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DMulti-MADS: Mesh adaptive direct multisearch for
bound-constrained blackbox multiobjective optimization ∗

Jean Bigeon† Sébastien Le Digabel‡ Ludovic Salomon§

Abstract
The context of this research is multiobjective optimization where conflicting ob-

jectives are present. In this work, these objectives are only available as the outputs
of a blackbox for which no derivative information is available. This work proposes a
new extension of the mesh adaptive direct search (MADS) algorithm to multiobjective
derivative-free optimization with bound constraints. This method does not aggregate
objectives and keeps a list of non dominated points which converges to a (local) Pareto
set as long as the algorithm unfolds. As in the single-objective optimization MADS
algorithm, this method is built around a search step and a poll step. Under classical
direct search assumptions, it is proved that the so-called DMulti-MADS algorithm
generates multiple subsequences of iterates which converge to a set of local Pareto
stationary points.

Finally, computational experiments suggest that this approach is competitive com-
pared to the state-of-the-art algorithms for multiobjective blackbox optimization.

Key words. Multiobjective optimization, derivative-free optimization, blackbox optimization,
mesh adaptive direct search, Clarke analysis.

1 Introduction
This work considers the following multiobjective optimization problem:

MOP : min
x∈Ω

f(x) = [f1(x), f2(x), . . . , fm(x)]>

where Ω = [l, u] is the feasible decision set and l, u ∈ Rn with li < ui for i = 1, 2, . . . , n. The
functions fi : Rn → R∪{+∞} for i = 1, 2, . . . ,m ≥ 2, are the outputs of a blackbox, which means
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that no analytical form is known. Derivatives are not available so that gradient-based techniques
cannot be considered. Allowing f to take infinity values refers to the possibility that evaluations of
f can fail. In these cases, blackbox or derivative-free optimization techniques [6, 20] are particularly
relevant. The mapping of Ω by the objective function f is designed as the feasible objective set.
The sets Rn and Rm are denoted the decision space and the objective space, respectively.

The goal is then to find the best set of trade-off solutions in the objective space, named as
the Pareto front, given a finite budget of functions evaluations. These solutions can then be
presented to the decision maker, who can decide of the most adequate design dependently for
her/his problem [18, 23, 25].

Multiobjective heuristics such as evolutionary/genetic algorithms [24] or particule-swarm opti-
mization [28] are commonly used. However, they do not possess mathematical convergence back-
ground and require a significantly large amount of functions evaluations, which is not affordable
in this research context where problems involve costly blackbox functions. This last limitation
has partly been removed: by using cheaper surrogate models such as radial basis functions [33] or
krigging metamodeling [29], one can identify the most promising points to be evaluated with the
true objective function.

Among supported convergence-based methods, a first approach is to aggregate all objective
functions in one parameterized single-objective formulation. By solving the resulting problem
with convergence-proved derivative-free techniques, one is able to get a locally optimal Pareto
solution. The procedure can be used again to obtain different Pareto solutions by changing the
parameters of the current formulation. The BiMADS [10] and MultiMADS [11] methods follow
these approaches. They are both based on the Mesh Adaptive Direct Search (MADS) algorithm [4]
for single-objective constrained optimization. BiMADS is only designed for biobjective problems
contrary to MultiMADS that takes into account more objectives. Several issues are raised with such
scalarization-based methods. A first one is the number of evaluations to allocate to each single-
objective problem: too few and no promising points can be found; too many and the algorithm
can lack budget to explore potential promising zones in the objective space. A second drawback
is the large amount of evaluations that the user can fix to obtain points close to the Pareto front.
Function evaluations could rather be used to enrich the non dominated set of points constituting
the approximated Pareto front returned by the algorithm.

Recently, new convergence-proved methods for derivative-free multiobjective optimization have
emerged, which keep a population of non dominated points that gets closer to the Pareto front as
long as the algorithm unfolds [17, 22, 31]. To the best of our knowledge, [22] is the first to pro-
pose the DMS framework that extends single-objective direct search algorithms to multiobjective
optimization. They prove the existence of at least one subsequence of iterates to a local Pareto
point. This approach is used again to build constrained line-search methods for multiobjective op-
timization [31], implicit-filtering methods for multiobjective optimization [17] and derivative-free
trust-region methods for biobjective optimization [35].

Inspired by the works of [22] and [31], this work proposes a new way to extend the MADS
algorithm to nonsmooth constrained multiobjective optimization with stronger convergence results
than the DMS algorithm. More precisely, under mild assumptions, the DMS algorithm generates
at least a sequence of points which converge to a locally Pareto optimal solution. This research
goes a step further. It is proved that under the same assumptions, the proposed method generates
sequences of points which converge to a set of Pareto stationary points. This result is equally
stronger than the one proposed in [31], as their proof requires that their objective functions be
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Lipschitz continuous.
This work is organized as follows. Section 2 introduces the notations and definitions relative to

multiobjective optimization. Section 3 summarizes the core elements of the MADS algorithm.
Section 4 presents the new extension of the MADS algorithm to multiobjective optimization.
Section 5 is dedicated to the convergence analysis of the proposed method. Finally, Section 6
reports computational experiments and discussions, followed by the conclusion.

2 Multiobjective optimization and Pareto dominance
In order to compare objective vectors, the following relation order is used [25]:

∀(y1, y2) ∈ (Rm)2
, y1 ≤ y2 ⇔ y2 − y1 ∈ Rm+ ⇔ ∀i = 1, 2, . . . ,m, y1

i ≤ y2
i .

The relation notations <, > and ≥ are similarly defined according to the cone Rm+ .
The concept of Pareto dominance can now be introduced:

Definition 2.1. Given two decision vectors x1 and x2 in the feasible decision set, it is said that:

• x1 � x2 (x1 weakly dominates x2) if and only ∀i = 1, 2, . . . ,m, fi(x1) ≤ fi(x2).

• x1 ≺ x2 (x1 dominates x2) if and only ∀i = 1, 2, . . . ,m, fi(x1) ≤ fi(x2) and it exists at least
an index i0 such that fi0(x1) < fi0(x2).

• x1 ∼ x2 (x1 and x2 are indifferent) if x1 does not dominate x1 nor x2 does not dominate x1.

This definition is illustrated in Figure 1 for a biobjective minimization problem in the feasible
objective set which is a subset of R2 delimited by the closed curve. Depending on the x1 point,
three zones in the objective space are considered. The dominance zone is the set of feasible points
which dominate x1. The dominated zone is the set of feasible points which are dominated by x1.
The indifference zone is the set of points which are indifferent to x1. In this case, x4 ≺ x1, x1 ≺ x2

and x3 ∼ x1.
The above definition enables to define optimality for multiobjective optimization problems.

Definition 2.2 (Global Pareto optimal solution). A point x∗ ∈ Ω is a global Pareto optimal
solution of MOP if there does not exist any other point x ∈ Ω such that x ≺ x∗.

Definition 2.3 (Local Pareto optimal solution). A point x∗ ∈ Ω is a local Pareto optimal solution
of MOP if there does not exist any other point x ∈ Ω ∩ N (x∗) such that x ≺ x∗, where N (x∗) is
a neighbourhood of x∗.

The set of global Pareto optimal solutions in the feasible decision set Ω is called the Pareto set
denoted by XP and its mapping by the objective function f is the Pareto front denoted by YP .
The image of a set of locally Pareto optimal points is called a local Pareto front.

The Pareto set is usually composed of many elements [25], which cannot be all enumerated.
Solving a multiobjective optimization problem aims at finding a good representative subset of the
Pareto front [36]. It is then convenient to introduce the concept of Pareto approximation set [41].
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Figure 1: An illustration of the Pareto dominance for a minimization biobjective problem.
x4 ≺ x1, x1 ≺ x2, x4 ≺ x2 and x3 ∼ x4.

Definition 2.4 (Pareto set and front approximation). A set of vectors XN in the feasible decision
set Ω is called a Pareto set approximation if no element of this set is dominated by another. Its
image in the objective space is called a Pareto front approximation.

All elements of a Pareto set approximation have to be non dominated relatively to each other.
A Pareto set approximation should ideally contain elements of the Pareto set. The algorithm
described in this work guarantees a convergence towards a Pareto set approximation whose elements
are locally Pareto optimal.

Ideally, a Pareto set approximation should contain extreme points of the Pareto set. Extreme
points of the Pareto set are decision vectors that are the solutions of each single-objective subprob-
lem minx∈Ω fi(x) for i = 1, 2, . . . ,m, which are non dominated. With the knowledge of extreme
Pareto points, one can get the ideal objective vector yI of MOP , defined by

yI =
(

min
x∈Ω

f1(x),min
x∈Ω

f2(x), . . . ,min
x∈Ω

fm(x)
)
.

Figure 2 illustrates these concepts.

3 The MADS algorithm
The proposed algorithm is an extension of the MADS algorithm [4] to multiobjective optimization.
It differs from the existing BiMADS and MultiMADS methods [10, 11], as it does not rely on a
scalarization-based approach. This section summarizes the main steps of the MADS algorithm.
All the definitions come from [6]. The reader is invited to consult [4] for more details.

The MADS algorithm is a direct search method initially designed to solve optimization single-
objective optimization blackbox problems, i.e. minx∈Ω f(x), with f : Rn → R∪{∞} a scalar-valued
function and Ω the same subset of Rn as defined for MOP .
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Figure 2: Objective space, Pareto front YP (represented in black) and ideal objective
vector yI for a minimization biobjective problem.

