1+k

x ε(t, δ)

+ θ

k−1∑
i=0

(
k
i

)
A
[
∂k−ix R(t)

]
(δ)∂ixε(t, δ)

+ θ
(
A [R(t)] (δ)− P−1C>C

)
∂kxε(t, δ)

)
.

Now, by virtue of the first equation in (27b), the second and
third term of the left-hand side is cancelled out with the second
and third term of the right-hand side of the above equation,
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respectively. Also, by virtue of the second equation in (27b),
the first term

∑N
k=j σkj∂

N+1+k
x ε(t, δ) in the above equation

is equal to zero. As a consequence of cancelling out all these
terms, we get ∂N+1+j

x ε(t, 0) = 0, for all j = 0, . . . , N, which
in turn leads to implicit boundary conditions (28).

Let us now introduce a Lyapunov functional V1 :
HN+1(0, δ)→ R+ by

V1[ε] =

N+1∑
i=0

ρi

∫ δ

0

∂ixε
>(x)P∂ixε(x)dx, (29)

with ρ0 = 1 and ρi > 0, for i in {1, . . . , N+1} to be chosen
appropriately and matrix P � 0 satisfying (24). Taking the
time derivative of V1(t) := V1[ε(t)], t ≥ 0 along the solutions
of (27) and substituting the corresponding dynamics, we obtain

V̇1 = −
N+1∑
i=0

ρi

∫ δ

0

(
∂N+1+i
x ε>(x)P∂ixε(x)

+∂ixε
>(x)P∂N+1+i

x ε(x)
)
dx

− θ
∫ δ

0

(
E[N+1](x)

)>
M [R] (x)E[N+1](x)dx, (30)

where M [R] = (Mij)(N+2)×(N+2) [R] with

Mii [R] = −2ρi−1
(
Sym (PA [R])− C>C

)
,

∀i ∈ {1, . . . , N + 2}

Mij [R] =M>ji[R] = −ρi−1
(
i− 1
j − 1

)
PA

[
∂i−jx R

]
,

∀i ∈ {j + 1, . . . , N + 2}, j ∈ {1, . . . , N + 2}.

Notice that by using the Schur complement, Lyapunov equa-
tion (24), and the uniform boundedness of R in HN+1(0, δ),
we can always choose ρi ∈ (0, 1], for i in {1, . . . , N + 1}
such that M becomes positive for all R satisfying (4)-(5)
in Assumption 1. More precisely, we can choose constants
ρi ∈ (0, 1] such that

γ := inf
R∈L∞(R+;HN+1(0,δ))

w>M[R]w

|w|2
> 0,∀w ∈ R3N+6 \ 0.

Therefore, applying repeated integrations by parts in (30) and
by the fact that N is even, we obtain

V̇1 ≤
N+1∑
i=0

ρi [Πi(x)]
δ
0 − θ

γ

|P |
V1,

where

Πi(x) :=
(
∂ixE

[N ](x)
)>
P∂ixE[N ](x),

with P := antidiagN+1

(
(−1)jP

)
j=1,...,N+1

.

Next, substituting boundary conditions of ε given by (27b)
and by use of (28), we get for i in {0, . . . , N+1}

[Πi(x)]
δ
0 =

(
∂ixE

[N ](δ)
)>

Ωi∂
i
xE

[N ](δ);

Ωi :=antidiagN+1 (Ξij)j=1,...,N+1

− Σ>i antidiagN+1 (Ξij)j=1,...,N+1 Σi,

where

Ξij :=

{
03, j = 1, . . . , i and j = N + 2− i, . . . , N + 1
(−1)jP, j = i+ 1, . . . , N + 1− i ,

Σi is a block matrix given by

Σi := (σjkI3)j,k=i,...,N+i,

while σjk are given by (14) for j ≤ k ≤ N and σjk ≡ 0
for k ≤ j − 1 ≤ N and for k = j ∈ {N + 1, . . . , 2N + 1}.
After appropriate calculations, it turns out that Ωi = 0, ∀i =
0, . . . , N + 1, leading eventually to

V̇1 ≤ −2θκV1; κ :=
γ

2|P |
. (31)

By use of the Grönwall Lemma, (8), (10), and (31), we obtain

θ−1‖ (z(t, ·)− v̂1(t, ·)) ‖HN+1(0,δ)

+ θ−2‖∂tz(t, ·)− ∂N+1
x z(t, ·)− v̂2(t, ·)‖HN+1(0,δ)

+ θ−3‖f(·)sgn (R(0, 0))− v̂3(t, ·)‖HN+1(0,δ)

≤ γ1θ−1e−θκt‖v0 − v̂0‖HN+1(0,δ;R3), (32)

where γ1 := 1
min{ρi,i=0,...,N+1}

√
3 |P |
eig(P ) .

