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Abstract—This paper studies train routing and scheduling 

problem for busy railway stations. The train routing problem is 

to assign each train to a route through the railway station and to 

a platform in the station. The train scheduling problem is to 

determine timing and ordering plans for all trains on the 

assigned train routes. Our objective is to allow trains to be 

routed in dense areas that are reaching saturation. Unlike 

traditional methods that allocate all resources to setup a route 

for a train until the route is freed, our work focuses on the use 

of resources as trains progress through the railway node. This 

technique allows a larger number of trains to be routed 

simultaneously in a railway node and thus reduces their current 

saturation. In this paper, we consider that trains can be coupled 

or decoupled and trains can pass through the railway station 

without stopping at any platform. To deal with this problem, this 

study proposes an abstract model and a mixed-integer linear 

programming formulation to solve it. The method is illustrated 

on a didactic example. 

 
Index Terms—Busy railway stations, mixed-integer linear 

programming, offline railway station management, train 

coupling, train decoupling, train platforming, train routing, 

train scheduling. 

 

I. INTRODUCTION 

Nowadays, the railway network in Europe and most areas 

in the world have a great demand for transport. It is necessary 

to make the best use of railway resources while satisfying 

commercial objectives without conflicts between trains and 

resources. In order to fully explore the capacity of railway 

infrastructure, searching for optimal platform stops and 

passing through busy railway stations is important. In most 

researches, two main problems are investigated: train routing 

and train scheduling [1].  
The train routing problem is to assign each train to a route 

through the railway station and to a platform in the station. 

The number of routings available to each train strongly 

affects the size of the problem and the time required to 

optimally solve it.  
The train scheduling problem is to determine timing and 

ordering plans for all trains on the assigned train routes. The 

number of possible solutions can be very large depending on 
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the network structure, the number and type of trains. 

A train routing and scheduling problem in railway stations 

consists of assigning trains to platforms, so as to satisfy 

several constraints such as headway, dwell time and platform 

occupation. The schedule must satisfy some commercial 

objectives such as desired train arrival and departure times, 

platform stops, etc.  
Some works dealing with train routing and scheduling 

problem focus mainly on low traffic densities within a 

reasonable computation time. In such case of simple railway 

structures with few lines, the problem is easy since there are 

few numbers of routes for each train. Reference [2] proposes 

a mixed-integer program to find train routing concerning with 

assigning trains and train times for rail links, stations stop..., 

so as to avoid train conflicts while minimizing costs and 

satisfying travel demands. The numerical example in this 

paper has 10 nodes, 28 links, 10 trains and requires less than 

one minute to be solved. The strategy of scheduling is to find 

the route of trains one at a time until all trains are routed and 

if necessary, the route of trains can be rescheduled until a 

feasible solution is found. References [3], [4] investigate 

computational complexity of the problem of routing trains 

through railway station. They consider the reservation of a 

complete route which guarantees that each train can travel 

without interruption along the reserved route. They also 

include shunting decisions, which are the move of a train to a 

depot track from a platform in the station (and inversely), and 

small deviations for preferred arrival time and departure time 

of trains. They prove that if each train has at most two routing 

possibilities, a solution can be computed in polynomial time.  
   The routing and scheduling problem becomes difficult in 

busy railway stations, having busy lines and several 

alternative platforms. Some research focus on complex 

railway stations. Reference [5] proposes a linear model. 

Heuristic methods are developed according to train planners’ 

objectives. The algorithm schedules each train one by one. 

For each train, they check feasible platforms and for each of 

these platforms, they check if there are any conflicts with 

other trains that are already scheduled. If there are conflicts, 

the arrival time and departure time of train are changed to 

resolve conflicts. The experiment example has 12 main 
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platforms (with 34 sub-platforms) and 491 trains with 900 

arrivals and departures. The computation times can be from a 

few seconds to several hours depending on the heuristic 

method and the train planners’ objectives. Reference [6] 

proposes a model dealing with the routing and scheduling 

problem for busy complex railway stations by applying a 

hybrid algorithm combining branch-and-bound and heuristic 

algorithms. In this model, they consider the reservation of a 

complete path and the deviation of departure time in a similar 

way to [3], [4]. The experiment example has 250 trains 

divided in sub-groups, the biggest group has about 60 trains. 