Definition 3.1. Let G ∈ Rn×n be a non-singular matrix and Z ∈ Zn×l be such that the columns
of Z form a positive spanning set for Rn. Define D = GZ. At iteration k, the current mesh of
coarseness δk > 0, generated by D is defined by

Mk =
⋃
x∈V k

{
x+ δkDz : z ∈ Nl

}
where V k is the set of points already evaluated by the start of iteration k.

At each iteration k, MADS attempts to find a better point in the decision space, belonging to
the current mesh defined above.

V 0 represents the set of starting points indicated by the user. The mesh is generated with
a finite set of l directions D ⊂ Rn scaled with the mesh size parameter δk > 0. Generally, one
considers the positive spanning set D = [In,−In] where In is the identity matrix of size n but
other choices are possible [4].

Each iteration is composed of two steps: the search and the poll. The search step enables the
user to define its own search strategy as long as new evaluated points remain on the mesh Mk. If
a better point is found during the search step, the poll step is not executed. As the convergence
analysis depends on the poll step, it is more rigidly defined. It generates points on the mesh around
an incumbent solution xk ∈ V k. The poll points must belong to the frame of extent ∆k centered
at xk defined below.

Definition 3.2. Let G ∈ Rn×n be a non-singular matrix and Z ∈ Zn×l be such that the columns
of Z form a positive spanning set for Rn. Let δk > 0 be the mesh size parameter and let ∆k be
such that δk ≤ ∆k. At iteration k, the frame of extent ∆k generated by D, centered at xk is
defined by

F k =
{
x ∈Mk :‖ x− xk ‖∞≤ ∆kb

}
with b = max {‖ d′ ‖∞: d′ ∈ D} and ∆k is the frame size parameter such that δk ≤ ∆k.
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The initial frame size parameter ∆0 ∈ R+ can be provided by the user or automatically fixed
according to the bound constraints of the optimization problem or the coordinates of an initial
starting point [8, 9].

The new candidates in the poll step must belong to the poll set P k defined by

P k =
{
xk + δkd : d ∈ Dk∆

}
⊂ F k

where Dk∆ is a positive spanning set of directions. To satisfy these properties, the authors of [4]
propose the following relation between δk and ∆k:

δk = min
{

∆k,
(
∆k
)2}

.

Poll points can be evaluated opportunistically (as soon as a better solution is found, the
poll step is interrupted) or completely (all candidates are evaluated) as it does not affect the
convergence analysis. If a better point is found after the search and poll steps, the iteration is
marked as successful. If not, it is considered as unsuccessful. In the first case, the frame size
parameter is increased or kept constant. In the second case, the frame size parameter is reduced,
increasing the mesh resolution and reducing the exploration field around the current incumbent
point xk. Directions d ∈ Dk∆ may be generated according to the OrthoMADS instantiation of
MADS [1]. Algorithm 1 summarizes the main steps of MADS. More details can be found in [5, 8].

Algorithm 1 The mesh adaptive direct search algorithm (MADS)
Input : Choose a set of initial starting points V 0 ⊂ Rn, ∆0 > 0 and D = GZ be a
positive spanning set matrix.
for k = 0, 1, 2, . . . do
Set δk = min

{
∆k,

(
∆k
)2
}
.

1. Search step (optional): Evaluate f at a finite set of points Sk on the mesh Mk.
If successful, go to 3.
2. Poll step : Select a positive spanning set Dk∆ ⊂ D. Evaluate f at the set of poll
points P k ⊂ F k where F k is the frame of extent ∆k.
3. Parameter update: Update the cache V k+1, the incumbent xk+1 and the frame
size parameter ∆k.

end for

Figure 3: A simplified version of the MADS algorithm.

Under mild assumptions, the MADS convergence analysis provided in [4] guarantees the ex-
istence of an accumulation point x̂ such that its Clarke generalized derivative f0(x̂; d) is non
negative [16] for all the directions d ∈ Rn belonging to the hypertangent cone THΩ (x̂) [16]. More
details are given in the convergence analysis of the new algorithm in Section 5.
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4 The mesh adaptive direct multisearch algorithm (DMulti-
MADS) for multiobjective optimization

This section presents the new bound-constrained blackbox algorithm for multiobjective optimiza-
tion, named DMulti-MADS. It is divided into three subsections. The first subsection gives a
high-level description of DMulti-MADS. The two other subsections address specific points: the
updating of the mesh size and frame size parameters of the list of non dominated points and the
choice of the current incumbent point.

4.1 The DMulti-MADS algorithm
Dmulti-MADS deals with constraints via the extreme barrier approach [22]. Specifically, the ob-
jective function f is extended to an extreme barrier function by setting

fΩ(x) =
{
f(x) if x ∈ Ω,
[+∞,+∞, . . . ,+∞]> otherwise.

Concretely, all the points that do not satisfy constraint are affected an infinite objective value.
Similarly to the DMS [22] and DFMO [31] algorithms, DMulti-MADS generates a Pareto set

approximation at each iteration. More specifically, at each iteration k, DMulti-MADS keeps a
finite set Lk which stores all feasible non dominated points found until iteration k, called an iterate
list. For each k, Lk is a finite set defined as

Lk =
{

(xj ,∆j) : xj ∈ Ω and ∆j > 0, j = 1, 2, . . . , lk
}

where lk = |Lk| and ∆j is the frame size parameter associated to the j-th non dominated element
xj of the list Lk. δj = min

{
∆j ,

(
∆j
)2} is the mesh size parameter associated with xj .

The DMulti-MADS algorithm is an extension of the direct search method MADS. As in single-
objective optimization, its functioning is organized around a poll step and a search step, this last
one being optional as the convergence analysis does not depend on it. All notations P k, Mk,
F k have the same mathematical meaning as in single-objective optimization (see Section 3). The
algorithm is described in Figure 2.

At the beginning of iteration k, an element
(
xk,∆k

)
of the list Lk is selected as the current

incumbent point at iteration k. The choice of the current incumbent point is crucial in the conver-
gence analysis and will be detailed later on. A temporary list of points Ladd is initialized to keep
track of all the new generated points during iteration k with the associated frame size parameter
∆k.

As for the MADS algorithm for single-objective optimization, the search step is optional: it aims
at improving the performance of the algorithm by evaluating points on the mesh of coarseness δk.
The poll step obeys to the same rules as in single-objective optimization. To guarantee convergence,
evaluated points during the poll step must belong to the poll set P k.

An iteration is said to be successful as soon as a new point dominating the current incumbent
xk is found. Otherwise, it is said to be unsuccessful. As in single-objective optimization, one can
choose the opportunistic or the complete polling strategy.

The two next subsections address main details left open during the description of DMulti-
MADS.
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Algorithm 2 DMulti-MADS algorithm with extreme barrier
Input : Choose x0 ∈ Ω, ∆0 > 0, D = GZ be a positive spanning set matrix, τ ∈ (0, 1)∩Q
the frame size adjustment parameter and w+ ∈ N a fixed integer parameter. Initialize
the list of non dominated points L0 =

{(
x0,∆0)}.

for k = 0, 1, 2, . . . do
Selection of the current incumbent point: Select

(
xk,∆k

)
element of Lk such

that (xk,∆k) := selectCurrentIncumbent(Lk, w+, τ) (see Algorithm 4).
Set δk = min

{
∆k,

(
∆k
)2
}
. Initialize Ladd := ∅.

Search step (optional): Evaluate fΩ at a finite set of points Sk on the mesh Mk ={
xk + δkDz : z ∈ Np

}
. Set Ladd := {(x,∆k) : x ∈ Sk}.

If t ≺ xk for some t ∈ Sk, declare the iteration as successful and skip the poll step.
Poll step : Select a positive spanning set Dk∆ ⊂ D. Evaluate fΩ at the set of
poll points P k = {xk + δkd : d ∈ Dk∆} subset of the frame F k of extent ∆k. Set
Ladd := {(x,∆k) : x ∈ P k} ∪ Ladd.
If t ≺ xk for some t ∈ P k, declare the iteration as successful. Otherwise declare the
iteration as unsuccessful.
Parameter update: Remove all dominated points of Ladd. Call the procedure
Lk+1 := updateList(Lk, Ladd, τ) (see Algorithm 3).
If the iteration is unsuccessful, replace the poll center (xk,∆k) by (xk,∆k+1) with
∆k+1 < ∆k, i.e. ∆k+1 := τ∆k.

end for

Figure 4: Description of the DMulti-MADS algorithm with extreme barrier.

4.2 Updating the list Lk

At the end of iteration k, Lk is updated as described in Algorithm 3.
The updateList procedure successively adds new points found during iteration k to the cur-

rent list Lk and remove dominated points from Lk. At the end of the procedure, the updated
Lk+1 list contains only non dominated points. Let emphasize that before calling the updateList
procedure, Ladd has been filtered to remove dominated points; in Algorithm 3, Ladd contains only
non dominated points relatively to each other. By construction, all elements of Ladd have the same
associated frame size parameter value ∆k.

At iteration k, the DMulti-MADS algorithm attempts to find at least a new point dominating
the current incumbent xk. If found, the iteration is marked as successful. In this case, Ladd
contains at least a point dominating the current incumbent xk. The first condition of Lines 2−3 of
Algorithm 3 ensures the replacing of element (xk,∆k) by the new element (xj ,∆j) with xj ≺ xk and
∆j > ∆k. In case of an unsuccessful iteration, no element of Ladd dominates the current incumbent
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Algorithm 3 updateList(Lk, Ladd, τ)
1: for j = 0, 1, 2, . . . , |Ladd| do
2: if there exists at least an element (x,∆) ∈ Lk such that xj ≺ x then
3: set Lk := Lk \

{
(x,∆) ∈ Lk : xj ≺ x

}
∪ (xj , τ−1∆j).