Stability inequality (32) indicates that v̂1 provides an es-
timate of z |[0,δ] and v̂3 an estimate of the unknown f in
the HN+1 spatial norm. We also observe that (32) has lead
to a phenomenon of loss of derivatives. Indeed, in order to
estimate the solution of the wave equation, we demand higher
order of regularity (3N + 3) of the solution than the order
of the convergent derivatives of the observer error (N + 1).
Such phenomena appear when studying the controllability of
underactuated coupled systems (see [3]). Finally, by invoking
the continuous embedding HN+1(0, δ) ↪→ CN ([0, δ]) (see [1]
on Sobolev embeddings and Morrey’s inequality), we get
by (32)

‖z(t, ·)−v̂1(t, ·)‖CN ([0,δ])

≤ c0γ1e−θκt‖v0 − v̂0‖HN+1(0,δ;R3), (33)

‖f(·)sgn (R(0, 0))− v̂3(t, ·)‖CN ([0,δ])

≤ c0γ1θ2e−θκt‖v0 − v̂0‖HN+1(0,δ;R3), (34)

with c0 > 0 an embedding constant.
The latter shows that the coefficients of polynomial f(·), given
by fi = f(i)(0)

i! , are approximated by 1
i!sgn(R(0,0))∂

i
xv̂3(t, 0) for

all i in {0, . . . , N} in an exponentially fast manner. By use of
(8)-(9), we deduce (25) with ` = c0γ1.

(ii) Focusing now on the spatial subdomain [δ, L], we define
observer error by

ũ =

(
ˆ̂u1 − u1
ˆ̂u2 − u2

)
, x ∈ [δ, L].

For systems of conservation laws, a method for estimation has
been developed in [12] and we adopt similar techniques here.
The error ũ satisfies the following equations in R+ × (δ, L):

∂tũ(t, x) =

(
−1 0
0 1

)
∂xũ(t, x) +

(
0 1
0 0

)
ũ(t, x)

+R(t, x)

(
0
1

)(
f̂(t, x)− f(x)

)
, (35)
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with boundary conditions

ũ1(t, δ) =θε1(t, δ),

ũ2(t, L) =kũ1(t, L).
(36)

Introduce a Lyapunov functional V2 : H1(δ, L)→ R+ as

V2[ũ] =
1

2

∫ L

δ

ũ>(x)diag{e−µx, eµx}ũ(x)dx, (37)

with µ > 0 to be chosen appropriately. Taking the time
derivative of V2(t) := V2[ũ(t)], along the dynamics (35) for
t ≥ 0, one obtains

V̇2 =

∫ L

δ

ũ>(x)diag{−e−µx, eµx}∂xũ(x)dx

+
1

2

∫ L

δ

e−µxũ>(x)

(
0 1
1 0

)
ũ(x)dx

+

∫ L

δ

eµxR(t, x)f̃(x)ũ2(x)dx,

=I1 + I2 + I3, (38)

where f̃ := f̂ − f and each of I1, I2, and I3 corresponds to
each of the three integral terms in (38). The first integral term
can be rewritten after applying integration by parts as

I1 = [G(x)]
L
δ −

µ

2

∫ L

δ

ũ>(x)diag{e−µx, eµx}ũ(x)dx, (39)

where G(x) := 1
2 ũ
>(x)diag{−e−µx, eµx}ũ(x).

The boundary term [G(x)]
L
δ is written after using boundary

conditions (36) as follows:

[G(x)]
L
δ =ũ21(L)

(
k2eµL − e−µL

)
+ θ2e−µδε21(δ)− ũ22(δ)eµδ.

Then, for choice of gain parameter k small enough, namely,

|k| ≤ e−µL,

we obtain

[G(x)]
L
δ ≤ θ

2e−µδε21(δ). (40)

Considering second integral term, it is easy to see that it can
be bounded as follows:

I2 ≤
e−µδ

2

∫ L

δ

ũ>(x)

(
e−µx 0

0 eµx

)
ũ(x)dx = e−µδV2.