The computation time is a few minutes with 182 minutes 

deviation of departure times of 37 trains that contains 3 trains 

postponed by more than 10 minutes, 8 trains by more than 6 

minutes and 29 trains by less than 5 minutes. Reference [7] 

improve the model of [3]. The problem is formulated as a 

weighted node packing model by making some assumptions 

about shunting decisions, preferences of trains for platforms 

and routes. Reference [7] also includes preprocessing and 

reduction techniques in the solution process. Reference [8] 

proposes a track-circuit based model dealing with 

perturbations. In this paper, all track-circuits belonging to a 

block must be reserved for trains. Reference [9] proposes a 

set packing model to deal with the problem of routing trains 

through railway junctions. The route locking and sectional 

release system is used in this model, a sequence of track 

sections must be reserved before the arrival of trains.  

In view of the above, the reservation of a complete route is 

popularly used to solve the routing and scheduling problem 

in railway stations since it can guarantee that trains travel 

safely without interruptions. In this method, all sections in the 

route of trains are reserved until the trains release the 

complete route. One complete route can be reserved by only 

one train at a time. In principle, the reservation duration of 

each section of route can be calculated. It depends on the 

length and speed of train and the length of section. In this 

paper, we want to assess the interest and performance of a 

model considering the reservation of each section 

independently. This implies low-level modeling 

consideration with respect to the speed and length of train. A 

section can be reserved when a train arrives and it can be 

released after the train leaves it, so that the use of available 

resources can be more efficient. It allows the full exploitation 

of the capacity of railway infrastructures. 

We proposed in [10] an abstract model and a mixed-integer 

linear programming formulation to solve it. We considered 

that every train consists of two circulations. One circulation 

goes from outside of railway station to a platform of railway 

station and the other circulation leaves the railway station. In 

this paper, we extend our early study by describing many 

types of trains. Thereafter a train can consists of a 

combination of one, two or three circulations. We consider 

that trains can be coupled or decoupled, which correspond to 

frequent railway operations. We consider also trains that pass 

through the railway station and do not stop at any platform. 

The paper is structured as follows. In the 2nd section, we 

propose the main concepts for describing the problem. In the 

3rd section we propose a mathematical model allowing a 

resolution by a mixed integer programming approach. 

Section 4th is an application of the proposed model to a case 

study to illustrate the feasibility of our approach. In the 5th 

section, we conclude with the lessons of this work and 

indicate its perspectives. 
 

II.   DESCRIPTION OF THE PROBLEM 

We propose to study a topology based on two types of 

generic components:” section” and ” connector”. 

A section is a segment of railway infrastructure that can 

contain only one train at a time. 

The set of sections in a railway infrastructure is denoted by 

𝑆 = {𝑠1, 𝑠2, . . , 𝑠𝑆}  where S is the cardinal number of  S. 

A connector is a point which connects several sections.  

The set of connectors in a railway infrastructure is denoted  

by 𝐶 = {𝑐1, 𝑐2, . . , 𝑐𝐶}  where C is the cardinal number of  C. 

Relations between sections and connectors: The 

topology we consider corresponds to a sequence of sections 

and connectors, see Fig. 1. Each section is bounded by only 

two connectors. 

 

 
Fig. 1. Relations between sections and connectors. 

 

For every 𝑐 ∈ 𝐶 we denote the set of sections connected 

with connector c by 𝑆𝑐. In Fig. 1 , 𝑆𝑐2
={𝑠1, 𝑠2, 𝑠3, 𝑠4}. 

Sections doublet. (𝑠1, 𝑠2)  is a doublet of connector 

𝑐1when 𝑠1, 𝑠2 ∈ 𝑆𝑐1
,  and trains can traverse from section 𝑠1 

to section 𝑠2 by connector 𝑐1 . The set of doublets of a 

connector c is denoted by 

𝐾𝑐 ={(𝑠1, 𝑠′1), (𝑠2, 𝑠′2), . . , (𝑠𝐾 , 𝑠′𝐾)} where K is the cardinal 

number of 𝐾𝑐. 

We must remark that a doublet of connectors represents 

only one travel direction. For example, a doublet (𝑠1, 𝑠2) of 

connector 𝑐1 represents the travel direction from section 𝑠1 to 

section 𝑠2  by connector 𝑐1 . The reverse exists only in case 

that we have another doublet (𝑠2, 𝑠1) for connector 𝑐1. 

For example, in Fig. 1,  if trains can traverse from left to 

right, then  𝐾𝑐2
={(𝑠1, 𝑠3), (𝑠1, 𝑠2), (𝑠4, 𝑠2), (𝑠4, 𝑠3)}. 