4: else if there exists i = 1, 2, . . . ,m such that fi(xj) < minx∈Lk fi(x) then
5: set Lk := Lk ∪ (xj , τ−1∆j).
6: else if xj ∼ x for all (x,∆) ∈ Lk then
7: set Lk := Lk ∪ (xj ,∆j).
8: end if
9: end for

10: return Lk.

Figure 5: Procedure to update the iterate list Lk.

xk. Consequently, the element (xk,∆k) ∈ Lk is substituted by (xk,∆k+1) with ∆k+1 < ∆k as
described in Algorithm 2.

During the search and poll steps, the algorithm can generate points which improve the Pareto
set approximation Lk without dominating the current poll center xk. Typically, a good Pareto set
approximation should verify three criteria [2, 40]:

• Its representation in the objective space should be as close as possible to the Pareto front.

• A good (uniform) distribution of the non dominated points in the objective space should be
assessed.

• The extent of its representation in the objective space should be maximized, i.e. single-
objective non dominated solutions should be part of the Pareto set approximation.

By increasing the mesh and frame size parameters for new promising elements by a factor τ−1,
τ ∈ (0, 1) ∩Q, DMulti-MADS enables a larger exploration in the zone around these new points if
they are selected as poll centers in the following iterations (Lines 3 and 5 of Algorithm 3). The
updateList procedure considers the following points as promising:

• The ones that dominate a portion of the actual list of non dominated points Lk (Line 2 of
Algorithm 3). The images of these points are closer to the Pareto front.

• The ones which improve the extent of the Pareto set approximation in the objective space
(Line 4 of Algorithm 3), i.e. that reach a better value for at least one of the objectives.

On the contrary, the updateList procedure does not consider as promising new points that fill
the approximated Pareto front, i.e. new non dominated points that neither dominate the current
points or extend the approximated Pareto front (Line 6 of Algorithm 3). For these indifferent
points, the frame size parameter value is kept as ∆j (Line 7 of Algorithm 3). One may hope to
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find new non dominated points that locally improve the density of the Pareto front approximation
around these new points. Figure 6 illustrates these concepts.

f1

f2

•

•

•

•

•

Dominance zone

Extension zone

Densifying zone

• Lk

Figure 6: Zone of interests relatively to a set Lk for a biobjective minimization problem
in the objective space.

Let emphasize that the convergence analysis requires that new elements added to the list Lk
must have a frame size parameter ∆ ≥ ∆k. The updateList procedure satisfies these requirements.

4.3 Choice of the current incumbent xk

Contrary to the DMS algorithm [22], the choice of the incumbent point xk at iteration k is less
flexible, since the convergence analysis depends on it. More precisely, at iteration k, element
(xk, ∆k) of the list Lk must verify

(xk,∆k) ∈
{

(x,∆) ∈ Lk : τw
+

∆k
max ≤ ∆ ≤ ∆k

max

}
where τ ∈ (0, 1) ∩ Q is the frame size adjustement parameter, w+ ∈ N a fixed integer parameter
(chosen by the user) and ∆k

max the maximum frame size parameter at iteration k defined by

∆k
max = max

j=1,2,...,|Lk|
∆j .

Having w+ = 0 means that the current incumbent xk at iteration k is chosen among the ones which
have maximum frame size parameters. When w+ is set to a sufficiently large value, the selection
criterion is similar to the one of the DMS algorithm [22]: all elements of the list Lk at iteration k
are potential current incumbents.

As new evaluated points at iteration k are initialized with the ∆k value, it is possible to have
several elements of Lh satisfying the above condition for h ≥ k. One can ask how to choose the
current incumbent point xk at iteration k among the ones which satisfy the frame size parameter
selection criterion.

Following the recommendations of [22], a first approach should be to take the first element of
the list Lk which satisfies the frame size parameter selection condition as the current incumbent
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and add all new non dominated points at the end of the list to diversify the search. To fill gaps
into the Pareto front approximation, a second approach consists in choosing elements satisfying the
frame size parameter selection criterion in the least-dense zone of the Pareto front approximation.

Audet et al. [10] consider the distance between three consecutive points in biobjective optimiza-
tion; the point in the middle is taken as the current incumbent. The crowding distance [24] extends
this result to more objectives. For each objective, values of the non dominated points are sorted
in ascendant order. The crowding distance for a given point is the sum of the normalized distance
between this point and its two adjacent neighbors according to each objective. Its computational
cost is in O(m×|Lk|× log(|Lk|)). But the crowding distance does not consider the extreme points
of the current approximated Pareto front. Based on these remarks and the work of [10], a new way
to select a current incumbent point xk with frame size parameter ∆k is proposed, as described in
Algorithm 4.

Algorithm 4 selectCurrentIncumbent(Lk, w+, τ)

Let Lselect :=
{

(x,∆) ∈ Lk : τw+∆k
max ≤ ∆ ≤ ∆k

max

}
with ∆k

max = max
j=1,2,...,|Lk|

∆j .

if |Lselect| = 1 then
return (x,∆) with Lselect = {(x,∆)}.

else if |Lselect| = 2 and |Lk| = 2 then
Let j0 ∈ arg max

j=1,2
max

i=1,2,...,m
fi(xj).

return (xj0 ,∆j0).
else
Let j0 ∈ arg max

j=1,2,...,|Lselect|
max

i=1,2,...,m
γi(xj).

return (xj0 ,∆j0).
end if

Figure 7: A procedure to select the current incumbent at iteration k taking into account
the spacing between elements of the iterate list Lk in the objective space.

The selectCurrentIncumbent procedure firstly stores elements of the list Lk satisfying the
frame size parameter selection criterion into a temporary list Lselect. If Lk possesses two elements,
the procedure selects as current incumbent the one with the higher objective value among all
objectives. By exploring the region around this incumbent, one can expect to find non dominated
points with lowest objective values and then close to the Pareto front. If |Lselect| ≥ 2 and Lk

has more than two elements, the element of the list Lselect in the least dense zone of the current
Pareto set approximation Lk in the objective space is selected, according to our new distance-based
indicator γi for i = 1, 2, . . . ,m.

For each objective i = 1, 2, . . . ,m, Lk = {(x1,∆1), (x2,∆2), . . . , (x|Lk|,∆|Lk|)} is ordered such
that

fi(x1) ≤ fi(x2) ≤ . . . ≤ fi(x|L
k|).
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γi corresponds to the scaled distance between three consecutive points according to objective i for
i = 1, 2, . . . ,m. It is then defined, for j = 1, 2, . . . , |Lk|, by

γi(xj) =



2 fi(x2)− fi(x1)
fi(x|Lk|)− fi(x1)

if j = 1,

2 fi(x|L
k|)− fi(x|L

k|−1)
fi(x|Lk|)− fi(x1)

if j = |Lk|,
fi(xj+1)− fi(xj−1)
fi(x|Lk|)− fi(x1)

otherwise.

If xj is the first or last element of the sorted list Lk, the double scaled distance between this point
and its closest neighbor for objective i is considered.

The point which is chosen as the current incumbent at iteration k is the one which satisfies
the frame size parameter selection criterion in the least dense zone according to

γ = max
j=1,2,...,|Lselect|

max
i=1,2,...,m

γi(xj).

Figure 8 illustrates this distance-based indicator for two objectives.

f1

f2
• f(x1)

•f(x2)

•f(x3)
•f(x4)

•f(x5)

•f(x6)

•f(x7)

γ = γ1(x3)

Figure 8: An example of the γ distance-based indicator in biobjective optimization. γ
corresponds to the largest scaled distance between three consecutive points according to
one objective i, for i = 1, 2, . . . ,m. Here, γ = γ1(x3).

Remark. In the implementation of direct search methods, the DMulti-MADS algorithm stops as
soon as the mesh size parameter of the current poll center is lower than a threshold value chosen
by the user or after a maximal budget of evaluations is reached. In the case where the considered
budget of evaluations is important, to avoid premature stopping, the selectCurrentIncumbent
procedure does not store in Lselect the elements of Lk whose associated mesh size parameters are
lower than the threshold value. If Lselect is empty, an element with maximal frame size parameter
is returned and the algorithm will stop at the next iteration.
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5 Convergence analysis of the DMulti-MADS algorithm
The previous section describes the DMulti-MADS algorithm. This section is devoted to its con-
vergence analysis, inspired by the works of [22, 31]. Basically, the following result is shown: under
mild assumptions, DMulti-MADS produces (at the limit) a set of locally stationary points of the
constrained multiobjective problem. As in the classical analysis of MADS [4], the objective is
to show there exists a subsequence of mesh size and frame size parameters converging to zero.
However, contrary to [22], the analysis distinguishes between the Pareto set approximation and
its elements. To guarantee this condition, the following assumption is required given a feasible
starting point x0.

Assumption 5.1. The level set L(x0) =
⋃m
i=1{x ∈ Ω : fi(x) ≤ fi(x0)} is compact. Each compo-

nent fi of the objective function f is bounded from above and below for i = 1, 2, . . . ,m.

Although this algorithm deals with bound-constrained multiobjective optimization problems,
the convergence analysis can be generalized to any general feasible set Ω ⊆ Rn. In this section, all
the results are proved with this generalization.

5.1 Preliminaries
This subsection is dedicated to the analysis of the convergence of the mesh and frame size param-
eters, based on the works of [4, 22, 39].

Theorem 5.1. Let Assumption 5.1 hold. Then DMulti-MADS generates a sequence of Pareto set
approximations iterates satisfying

lim
k→∞

inf δkmax = 0 and lim
k→∞

inf ∆k
max = 0.