(41)

Moreover, the third term of the time-derivative (38) can be
bounded as a result of Assumption 1 on function R, the
Cauchy-Schwartz and Young’s inequalities, and (37) as

I3 =

∫ L

δ

eµxR(t, x)f̃(x)ũ2(x)dx

≤ c̄e
µ
2L‖f̃‖L2(δ,L)

(∫ L

δ

eµxũ22(x)dx

)1/2

≤ 1

2ε0
c̄eµL‖f̃‖2L2(δ,L) +

ε0
2

∫ L

δ

eµxũ22(x)dx

≤ 1

2ε0
c̄eµL‖f̃‖2L2(δ,L) + ε0V2, (42)

for some ε0 chosen in (0, 1) and

c̄ := sup
(t,x)∈R+×[δ,L]

|R(t, x)|,

which makes sense from Assumption 1.
Overall, V̇2 is bounded by use of (38)-(42) as follows:

V̇2 ≤ −
(
µ− e−µδ − ε0

)
V2 + Ω(t),

with

Ω(t) :=
1

2ε0
c̄eµL‖f̃‖2L2(δ,L) + θ2e−µδε21(t, δ).

By choosing parameter µ large enough such that

µ− e−µδ ≥ ε0,

we obtain after applying the Grönwall Lemma

V2(t) ≤ e−µ0tV2(0) +

∫ t

0

e−µ0(t−s)Ω(s)ds, (43)

for some 0 < µ0 < µ − e−µδ − ε0. We now notice that the
difference ‖f̃‖L2(δ,L) is bounded as in (32), resulting from
(19)-(20), whereas the error of the internal observer ε1(t, δ)
is bounded, according to (33), as follows:

|ε1(t, δ)| ≤‖ε1(t, ·)‖C0[0,δ]

≤ c0γ1θ−1e−θκt‖v0 − v̂0‖HN+1(0,δ;R3).

By virtue of these bounds, we can bound Ω(s) for all s ≥ 0
as follows:

Ω(s)≤
(

1

2ε0
c̄eµLθ4+c20

)
γ21e
−2θκs‖v0 − v̂0‖2HN+1(0,δ;R3).

(44)

From there, and choosing the gain θ large enough, namely,

θ >
µ0

2κ
,

(43) brings

V2(t) ≤e−µ0tV2(0) +

(
1

2ε0
c̄eµLθ4 + c20

)
γ21

× e−2θκt − e−µ0t

µ0 − 2θκ
‖v0 − v̂0‖2HN+1(0,δ;R3).

Therefore, by use of (37) and trivial inequalities we get

‖ũ(t, ·)‖L2(δ,L;R2) ≤ eµLe−
µ0
2 t‖u(0, ·)− ˆ̂u(0, ·)‖L2(δ,L;R2)

+

√
1

2ε0
c̄eµLθ4 + c20

2θκ− µ0
γ1e

µ
2Le−

µ0
2 t‖v0 − v̂0‖HN+1(0,δ;R3).

(45)

The above corresponds to the exponential estimation of the
solution u1 = z on the subinterval [δ, L].

Finally, combining (45) (for the part of the solution on [δ, L],
proven here) with (32) (for the part [0, δ] proven in the part
(i)), we deduce (26).

The proof is complete.
Remark 3: Composite observer (23) provides an exponen-

tially fast estimation of the source coefficient f and the solu-
tion z. For the coefficient f , the estimation can be arbitrarily
fast by appropriate choice of the parameter θ in the dynamics
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of the internal observer (16)-(22) as seen by stability inequal-
ity (25). However, for the solution z to the wave equation,
whose estimation relies on boundary observer (21)-(22) in
(δ, L), its estimation on the whole domain cannot become
arbitrarily fast and it is limited by the wave propagation. In
(45), we see that the maximal convergence rate (finite-time
convergence achieved for observer gain k = 0) is independent
of the choice of observer gain θ and, thus, cannot be tuned.
Finally, we see that the choice of the right endpoint δ of the
observation interval [0, δ] plays a role in the estimation of the
coefficient, as seen by (31), where convergence rate coefficient
κ depends on γ, which in turn depends on δ, noting that the
further R(t, x) is away from zero on [0, δ], the larger κ is.