Proof. Suppose by contradiction that there exists a strictly positive lower bound on the mesh size
parameter δkmax for all k ≥ 0. As in single-objective optimization [3, 4], similar arguments enable to
show that all the points evaluated by DMulti-MADS lie on an integer lattice. Since the intersection
of an integer lattice and a compact set, as assumed by Assumption 5.1, is a finite set, then only
a finite number of points can be added to the Pareto set approximation. There remains to prove
that the DMulti-MADS algorithm cannot cycle among these points.

When an element of the Pareto set approximation is removed, it is because it is dominated
by a new point. By transitivity, it cannot be added to the Pareto set approximation again. At
each successful iteration, at least one non-dominated point is added to the current Pareto set
approximation. At each unsuccessful iteration, at most one non-dominated point is added to the
current Pareto set approximation. As the number of points that can be added is finite, the number
of times the maximal mesh size parameter of the approximated Pareto set can be increased or kept
constant is finite. Given the update rule of the mesh size parameter, this contradicts the existence
of a strictly positive lower bound on the mesh size parameter.

The second part of the theorem is based on the fact that δkmax = min
{

∆k
max,

(
∆k

max
)2}, which

concludes the proof.
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Let highlight that when the iteration k is marked as unsuccessful, the maximal mesh size
parameter of the current Pareto set approximation is not always decreased. Indeed, new non
dominated points can be added to the Pareto set approximation even though the algorithm does not
find new points dominating the current incumbent xk. Furthermore, the Pareto set approximation
can contain elements with the same mesh size parameter.

The following corollary puts into relief a statistical relation between the elements of the list
Lk. For a given subsequence of Pareto set approximations, the mesh and frame size parameters
converge in average towards zero.

Corollary 5.1.1. Let Assumption 5.1 hold. Let {Lk}k∈N with

Lk =
{

(xjk ,∆jk ) : xjk ∈ Ω and ∆jk > 0, jk = 1, 2, . . . , |Lk|
}

be the sequence of current Pareto set approximations generated by the DMulti-MADS algorithm.
Then

lim
k→∞

inf δ̄k = 0 and lim
k→∞

inf ∆̄k = 0

with

δ̄k = 1
|Lk|

|Lk|∑
jk=1

δjk and ∆̄k = 1
|Lk|

|Lk|∑
jk=1

∆jk .

Proof. Since δkmax = maxjk=1,2,...,|Lk| δ
jk for k = 0, 1, 2, . . ., one has δ̄k ≤ δkmax for all k ∈ N.

Theorem 5.1 states that there exists a subset of indexes k ∈ K such that {δkmax}k∈K converges to
zero. By the squeeze theorem, one gets limk∈K δ̄

k = limk∈K δ
k
max = 0. The proof with the frame

size parameter is equivalent.

Intuitively, this corollary claims that either the cardinality of Lk converges to infinity or all
the mesh and frame size parameters converge to zero for a given set of indexes k ∈ K.

Theorem 5.1 analyzes the convergence of mesh size parameters relatively to the list of non
dominated points Lk. One has to go deeper to analyze the behavior of mesh size and frame size
parameters of specific elements of the list to prove convergence of the DMulti-MADS algorithm to
stationary points. To do that, the concept of linked sequence, taken from [31] is introduced.

Definition 5.1. Let {Lk}k∈N with Lk =
{

(xj ,∆j) : x ∈ Ω and ∆j > 0, j = 1, 2, . . . , |Lk|
}
be the

sequence of current Pareto set approximations generated by the DMulti-MADS algorithm. A
linked sequence is defined as a sequence {(xjk ,∆jk )} such that for any k = 1, 2, . . ., the pair
(xjk ,∆jk ) ∈ Lk is generated at iteration k−1 of DMulti-MADS from the pair (xjk−1 ,∆jk−1) ∈ Lk−1.

The relation between the pair (xjk ,∆jk ) ∈ Lk and (xjk−1 ,∆jk−1) ∈ Lk−1 is precised below.
1. Successful iteration : the algorithm generates at least one point that dominates the current

incumbent point xk−1. All non dominated points at iteration k−1 which are not dominated
at the end of iteration k − 1 are inserted in the Pareto set approximation Lk.
Then one has:

• ∀(xjk ,∆jk ) ∈ Lk \ Lk−1,

xjk = xk−1 + δk−1Dzk−1 for some zk−1 ∈ Nl and ∆jk ∈ {∆k−1, τ−1∆k−1}.
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• ∀(xjk ,∆jk ) ∈ Lk ∩ Lk−1,

xjk = xjk−1 and ∆jk = ∆jk−1 .

2. Unsuccessful iteration : The algorithm does not generate a point that dominates the current
incumbent point xk−1. However, it is possible that the algorithm finds new non dominated
points which are inserted into the Pareto set approximation.
Then one has:

• ∀(xjk ,∆jk ) ∈ Lk \ Lk−1,

xjk = xk−1 + δk−1Dzk−1 for some zk−1 ∈ Nl and ∆jk ∈ {∆k−1, τ−1∆k−1}.

• ∀(xjk ,∆jk ) ∈ Lk ∩ Lk−1 \ {(xk−1,∆k−1)},

xjk = xjk−1 and ∆jk = ∆jk−1 .

• ∀(xjk ,∆jk ) ∈ {(xk−1,∆k−1)},

xjk = xjk−1 and ∆jk = τ∆jk−1 .

Note that the current incumbent at iteration k− 1 is not always the same at iteration
k.

As proved below, linked sequences generate subsequences of points whose mesh size and frame
size parameters converge to 0.

Theorem 5.2. Let Assumption 5.1 hold. Let {Lk}k∈N with

Lk =
{

(xj ,∆j) : xj ∈ Ω and ∆j > 0, j = 1, 2, . . . , |Lk|
}

be the sequence of current approximated Pareto sets generated by the DMulti-MADS algorithm.
Then every linked sequence {(xjk ,∆jk )} is such that

lim
k→∞

inf δjk = 0 and lim
k→∞

inf ∆jk = 0.

Proof. ∀k ∈ N, 0 ≤ δjk ≤ δkmax. Using Theorem 5.1 and the squeeze theorem, one gets

lim
k→∞

inf δjk = lim
k→∞

inf δkmax = 0.

As δjk = min
{

∆jk ,
(
∆jk

)2}, it results that
lim
k→∞

inf ∆jk = 0.

Note that due to the update strategy, the mesh and frame size parameters for a linked sequence
{(xjk ,∆jk )} can only decrease when there exists an index k ∈ N such that xk = xjk and iteration
k is marked as unsuccessful.
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5.2 Refining subsequences and directions
The theory of classical direct search methods consists in analyzing the behavior at limit points
of unsuccessful iterates. The concept of refining subsequences in the context of multiobjective
optimization, previously introduced in [4], is adapted.

Definition 5.2. A subsequence {xk}k∈K of iterates corresponding to unsuccessful poll steps is said
to be a refining subsequence if {δk}k∈K converges to 0. The limit point x̂ of a refining subsequence
{xk}k∈K is said to be a refining point.

By Assumption 5.1 and Theorem 5.2, every linked sequence produced by the DMulti-MADS
algorithm contains a refining subsequence.

Theorem 5.3. Let Assumption 5.1 hold. Let {Lk}k∈N with

Lk =
{

(xj ,∆j) : xj ∈ Ω and ∆j > 0, j = 1, 2, . . . , |Lk|
}

be the sequence of current Pareto set approximations generated by the DMulti-MADS algorithm.
Then every linked sequence {(xjk ,∆jk )} is such that {xjk}k∈K is a refining subsequence.

This theorem is stronger than the one proposed by [22] where the DMS algorithm generates
at least one refining subsequence.

As the DMulti-MADS convergence analysis is based on the study of generalized directional
derivatives along certain limits directions at refined points, the concept of a refining direction [4]
is introduced.

Definition 5.3. Given a refining subsequence {xjk}k∈K and its corresponding refining point x̂, a
direction d is said to be a refining direction if and only if there exists an infinite subset K ′ ⊆ K

such that dk ∈ Dk∆ with xjk + δjkdk ∈ Ω and limk∈K′
dk

‖dk‖ = d
‖d‖ .

5.3 Tangent cones and generalized derivatives
The main convergence result of DMulti-MADS is that a limit point of a refining subsequence of a
linked sequence generated by the algorithm is Pareto-Clarke stationary. It requires some concepts
linked to stationarity in the context of nonsmooth constrained multiobjective optimization.

Classical theory of direct-search methods in the context of constrained single-objective opti-
mization makes use of the hypertangent cone, which is a generalization of the tangent cone at x,
i.e. the set of directions that point inside Ω . Definition and notations are taken from [4].

Definition 5.4. A vector d ∈ Rn is said to be a Clarke tangent vector to the set Ω ⊆ Rn at the
point x in the closure of Ω if for every sequence {yk} of elements of Ω that converges to x and for
every sequence of positive real numbers {tk} converging to zero, there exists a sequence of vectors
{wk} converging to d such that yk + tkwk ∈ Ω.

The set of all Clarke tangent vectors to Ω at x is called the Clarke tangent cone at x and is
denoted by TClΩ (x). The interior of this cone is defined as the hypertangent cone.
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Definition 5.5. A vector d ∈ Rn is said to be a hypertangent vector to the set Ω ⊆ Rn at the
point x ∈ Ω if and only if there exists a scalar ε > 0 such that

y + tw ∈ Ω, ∀y ∈ Ω ∩Bε(x), w ∈ Bε(x) and 0 < t < ε

where Bε(x) is the open ball centered at x of radius ε.
The set of all hypertangent directions vectors to Ω at x is called the hypertangent cone to Ω

at x, and is denoted by THΩ (x).

Note that the Clarke tangent cone can be considered as the closure of the hypertangent cone.
The convergence analysis requires the assumption that the objective function f is locally Lipschitz
continuous in Ω, i.e. each of its components fi, for i = 1, 2, . . . ,m, is locally Lipschitz continuous
in Ω. Assuming this assumption is satisfied, the Clarke-Jahn generalized derivatives [16] of each
function fi along directions d in the hypertangent cone to Ω at x exist and are defined by

foi (x; d) = lim sup
y→x, y∈Ω

t↘0, y+td∈Ω

fi(y + td)− fi(y)
t

, i = 1, 2, . . . ,m.

Audet et al [4] show that the directions v in the Clarke tangent cone can be expressed by taking
the limit, i.e.

foi (x; v) = lim
d∈TH

Ω (x)
d→v

foi (x; d), i = 1, 2, . . . ,m.

Stationarity conditions for the DMulti-MADS algorithm can now be defined.

Definition 5.6. Let f be Lispchitz continuous near a point x̂ ∈ Ω. x̂ is said to be a Pareto-Clarke
critical point of f in Ω for all directions d ∈ TClΩ (x̂) if there exists i = i(d) ∈ {1, 2, . . . ,m} such
that foi (x̂; d) ≥ 0.

If the objective function f is differentiable, this definition can be reformulated using the gradient
of each component of the objective function f .

Definition 5.7. Let f be differentiable at a point x̂ ∈ Ω. x̂ is said to be a Pareto-Clarke KKT
critical point of f in Ω for all directions d ∈ THΩ (x̂) if there exists i = i(d) ∈ {1, 2, . . . ,m} such
that ∇fi(x̂)>d ≥ 0.

5.4 Convergence results
The main convergence results of the DMulti-MADS algorithm can now be given. It states that
every limit point of a refining subsequence generated by DMulti-MADS is Pareto-Clarke optimal
under the condition that the set of refining directions is dense in the unit sphere. Thus, every limit
point of a refining subsequence of a linked sequence generated by DMulti-MADS is Pareto-Clarke
optimal. The proof follows the classical theory of direct-search methods and in particular of the
DMS algorithm [22].

Theorem 5.4. Let {xjk}k∈K be a refining subsequence converging to x̂ ∈ Ω and a refining
direction d ∈ THΩ for x̂. Assume that f is Lipschitz continuous near x̂. Then there exists i = i(d) ∈
{1, 2, . . . ,m} such that foi(d)(x̂; d) ≥ 0.
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Proof. Let {xjk}k∈K be a refining subsequence converging to a refined point x̂ ∈ Ω and d ∈ THΩ (x̂)
a refining direction for x̂. By definition of a refining direction, there exists an infinite subsequence
K ′ of the set of indices K of unsuccessful iterations, with poll directions dk ∈ Dk∆ such that
xjk + δkdk ∈ Ω and limk∈K′

dk

‖dk‖ = d
‖d‖ for all k ∈ K ′. Let ν be the Lipschitz constant of f near x̂.

For i ∈ {1, 2, . . . ,m}, one has

foi

(
x̂; d

‖d‖

)
= foi

(
x̂; d

‖d‖

)
+ lim sup

k∈K′

νδk‖dk‖
∥∥∥ dk

‖dk‖ − d
‖d‖

∥∥∥
δk‖dk‖

≥ foi
(
x̂; d

‖d‖

)
+ lim sup

k∈K′

∣∣∣fi(xjk + δkdk)− fi(xjk + δk‖dk‖ d
‖d‖ )

∣∣∣
δk‖dk‖

≥ lim sup
k∈K′

fi(xjk + δk‖dk‖ d
‖d‖ )− fi(xjk )

δk‖dk‖ + lim sup
k∈K′

∣∣∣fi(xjk + δkdk)− fi(xjk + δk‖dk‖ d
‖d‖ )

∣∣∣
δk‖dk‖

≥ lim sup
k∈K′

fi(xjk + δkdk)− fi(xjk + δk‖dk‖ d
‖d‖ ) + fi(xjk + δk‖dk‖ d

‖d‖ )− fi(xjk )
δk‖dk‖

= lim sup
k∈K′

fi(xjk + δkdk)− fi(xjk )
δk‖dk‖ .

As {xjk}k∈K is a refining subsequence, each k ∈ K ′ ⊆ K corresponds to an unsuccessful
iteration, and xjk + δkdk ∈ Ω for dk ∈ Dk∆ does not dominate xjk . One can find for k ∈ K ′ a
component of the objective function of index i(k) such that fi(k)(xjk + δkdk) − fi(k)(xk) ≥ 0. As
the objective function has a finite number of components, one can consider a subset of iteration
indexes K ′′ ⊂ K ′ such that there exists at least one index i = i(d) such that:

foi

(
x̂; d

‖d‖

)
≥ lim sup

k∈K′′

fi(xjk + δkdk)− fi(xjk )
δk‖dk‖ ≥ 0.

If f is strictly differentiable at a refining point, one can state the following corollary.
Corollary 5.4.1. Let {xjk}k∈K be a refining subsequence converging to x̂ ∈ Ω and a refining
direction d ∈ THΩ for x̂. Assume that f is strictly differentiable at x̂. Then there exists an i ∈
{1, 2, . . . ,m} such that ∇fi(x̂)>d ≥ 0.
Proof. It comes from the fact that when f is strictly differentiable at a point x ∈ Ω, foi (x; d) =
∇fi(x)>d for d ∈ Rn, i = 1, 2, . . . ,m (see [16]).

Assuming that the set of refining directions is dense in the hypertangent cone at a refining
point x̂, one can state the following theorem, which complies with the DMS algorithm convergence
analysis.
Theorem 5.5. Let {xjk}k∈K be a refining subsequence converging to x̂ ∈ Ω. Assume that f is
Lipschitz continuous near x̂ and THΩ (x̂) 6= ∅. If the set of refining directions is dense for x̂ in
TClΩ (x̂), then x̂ is a Pareto-Clarke critical point. In addition, if f is strictly differentiable at x̂,
then x̂ is a Pareto-Clarke KKT critical point.
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Proof. As proved in [4], given a direction v in the Clarke tangent cone, one has

foi (x̂; v) = lim
d∈TH

Ω (x̂)
d→v

foi (x̂; d), i = 1, 2 . . . ,m.

As the set of refining directions is dense for x̂ in TClΩ (x̂), there exists a sequence of refining directions
{dr}r∈R ∈ THΩ (x̂) for x̂ such that limr∈R dr = v. Since the number of components of the objective
function is finite, considering a subset R′ ⊆ R of indexes, one gets v = limr∈R′ dr with foi(v)(x̂; dr) ≥
0 for all r ∈ R′ by Theorem 5.4. Passing at the limit concludes the proof. The second statement
of the theorem can be deduced easily.

6 Computational experiments
This section is devoted to the numerical experiments of DMulti-MADS on bound-constrained
multiobjective problems taken from [22]. The first part introduces the considered test problems and
solvers. The second part presents an extension of the classical data profiles [32] for multiobjective
blackbox optimization, based on the hypervolume indicator [40]. Several variants of DMulti-MADS
are then compared using this tool in a third part. In the last part, the performance of DMulti-
MADS is analysed versus other state-of-the-art solvers. The DMulti-MADS code is freely available
at https://github.com/bbopt/DMultiMadsEB.

6.1 Bound-constrained problems and algorithms tested
All algorithms are tested on the benchmark set of multiobjective optimization problems taken
from [22]. It is composed of 100 problems, with a number of variables n ∈ [1, 30] and a number of
objective functions m ∈ {2, 3, 4}. It has 69 problems with m = 2, 29 problems with m = 3, and 2
problems withm = 4. A modeling of these problems in AMPL can be found at www.mat.uc.pt/dms/.
Their implementations coded in Matlab and C++ can be found at https://github.com/bbopt/
DMultiMadsEB. In the numerical experiments, the following solvers are tested:

• BiMADS (Bi-objective Mesh Adaptive Direct Search) [10] tested only for m = 2 objectives
– www.gerad.ca/nomad/.

• DMS (Direct MultiSearch) [22], version 0.3. – www.mat.uc.pt/dms/

• MOIF (MultiObjective Implicit Filtering) [17], version 0.1 – www.iasi.cnr.it/~liuzzi/
DFL/.

• NSGA-II (Non Dominated Sorting Algorithm II) [24]; implemented in the Pymoo Library [13],
version 0.3.2 – pymoo.org/.

BiMADS, DMS and MOIF are deterministic algorithms, whereas NSGA-II is a stochastic solver.
All numerical results can be found at https://github.com/bbopt/DMultiMadsEB.
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6.2 Data profiles for multiobjective blackbox optimization
In single-objective optimization, data profiles [32] enable the user to assess the performance of a
method on a set of problems for a given budget of function evaluations. Assume one wants to solve
minx∈Ω f(x) where f is a single-objective function and Ω the set of constraints. Let P be the set
of problems and A the set of considered algorithms. A data profile associated to a solver a ∈ A is
a cumulative distribution function which returns the percentage of problems in P solved by a ∈ A
for a given budget of group of function evaluations k ∈ N, i.e.

da(k) = 1
|P| |{p ∈ P : Na,p ≤ k(np + 1)}| (1)

where Na,p is the number of functions evaluations required by solver a ∈ A to solve the problem
p ∈ P and np the dimension of the problem p ∈ P. By convention, if a problem has not been
solved given a maximum budget of function evaluations, then Na,p = +∞. The np + 1 term on
the right part of the inequality in Equation (1) is added based on the assumption that a problem
with higher dimension requires more function evaluations to be solved than a problem with lower
dimension. np + 1 is equally the number of points needed to construct a simplex gradient in Rnp .