Remark 4: We designed the first internal observer with
a structure resembling to high-gain observers for finite di-
mensions (see (16)-(17) and the form of observer gain matrix
Θ (18)). High-gain observer designs have been extended to
infinite dimensions (see for instance [23], [24]) aiming at
tackling the presence of nonlinearities and unknown pertur-
bations in system dynamics. In Section III, this design could
be seemingly replaced by a standard Luenberger observer
design. However, we use this high-gain design that would be
indispensable to deal with possible perturbations appearing in
the error dynamics if we intended to prove an Input-to-State
(ISS) estimate with respect to a generic (not essentially polyno-
mial) source coefficient. Additionally, the high-gain observer
structure that we introduced in this work could be used to
deal with an alternative setting where the wave equation was
semilinear with Lipschitz nonlinearities of the form h (z, ∂tz).
These topics will be considered in future works.

Remark 5: We notice that by (32), additionally to the
solution z, its time-derivative ∂tz is also estimated in [0, δ],
whereas in the subinterval [δ, L] such an estimation is not
obtained, because of the use of a weighted L2 spatial norm
(instead of an H1 one) as a Lyapunov functional (37).

IV. EXTENSION TO A NONLINEAR INVERSE PROBLEM

In this section, we discuss the solvability of a closely
related inverse problem for the wave equation via exponential
observers for the case of an unknown parameter multiplying
the state. Solutions to such a nonlinear inverse problem [26]
involve the recovery of the potential of the wave equation (see
e.g. [35], [6], ).

Consider again wave equation (1). In the present formula-
tion, term F is no longer considered a source term but it is
assumed to be state-dependent and be written as follows:

F (t, x) = −q(x)z(t, x), (46)

where q represents the unknown parameter, called potential,
to be estimated.

We wish here to solve the first part of Problem 1 with
unknown source f substituted by potential q. We provide a
solution to this problem concerning the exponential estimation
of the potential, but not yet the simultaneous estimation of
the solution to the wave equation. Intuition coming from the
solvability of inverse problems (see [26]) suggests that this
nonlinear inverse problem would require stronger assumptions

on the solution to the wave equation than the ones in Section
II. The result of this section is a consequence of the analysis
presented in [25] concerning the recovery of the potential. To
deal with this problem, we replace the conditions on R(t, x)
in Section II with similar conditions on z(t, x). Compared to
our preliminary work [25] on the coefficient estimation, the
conditions here are slightly weaker. The proof is not given in
full details as it is a direct adaptation of the proof of Theorem
1. We keep here the same assumptions on the polynomial
nature of the unknown parameter q as in Section II and the
same observation of the solution on a part of the domain [0, δ]
(avoiding nevertheless the observations on x = L given in
(6d), which are only needed for the estimation of the solution).
Note that the case of polynomial-type potential is not uncom-
mon in physical realizations, especially in quantum mechanics,
see for instance [16], where a use of an even polynomial as a
potential is justified in the Schrödinger equation.

Let us state now the hypothesis we need to make.
Assumption 3: We assume that

z0 ∈ H3N+3(0, δ), z1 ∈ H3N+2(0, δ)

while in the rest of the domain we assume more commonly

z0 ∈ H1(0, L), z1 ∈ L2(0, L).

We also suppose that h1 and z(·, δ) ∈ H3N+3 (R+) and
that h2 ∈ H1 (R+). For initial condition restricted to [0, δ],
namely, for z0 |[0,δ], z1 |[0,δ] we assume that they satisfy
compatibility conditions of order 3N + 3 with h1.

Furthermore, we suppose that the solution to the wave
equation is uniformly bounded on [0, δ] as follows:

z ∈ L∞
(
R+;HN+1(0, δ)

)
(47)

and that it also holds

inf
(t,x)∈R+×[0,δ]

|z(t, x)| > 0 (48)

implying simultaneously the compatibility with z0.
Some positive upper and lower bounds of |z| coming from

(47)-(48) are considered a priori known.
The nature of assumptions in (47)-(48) are revealed in

classical works on the solvability of inverse problems for the
potential of the wave equation, where some slightly weaker
conditions are assumed (see [5], [6]), i.e. that only the infimum
of a norm of the initial condition is strictly positive.

Next, consider P � 0 satisfying for all (t, x) ∈ R+ × [0, δ]

Sym (PA [z(t)] (x))− C>C ≤ −ηI3 (49)

for some η > 0, with A[z] given by (12). Similarly, as in the
reasoning of Section III, the above inequality is feasible for z
satisfying (47)-(48).