The definition of a convergence test to claim a problem has been solved is a critical phase in
the construction of a data profile. For single-objective optimization, let xb be the best feasible
point found by all algorithms on a given problem, and xe be the best feasible point found by a
given algorithm on this problem after e evaluations. Then the problem is said to be solved by this
algorithm with accuracy ετ > 0 if

f(x0)− f(xe) ≥ (1− ετ )(f(x0)− f(xb)),

where x0 is the feasible initial starting point.
Several works describe the construction of data profiles for multiobjective blackbox optimiza-

tion, based on the use of quality indicators (see [2, 30] for surveys on quality indicators). Since
the works of [22], which to the best of our knowledge, introduced data and performance profiles
for multiobjective blackbox optimization, many researchers have adopted this framework to assess
the performance of their methods [17, 31, 34]. However, these frameworks rely on spread and car-
dinality metrics, which are not Pareto compliant [2] with the dominance order for multiobjective
optimization. The use of Pareto compliant quality indicators such as the hypervolume indicator
is addressed in [31] for the construction of performance profiles [32] for multiobjective blackbox
optimization. Nonetheless, performance profiles possess the following drawbacks: they are sensi-
tive to the number of considered solvers [22, 27] and are more difficult to interpret than the data
profiles [15].

In this work, a new extension of data profiles for multiobjective optimization is proposed,
which relies on the hypervolume indicator. Note that the use of the hypervolume indicator in data
profiles is not new, as it is done in [15]. Some similarities between this work and [15] are present.
The main differences are highlighted:
• This work is more detailed in the description of the integration of the hypervolume indica-

tor into the convergence criterion, specifically the scaling of the objective vectors and the
positioning of the reference point.

• Variability of stochastic algorithms is included in this work based on the research of [37, 38].
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The hypervolume indicator [40] represents the volume of the space in the objective space
dominated by a Pareto front approximation YN and delimited above by an objective vector r ∈ Rm
such that ∀y ∈ YN , y < r. An illustration of the hypervolume indicator is shown in Figure 9.

f1

f2

•

•

•

•

•

◦
r

HV (YN , r) • Pareto front approximation
◦ Reference objective vector

Figure 9: Illustration of the hypervolume indicator (HV) for a biobjective minimization
problem, delimited above by the reference objective vector r ∈ R2. The higher, the better.

The hypervolume indicator enjoys many properties: it is Pareto compliant with the dominance
ordering, its interpretation is simple and it can serve as a metric for convergence, cardinality,
spread and extension of a Pareto front approximation [2, 30]. On the contrary, its computation is
exponential in the number of objectives [2, 30]. Practically, there exists several libraries (see for
example [26]) which can compute the hypervolume indicator value in less than some milliseconds
on modern machines for a small number of objectives (m ∈ {1, 2, 3, 4}). Indeed, one has to keep
in mind that the construction time of the data profiles is not important in these experiments.

To build the convergence test for the multiobjective optimization case, one needs to consider
a Pareto front reference Y p for the problem p ∈ P. From this Pareto front reference, let extract
the approximated ideal objective vector

ỹI,p =
(

min
y∈Y p

y1, min
y∈Y p

y2, . . . , min
y∈Y p

ymp

)
,

and the approximated Nadir objective vector

ỹN,p =
(

max
y∈Y p

y1, max
y∈Y p

y2, . . . , max
y∈Y p

ymp

)
,

where mp is the number of objectives considered in problem p ∈ P.
Let Y e be the Pareto front approximation found after e evaluations by a given deterministic

algorithm. To avoid privileging an objective function against another, a transformation T is applied
to the Pareto front reference, the Pareto front approximation and the approximated Nadir objective
vector. This transformation is defined by: ∀y ∈ Y e ∪ Y p ∪ {ỹN,p}

T (y) =
{

(y − ỹI,p)� (ỹN,p − ỹI,p) if ỹI,p 6= ỹN,p

y − ỹI,p otherwise
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where � is the element-wise divisor operator. Thus all objective vectors are scaled and translated
such that T (ỹI,p) = 0Rmp and T (ỹN,p) = 1Rmp if ỹN,p exists. Note that this translation does not
modify the dominance ordering, i.e. y1 ≤ y2 implies T (y1) ≤ T (y2) with y1, y2 two objective
vectors. Finally, the multiobjective problem p ∈ P is said to be solved by this algorithm with
accuracy ετ > 0 if

HV
(
T (Y e), T (ỹN,p)

)
HV (T (Y p), T (ỹN,p)) ≥ 1− ετ

where HV (YN , r) is the hypervolume indicator value of the Pareto front approximation delimited
from above by the reference objective vector r. By convention, the hypervolume indicator does
not consider elements of YN which do not dominate r. If all elements of YN do not dominate r,
then HV (YN , r) = 0.

Given a problem p ∈ P, the Pareto front reference Y p is constructed using the best feasible
non dominated points found by all considered solvers on this problem for a maximum budget of
evaluations. More precisely, the Pareto front reference is computed by removing the dominated
points found in the union of the Pareto front approximations generated by the set of solvers on
Problem p ∈ P once the budget of functions evaluations is exhausted.

Stochastic algorithms are commonly used to tackle blackbox multiobjective optimization prob-
lems. To include them into the data profiles framework, one can consider that different instances of
a given problem obtained by different random seeds constitute different problems. This augmented
set of problems can be used to construct classical data profiles as explained above. The authors
in [15] adopt this approach. However, this approach does not enable to visualize the variability of
stochastic algorithms on a given set of problems P. This work proposes another approach, inspired
by [37, 38].

Consider a stochastic algorithm a ∈ A and a set of problems P. Assume the algorithm has
generated after e evaluations different Pareto front approximations Y ea1,p, Y

e
a2,p, . . . , Y

e
aq,p corre-

sponding to q = |Ia| different instances for all the problems p ∈ P. For each instance, compute the
respective hypervolume values hea1,p, h

e
a2,p, . . . , h

e
aq,p as described previously. A specific instance

aj ∈ Ia of the stochastic algorithm a ∈ A is said to solve the problem p ∈ P with accuracy ετ > 0
if:

hea,p
HV (T (Y p), T (ỹN,p)) ≥ 1− ετ

where Y p is the Pareto front reference of Problem p and ỹN,p its associated approximated Nadir
objective vector.

With this convergence test, one can associate a unique data profile daj for each of the instances
aj ∈ Ia of the stochastic algorithm a ∈ A (designed as an operational characteristic in [37, 38]).
The average data profile of the stochastic algorithm a ∈ A is then defined as

d̄a : k ∈ N 7→ 1
|Ia|

|Ia|∑
j=1

daj (k).

Similarly, the lower bound and upper bound data profiles of the stochastic algorithm a ∈ A are
respectively defined as

dla : k ∈ N 7→ min
1≤j≤|Ia|

daj
(k)
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and
dua : k ∈ N 7→ max

1≤j≤|Ia|
daj

(k).

These two data profiles delimit the variations of the performance of a given stochastic algorithm
for a given set of instances.

6.3 Comparing different variants of DMulti-MADS
The aim of the tests presented in this section is to understand the impact of the different algo-
rithmic options of Dmulti-MADS on its computational efficiency. The experiments focus on three
parameters:

• The success iteration condition: for DMulti-MADS, an iteration is said to be successful if
the algorithm generates a new point which dominates the current poll center, named the
strict success strategy. In order to compare with the DMS success strategy, a DMS strategy
version of the DMulti-MADS algorithm is implemented. Specifically, an iteration of the
DMS strategy version is marked as a success if a new non dominated point is found. The
selection of the poll center and the update step of the new points remain the same; in case
of a success, the poll center mesh size and frame size parameters remain constant. Note
that with these conditions, it is possible to prove the same convergence results as for the
DMulti-MADS algorithm.

• The choice of the current incumbent. Two selection strategies are considered. The first
one picks the first element of the iterate list with the maximum mesh size and frame size
parameters. The second one selects the poll center according to Algorithm 4, which includes
the spread of the current non dominated points in its selection criterion.

• The opportunistic strategy. If the opportunistic strategy is activated, the iteration is stopped
as soon as the algorithm finds a new point which triggers the success condition. Otherwise,
the iteration continues until the end of the poll step.

These 8 variants are implemented in Julia and can be found at https://github.com/bbopt/
DMultiMadsEB. For all variants, a speculative search strategy is implemented on the model of [4],
as follows: considering the incumbent point xk at iteration k > 0 generated during iteration
h < k with incumbent poll center xh, one can build the target direction [7] wk = xk − xh. If
no failure iteration was ever observed at xk, the search point sk = xk + wk is firstly evaluated
before executing the poll step. Moreover, our implementation of the DMulti-MADS exploits the
target direction wk to reduce the number of polling directions generated by OrthoMADS to n+ 1
directions without models as described in [7]. Preliminary tests show that this approach is more
efficient than the classical OrthoMADS strategy [1] with 2n polling directions. This implementation
is also the standard one in the NOMAD software when all models are deactivated for single objective
optimization.

The mesh is implemented using the granular mesh strategy devised in [9]. All variants stop
as soon as one component of the mesh size vector is below 10−9 or reach a maximum number of
30, 000 evaluations. For each problem, the variants start from the same set of initial points using
the linesearch starting strategy exposed in [22]. For each problem and each variant, 10 replications
are run by changing the random seed which controls the generation of the polling directions.
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All variants use the fixed integer parameter w+ = 3. For more details about this choice, the
reader is invited to consult Appendix A.
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Figure 10: Data profiles obtained on 10 replications from 100 multiobjective optimization
problems from [22] for DMulti-MADS strict success strategy variants with tolerance ετ ∈
{10−2, 5× 10−2, 10−1}.

Figure 10 shows the data profiles for the set of variants implementing the strict success strategy
with tolerance accuracies ετ ∈ {10−2, 5× 10−2, 10−1}. From these graphs, one can note that both
strict strategy variants coupled with the spreading strategy outperform the remaining variants
without the spreading strategy. From this figure, one can equally observe that the strict success
strategies without opportunistic polling slightly perform better than their counterpart variants
with opportunistic polling. Similar observations can be done for the set of DMulti-MADS variants
with DMS strategy, as shown in Figure 11.

To select the most efficient strategy variants among all DMulti-MADS variants, Figure 12 shows
the data profiles for the four best variants with tolerance accuracies ετ ∈ {10−2, 5 × 10−2, 10−1}.
From these graphs, one can observe that for a lower budget of evaluations (i.e. inferior to 200 (n+1)
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Figure 11: Data profiles obtained on 10 replications from 100 multiobjective optimization
problems from [22] for DMulti-MADS variants with DMS strategy with tolerance ετ ∈
{10−2, 5× 10−2, 10−1}.

evaluations), strict success strategies variants with spread solve slightly more problems than DMS
strategies variants with spread. However, for a larger budget of evaluations, using the DMS
strategy performs better than using the strict strategy with and without opportunity. For the
DMS strategy and strict strategy variants and for any budget on this set of problems, evaluating
points opportunistically does not bring considerable advantages. For the remaining tests below,
only the strict success and DMS success strategies variants without opportunistic evaluation are
kept.

6.4 Comparing DMulti-MADS with other algorithms
This section presents the comparison of the two best DMulti-MADS variants coded in Julia with
other multiobjective derivative-free solvers BiMADS, DMS, MOIF and NSGA-II. The DMS and
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Figure 12: Data profiles obtained on 10 replications from 100 multiobjective optimization
problems from [22] for the four best DMulti-MADS variants with tolerance ετ ∈ {10−2, 5×
10−2, 10−1}.

MOIF solvers have been used with their default settings as described in [17, 22]. Two variants
of BiMADS, based on NOMAD version 3.9.1, are considered. The first uses the default settings of
the MADS algorithm as implemented in NOMAD with state-of-the-art search step heuristics (see [7,
12, 19] for more details). The second one deactivates the search step heuristics such that the
settings are equivalent to the DMulti-MADS implementation for a fairer comparison. Specifically,
the number of poll directions is set to n + 1, with a speculative search step strategy enabled and
an opportunistic polling strategy. For both variants, all single-objective runs terminate when the
mesh or step size parameter is below a threshold value (see [10] for specific details). All these
deterministic solvers have a maximum budget of evaluations equal to 30, 000 and start from the
same set of initial points as described before.

For NSGA-II, the population size is fixed to 100 points, with a total number of generations
equal to 300, which is equivalent to a budget of 30, 000 blackbox evaluations. 50 instances of this

27



stochastic solver are considered, corresponding to 50 different random seeds.
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Figure 13: Data profiles using DMS, DMulti-MADS, MOIF and NSGA-II obtained on 100
multiobjective optimization problems (69 with m = 2, 29 with m = 3 and 2 with m = 4)
from [22] with 50 different runs of NSGA-II with tolerance ετ ∈ {10−2, 5× 10−2, 10−1}.

Figure 13 presents the data profiles obtained by the different solvers for the whole set of
multiobjective problems. As BiMADS is a biobjective method, it is then not presented. For
the lowest tolerance ετ = 10−2, DMS is better than the other methods for small to medium
budgets of evaluations. The DMS success strategy variant of DMulti-MADS outperforms DMS
when the allowed budget is high and dominates MOIF and NSGA-II in average 13(a). From
Figures 13(b) and 13(c), one can observe that the two DMulti-MADS variants outperform all the
other deterministic solvers; the performance of NSGAI-II is better for high budgets of evaluations
(i.e. for example in a situation when blackbox functions are cheap to evaluate). Choosing the DMS
success strategy increases the global performance of DMulti-MADS for medium to high budgets
of evaluations.

From the data profiles obtained on the set of problems for m = 2 in Figure 14, where NOMAD
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Figure 14: Data profiles using NOMAD (BiMADS), DMS, DMulti-MADS, MOIF and NSGA-
II obtained on 69 biobjective optimization problems from [22] with 50 different runs of
NSGA-II with tolerance ετ ∈ {10−2, 5× 10−2, 10−1}.

(BiMADS) is added, similar results can be observed. The DMS solver is better than the others
solvers with a small to moderate budget of blackbox evaluations but gets outperformed by the
DMulti-MADS DMS success strategy variant when one chooses a high budget of evaluations,
for the lowest tolerance. For higher tolerances, Figures 14(b) and 14(c) illustrate the fact that
the two DMulti-MADS variants are the dominating algorithms for a low to moderate budget of
evaluations. For a high budget of evaluations and higher tolerances, NOMAD (BiMADS) outperforms
DMulti-MADS. However, it exploits surrogate models which considerably improve its performance.
When they are deactivated, DMulti-MADS is better for all considered budgets and all considered
tolerances.

29



7 Conclusion
This work proposes a new extension of the MADS algorithm to multiobjective optimization, in-
spired by the works of [10, 22]. Contrary to the BIMADS and MultiMADS methods, the DMulti-
MADS algorithm does not solve a succession of single-objective parameterized formulations. It
directly updates a current list of non dominated points which gets closer to the Pareto front. This
enables a better management of a given budget of evaluations to explore the feasible objective set.
As in single-objective optimization, each iteration is built around a search and poll step. Theoret-
ically, it is proved under mild assumptions that DMulti-MADS generates a succession of sequence
of points whose stationary points are locally Pareto optimal. This convergence result is stronger
than the proof presented in [22] which guarantees that the DMS algorithm is able to converge to at
least one locally Pareto optimal point. However, the flexibility to choose the poll center, as it is the
case for DMS, is lost. Computational results show that DMulti-MADS is competitive compared
to other state-of-the-art blackbox multiobjective optimization techniques.

The selection mechanism of the poll center is a central part of the strong convergence properties
of DMulti-MADS. Future research directions could adapt the convergence analysis of DMulti-
MADS to other multiobjective optimization derivative-free methods with a posteriori preferences
of articulations [17, 31, 35]. Indeed, all these methods look for improvements of a list of non
dominated points possessing their own optimization parameter (trust-region radius, line step, and
stepsize). Maximum optimization parameter selection could be tested on these methods.

In addition, many extensions could be implemented to improve performance of DMulti-MADS:
search strategies assisted by surrogate models [14, 19] or global search strategies [21], parallelism,
taking into account general inequality constraints [31] and so on. An integration of this algorithm
in NOMAD is also planned.
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Appendix A A study of the influence of the integer param-
eter w+ on the performance of the DMulti-
MADS algorithm

This appendix presents some experiments which led to the choice of the value of the integer
parameter w+. For readability, only the DMulti-MADS variants without opportunistic polling
and the spread strategy are considered. For the set of w+ integer values presented here, similar
observations can be done as the ones presented in Subsection 6.3 concerning the influence of
opportunistic polling and the spread strategy on the concrete performance of the DMulti-MADS
algorithm. Thus, the variants compared here are the better ones for each considered w+ value.
They use the same settings as the ones described at the beginning of Subsection 6.3.
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Figure 15: Data profiles obtained on 10 replications from 100 multiobjective optimiza-
tion problems from [22] for DMulti-MADS variants with strict success strategy without
opportunistic polling and with spread strategy for tolerance ετ ∈ {10−2, 5× 10−2, 10−1}.
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Figure 15 presents data profiles of the DMulti-MADS strict success strategy variants for several
integer values of w+. Fixing w+ to 0 means that only points with maximum frame size parameter
in the current Pareto front approximation can be selected as current poll centers. When w+ is
high (for example w+ ∈ {10, 14, 20}), the poll selection of the algorithm is similar to the one of
the DMS algorithm: all points of the current incumbent list can be chosen as poll centers. From
Figure 15, one can note that allowing only points with maximum frame size parameters to be
selected as poll centers grandly decreases the performance of DMulti-MADS for all considered
tolerances. However, removing all restrictions on the choice of the current incumbent as long as
it belongs to the current incumbent list is not the most performant variant (i.e. for example with
w+ ∈ {10, 14, 20}). Indeed, for the lowest tolerance 15(a), the data profiles reveal than strict
strategy variants with high value of w+ ∈ {10, 14, 20} solve slightly less problems compared to the
choice of w+ = 5. For higher tolerances, a value w+ ∈ {3, 5} is preferable, as shown in Figures 15(b)
and 15(c).

One can make similar observations when comparing DMulti-MADS variants with DMS success
strategy for different w+ values, as shown on Figure 16. For the DMS success strategy, a w+

integer value comprised between 3 and 5 implies a better performance.
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Figure 16: Data profiles obtained on 10 replications from 100 multiobjective optimization
problems from [22] for DMulti-MADS variants with DMS strategy with tolerance ετ ∈
{10−2, 5× 10−2, 10−1}.

Appendix B Comparing DMulti-MADS with other algorithms:
performance profiles

This appendix reports comparison results between the two best DMulti-MADS variants and the
other multiobjective solvers BiMADS, DMS, MOIF and NSGA-II in term of the purity metric,
spread metrics Γ and ∆ metrics as described and used in [22]. All settings for running the solvers
are the same as the ones described in Subsection 6.4. Specifically the maximal allowed number of
evaluations for each problem and each solver is fixed to 30, 000. Algorithms are compared in pairs
(see [22, 27] for an explanation).