Now, we propose an internal observer to estimate the
unknown potential q satisfying the following equation in
R+ × (0, δ), for all i ∈ {0, . . . , N + 1},

∂t∂
i
xv̂ = −∂N+1+i

x v̂ +

i∑
k=0

(
i
k

)
A
[
∂i−kx z

]
∂kx v̂ +K∂ixz

+ ΘP−1C>
(
∂ixz − C∂ixv̂

)
(50)
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with Θ given by (18), C and K as in (12). We also associate
to this observer the same boundary conditions as in (17).

The result of this section is stated as follows.
Theorem 2: Consider wave equation (1) where F is given

by (46) with potential q(x) =
∑N
i=0 qix

i an unknown poly-
nomial of known even degree N . Assume that Assumption 3
holds and that observations in Assumption 2 are available
in system’s output. Let P � 0 satisfy (49) for some η > 0.
Denote also v0 = (z0, z1 − ∂N+1

x z0, q)>, where (z0, z1) is
the unknown initial condition of the wave equation. Then, the
following result holds about the unique solution v̂ to internal
observer (50)-(17) with initial condition v̂0(·) := v̂(0, ·)
belonging to H2N+2

(
0, δ;R3

)
and satisfying compatibility

conditions of order 2N + 2.
For gain θ ≥ 1, v̂ provides an estimate for the potential

via v̂3, in the sense that there exist κ, ` > 0 such that for
i = 0, . . . , N ,∣∣∣∣qi − 1

i!sgn (z0(0))
∂ixv̂3(t, 0)

∣∣∣∣
≤ `θ2e−θκt‖v0 − v̂0‖HN+1(0,δ;R3).

We present here a sketch of the proof of Theorem 2.
Proof: The proof follows the steps of the one given in

[25]. The objective is to adopt the same methodology as in
the part (i) of the proof in Section III-B, except for the fact
that z substitutes R in the observer equations. First, notice
that under Assumption 3, similarly as in the reasoning in the
proof of Theorem 1 (see Section III-B), existence/uniqueness
of solutions to the wave and to the observer equations are
guaranteed for all times t ≥ 0. These solutions are regular
enough as in the proof of Theorem 1. Second, for the stability
analysis, we need to transform the wave equation into a first-
order hyperbolic system, similarly as in Section II by using
the transformation

u1 = z, u2 = ∂tz + ∂xz, u3 = −qsgn
(
z0(0)

)
,

noting that as a consequence of (48) in Assumption 3, we
have sgn (z(t, x)) = sgn

(
z0(0)

)
, for all (t, x) in R+ × [0, δ].

Then, system writes exactly as (7) and by applying the same
transformation as in Section II given by (10), system amounts
to

∂tv(t, x)=− ∂N+1
x v(t, x)

+A [v1(t)] (x)v(t, x)+KCv(t)(x), (51)

with boundary conditions given again by (13). Notice that
the above transformed cascade system of PDEs is semilinear
in contrast with (11), which was linear. Then, the stability
analysis is similar to the one in the proof of part (i) of Theorem
1 in Section III-B noting that we ought to substitute R(t, x)
by z(t, x) taking also into account sufficient conditions in
Assumption 3.

Remark 6: In Theorem 2, we presented a result on the
estimation of the potential of the wave equation via an internal
observer, similarly as in the part (i) of Theorem 1 in Section
III on the estimation of the source coefficient. However, we
did not give a complete answer to Problem 1, since we did
not provide a simultaneous estimation for the solution z to

(a) Solution of system (1). (b) Error on the solution.

Fig. 1: Simulations on the whole interval [0, L].

the wave equation as in the second part (ii) of Theorem 1. It
seems that a similar global estimation result cannot hold for
this case and only a local result might be proven, as this is
limited by the nonlinear nature of this problem.

V. SIMULATION

In this section, the composite observer designed in this
paper for the joint estimation of the source coefficient and the
solution in Section III is set up numerically for an example
of polynomial of order N = 2. To avoid numerical issues,
consistent and unconditionally stable schemes are chosen.
For the first observer, which is an Airy’s type equation, the
Crank Nicholson right-winded numerical schema D+D+D− is
selected. For the second observer, which is constituted of two
transport equations, state û1, û2 are respectively discretized
with D− and D+. For more details in that direction, one
can refer to [14] which deals with Courant-Friedrich-Lewy
conditions for several “finite-difference θ-schemes" dedicated
to hyperbolic systems of type (∂t + ∂2p+1

x )u = 0, according
to the parity of p.