When looking at Figure 17, one can observe that the two variants of DMulti-Mads are more
efficient in term of purity than DMS and MOIF. On the contrary, it is less efficient than BiMADS
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Figure 17: Purity performance profiles using NOMAD (BiMADS), DMS, DMulti-MADS,
MOIF and NSGA-II obtained on 100 multiobjective optimization problems (69 with m =
2, 29 with m = 3 and 2 with m = 4) from [22] with 50 different runs of NSGA-II.

(with and without model) and NSGA-II (worst and best versions) in terms of purity metric. This
can be explained by the fact that BiMADS generates more points in the Pareto front reference,
due to its scalarization approach when DMulti-MADS generates points that are close to the Pareto
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front reference, but not part of it. Concerning NSGA-II, a closer look at the runs shows that all
deterministic solvers can stop before the exhaustion of the whole budget of evaluations (because the
solver reaches a threshold), which can prevent them from exploring potential interesting areas in the
objective space. NSGA-II always exploits its full budget of evaluations, which allows to generate
more points in the Pareto front reference, and consequently to have a better purity metric.

In terms of ∆ spread metric results reported in Figure 18, one can see that the two DMulti-
MADS variants are slightly less performant than the other algorithms. For DMS and MOIF, the
use of coordinate directions seems to play a role in the distribution of their generated points for
this set of problems. However, the use of dense directions enables DMulti-MADS to find new
non-dominated points contrary to DMS and MOIF as shown in Figure 17.

In terms of Γ spread metric, both variants of DMulti-MADS generate less dense Pareto front
approximations than BiMADS and NSGA-II, as shown in Figure 19. The DMulti-MADS variant
with DMS strategy performs better when compared to MOIF and DMS than the DMulti-MADS
variant with strict success strategy. Thus, for an important budget of evaluations, the DMulti-
MADS variant with DMS strategy generates denser Pareto front approximations.

Acknowledgments. The authors would like to thank Professor Ana Luísa Custódio (Univer-
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Figure 18: ∆ spread performance profiles using NOMAD (BiMADS), DMS, DMulti-MADS,
MOIF and NSGA-II obtained on 100 multiobjective optimization problems (69 with m =
2, 29 with m = 3 and 2 with m = 4) from [22] with 50 different runs of NSGA-II.
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Figure 19: Γ spread performance profiles using NOMAD (BiMADS), DMS, DMulti-MADS
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runs of NSGA-II.

[10] C. Audet, G. Savard, and W. Zghal. Multiobjective Optimization Through a Series of Single-

37



Objective Formulations. SIAM Journal on Optimization, 19(1):188–210, 2008.

[11] C. Audet, G. Savard, and W. Zghal. A mesh adaptive direct search algorithm for multiobjec-
tive optimization. European Journal of Operational Research, 204(3):545–556, 2010.

[12] C. Audet and C. Tribes. Mesh-based Nelder-Mead algorithm for inequality constrained opti-
mization. Computational Optimization and Applications, 71(2):331–352, 2018.

[13] J. Blank and K. Deb. PYMOO - Multi-objective Optimization in Python. IEEE Access,
8:89497–89509, 2020.

[14] C.P. Brás and A.L. Custódio. On the use of polynomial models in multiobjective directional
direct search. Computational Optimization and Applications, 77:897–918, 2020.

[15] D. Brockhoff, T.D. Tran, and N. Hansen. Benchmarking numerical multiobjective optimiz-
ers revisited. In Proceedings of the 2015 Annual Conference on Genetic and Evolutionary
Computation, GECCO ’15, pages 639–646, New York, NY, USA, 2015. ACM.

[16] F.H. Clarke. Optimization and Nonsmooth Analysis. John Wiley & Sons, New York, 1983.
Reissued in 1990 by SIAM Publications, Philadelphia, as Vol. 5 in the series Classics in Applied
Mathematics.

[17] G. Cocchi, G. Liuzzi, A. Papini, and M. Sciandrone. An implicit filtering algorithm for
derivative-free multiobjective optimization with box constraints. Computational Optimization
and Applications, 69(2):267–296, 2018.

[18] Y. Collette and P. Siarry. Optimisation multiobjectif. Eyrolles, 2002.

[19] A.R. Conn and S. Le Digabel. Use of quadratic models with mesh-adaptive direct search
for constrained black box optimization. Optimization Methods and Software, 28(1):139–158,
2013.

[20] A.R. Conn, K. Scheinberg, and L.N. Vicente. Introduction to Derivative-Free Optimization.
MOS-SIAM Series on Optimization. SIAM, Philadelphia, 2009.

[21] A. L. Custódio and J. F. A. Madeira. Multiglods: global and local multiobjective optimization
using direct search. Journal of Global Optimization, 72(2):323–345, October 2018.

[22] A.L. Custódio, J.F.A. Madeira, A.I.F. Vaz, and L.N. Vicente. Direct multisearch for multi-
objective optimization. SIAM Journal on Optimization, 21(3):1109–1140, 2011.

[23] K. Deb and K. Miettinen. Multiobjective optimization: interactive and evolutionary
approaches, volume 5252. Springer Science & Business Media, 2008.

[24] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.

[25] M. Ehrgott. Multicriteria Optimization, Volume 491 of Lecture Notes in Economics and
Mathematical Systems. Springer, Berlin, 2nd edition, 2005.

[26] C.M. Fonseca, L. Paquete, and M. Lopez-Ibanez. An improved dimension-sweep algorithm
for the hypervolume indicator. In 2006 IEEE International Conference on Evolutionary
Computation, pages 1157–1163. IEEE, 2006.

38



[27] N. Gould and J. Scott. A Note on Performance Profiles for Benchmarking Software. ACM
Transactions on Mathematical Software, 43(2):1–5, 2016.

[28] M.S. Hasanoglu and M. Dolen. Multi-objective feasibility enhanced particle swarm optimiza-
tion. Engineering Optimization, 50(12):2013–2037, 2018.

[29] J. Knowles. ParEGO: A hybrid algorithm with on-line landscape approximation for expensive
multiobjective optimization problems. IEEE Transactions on Evolutionary Computation,
10(1):50–66, 2006.

[30] M. Li and X. Yao. Quality Evaluation of Solution Sets in Multiobjective Optimisation: A
Survey. ACM Computing Surveys, 52(2):26:1–26:38, 2019.

[31] G. Liuzzi, S. Lucidi, and F. Rinaldi. A Derivative-Free Approach to Constrained Multiobjec-
tive Nonsmooth Optimization. SIAM Journal on Optimization, 26(4):2744–2774, 2016.

[32] J.J. Moré and S.M. Wild. Benchmarking derivative-free optimization algorithms. SIAM
Journal on Optimization, 20(1):172–191, 2009.

[33] J. Müller. SOCEMO: Surrogate Optimization of Computationally Expensive Multiobjective
Problems. INFORMS Journal on Computing, 29(4):581–596, 2017.

[34] R.G. Regis. Multi-objective constrained black-box optimization using radial basis function
surrogates. Journal of Computational Science, 16:140–155, 2016.

[35] J. Ryu and S. Kim. A derivative-free trust-region method for biobjective optimization. SIAM
Journal on Optimization, 24(1):334–362, 2014.

[36] S. Sayın. Measuring the quality of discrete representations of efficient sets in multiple objective
mathematical programming. Mathematical Programming, 87(3):543–560, May 2000.

[37] Y.D. Sergeyev, D.E. Kvasov, and M.S. Mukhametzhanov. Operational zones for comparing
metaheuristic and deterministic one-dimensional global optimization algorithms. Mathematics
and Computers in Simulation, 141:96–109, November 2017. New Trends in Numerical Anal-
ysis: Theory, Methods, Algorithms and Applications - NETNA 2015 (dedicated to Professor
F.A. Costabile on his 70th birthday) held in Falerna (CZ), Italy during June 18–20, 2015.

[38] Y.D. Sergeyev, D.E. Kvasov, and M.S. Mukhametzhanov. On the efficiency of nature-inspired
metaheuristics in expensive global optimization with limited budget. Scientific Reports,
8(1):453, January 2018.

[39] V. Torczon. On the convergence of pattern search algorithms. SIAM Journal on Optimization,
7(1):1–25, 1997.

[40] E. Zitzler and L. Thiele. Multiobjective optimization using evolutionary algorithms — a
comparative case study. In Agoston E. Eiben, Thomas Bäck, Marc Schoenauer, and Hans-
Paul Schwefel, editors, Parallel Problem Solving from Nature — PPSN V, pages 292–301,
Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[41] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da Fonseca. Performance assess-
ment of multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary
Computation, 7(2):117–132, April 2003.

39


	Introduction
	Multiobjective optimization and Pareto dominance
	The MADS algorithm
	The mesh adaptive direct multisearch algorithm (DMulti-MADS) for multiobjective optimization
	The DMulti-MADS algorithm
	Updating the list Lk
	Choice of the current incumbent xk

	Convergence analysis of the DMulti-MADS algorithm
	Preliminaries
	Refining subsequences and directions
	Tangent cones and generalized derivatives
	Convergence results

	Computational experiments
	Bound-constrained problems and algorithms tested
	Data profiles for multiobjective blackbox optimization
	Comparing different variants of DMulti-MADS
	Comparing DMulti-MADS with other algorithms

	Conclusion
	A study of the influence of the integer parameter w+ on the performance of the DMulti-MADS algorithm
	Comparing DMulti-MADS with other algorithms: performance profiles