Consider system (1) on the interval [0, 10] with source
term F (t, x) = x(x − 10), homogeneous boundary con-
ditions h1 = h2 = 0 and compatible initial condition(
z0(x)

z1(x)

)
=
(

100sin(πx10 )
0

)
. On Fig. 1a, the corresponding

solution is drawn. The main goal is to reconstruct the three
polynomial coefficients {1,−10, 0} as well as the solution. For
that, measurements as the ones in Assumption 2 are available
only on [0, δ = 1] and on the right boundary at L = 10.
Thanks to the composite observer (23), the task can be realized
and Fig. 1b represents the observer errors : both internal and
boundary observers converge.

It is also worth noticing that the convergence is faster on
[0, 1] than the one on [1, 10]. This is always possible since the
decay rate of the internal observer θκ can be larger than the
decay rate of the second observer β.

Let us now present more details on the behavior of each
observer separately. By selecting our simple example, the main
idea is also to highlight the relevance of each gain parameter
and to understand their influence on the reconstruction process.

For the internal observer on [0, 1], observer error sys-
tem (27) is considered. Error components gather the es-
timate of the state of the wave equation

(
ṽ1
ṽ2

)
=(

ẑ−z
∂tẑ−∂3

xẑ−∂tz+∂
3
xz

)
|[0,1] and the estimate of the source term

ṽ3 = v̂3 − v3. On Fig. 2a, the H3 norm of ṽ with respect
to the time is depicted and it converges exponentially to
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(a) State error for θ = 5.
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(b) Coefficient error.

Fig. 2: First observer on [0, δ].

(a) k = 0. (b) k = 0.1.

Fig. 3: Second observer on [δ, L].

zero, as demonstrated in (32). An underlying result is the
exponential convergence of each polynomial coefficient v̂

(i)
3 (0)
i!

for i ∈ {0, 1, 2} towards the expected ones.

Then, on Fig. 2b the norm of
∑2
i=0

v̂
(i)
3 (0)
i! is drawn in

log scale and illustrates the statement (i) in Theorem 1. By
increasing the control gain θ (see dashed curve), one also
confirms that the decay rate increases. Moreover, as an expo-
nential observer, it converges with the same convergence rate
independently of initial condition (see dotted curve). Thanks
to these coefficient estimations and (19)-(20), the source term
can finally be reconstructed on the whole domain.

For the boundary observer on [1, 10], the solution ˆ̂u1 −
u1 |[1,10] of the difference between (21) and (7) is represented
on Fig. 1b with k = 0.1. Once again, the state converges
exponentially to zero, as mentioned in Theorem 1 (ii). Nev-
ertheless, it is interesting to note that the dynamics of the
observer are enforced by the dynamics of the system itself
(∆t > 20), which leads to much slower convergence than
the previous internal observer. Lastly, the role played by the
observer gain can be interpreted. On Fig. 3, the estimation
seems to be faster when control gain |k| decreases, probably at
the price of robustness with respect to parameter uncertainties.

Simulations have been also done on the nonlinear inverse
problem of the estimation of the potential (see Section IV)
and can be found in [25].

VI. CONCLUSION

The problem of simultaneous estimation of an unknown
polynomial coefficient and the solution of the 1D wave equa-
tion was solved via a composite exponential observer. The first
internal observer is performed in an observed subinterval of
the domain and provides an estimate of the source coefficient
and of a localized part of the solution. At the same time, in
combination with a boundary observer, an estimation of the

wave solution is obtained on the rest of the spatial domain.
For this purpose, after augmenting the state with the unknown
coefficient, the wave equation was written as a cascade system
of PDEs of higher order. The measurement included the
solution of the wave equation and its spatial derivatives on a
subinterval of the domain. Some extensions were finally given
on the estimation of a potential (nonlinear inverse problem).

In our future works, we will examine an alternative strategy
on observer design for nonlinear inverse problems inspired by
a finite-dimensional approach for nonlinear systems appearing
in [33], since solutions for such problems were only partially
established in the present work. Future research will also in-
clude the extension of this approach to 2-dimensional domains
and some links of such an observer design approach with the
internal observability of cascade systems.
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