For every 𝑠 ∈ 𝑆, we denote the set of reachable sections 

from section s by 𝑆𝑠. In Fig. 1, 𝑆𝑠1
={𝑠2, 𝑠3}. 

For every 𝑠 ∈ 𝑆, we denote the set of sections which have 

section s as a reachable section by �̂�𝑠. In Fig. 1, �̂�𝑠2
={𝑠1, 𝑠4}. 

For every 𝑠 ∈ 𝑆 , for every 𝑠′ ∈ 𝑆𝑠 , it exists only one 

connector denoted as 𝑐𝑠𝑠′ between these two reachable 

sections. In Fig. 1, 𝑐𝑠1𝑠3
is 𝑐2. 

A bordering connector is a connector surrounding the 

railway infrastructure where trains can enter or leave railway 

infrastructure. 

The set of bordering connectors in a railway infrastructure 

is denoted by 𝐵 = {𝑏1, 𝑏2, . . , 𝑏𝐵 } where B is the cardinal 

number of 𝐵. Obviously, 𝐵 ⊂ 𝐶. 

An external section is a section surrounding the railway 

infrastructure, represented by a line which connects from a 

bordering connector to the outside of the infrastructure where 



  

trains can enter or leave railway infrastructure. The set of 

external sections in a railway infrastructure is denoted by 𝐸= 

{ 𝑒1, 𝑒2, . . , 𝑒𝐸 } where E is the cardinal number of 𝐸 . 

Obviously, 𝐸 ⊂ 𝑆. 

A platform is a section which is used for passengers that 

can await, board or unboard from trains. Train can usually 

stop long-time in platforms. 

The set of platforms in a railway infrastructure is denoted 

by 𝑃= {𝑝1, 𝑝2, . . , 𝑝𝑃 } where P is the number of platforms. 

Thus, 𝑃 ⊂ 𝑆 and 𝑃 ∩ 𝐸 = ⌀. 

An internal section is a section inside railway 

infrastructure where trains can pass through. The internal 

sections are not platforms. The set of internal sections in a 

railway infrastructure is denoted by 𝐼= {𝑖1, 𝑖2, . . , 𝑖𝐼} where I 

is the cardinal number of 𝐼. Thus, 𝐼 ⊂ 𝑆, 𝐼 ∩ 𝐸 = ⌀, 𝐼 ∩ 𝑃 =
⌀ and 𝑆 = 𝐼 ∪ 𝐸 ∪ 𝑃 . 

An example of a railway infrastructure is represented in 

Fig. 2 and the correspondences between sections of this figure 

are listed in Table I.  

 

 
                 Fig. 2 An example of railway infrastructure. 

 

TABLE I: CORRESPONDENCES BETWEEN SECTIONS OF FIG. 2 

 
 

Trains’ Activities 

Train: The traffic in the railway infrastructure is defined 

by a set of trains 𝑇= {𝑡1, 𝑡2, . . , 𝑡𝑇} where T is the number of 

trains. 

A circulation is an operation of a train which travel from 

one section to another. 

Every train 𝑡 ∈ 𝑇 consists of a set of ordered circulations 

𝐿𝑡 = {𝑙1
𝑡 , 𝑙2

𝑡 , . . . , 𝑙
𝐿𝑡
𝑡 } where 𝐿𝑡 is the cardinal number of 𝐿𝑡. 

Train platform. If a train must stop at a platform, we must 

allocate one and only one platform to train 𝑡, denoted as 𝑝𝑡 ∈
𝑃. A route for the train passing through the railway station 

must be determined with the condition that the train arrives at 

and departs from the same platform 𝑝𝑡 . 

Routing of trains. A train passing through the railway 

station has circulations which are given external sections and 

need to be assigned to a route. The external sections of 

circulations of the train 𝑡  are denoted by 𝑒𝑖𝑛
𝑙1 , 𝑒𝑖𝑛

𝑙2 .. , 

𝑒𝑜𝑢𝑡
𝑙3 , 𝑒𝑜𝑢𝑡

𝑙4 . . ∈ 𝐸  (train using coupling or decoupling 

mechanism must have three external sections). The 

circulation 𝑙  of train enters the railway station from the 

external section 𝑒𝑖𝑛
𝑙 , arrives at a platform, after that another 

circulation 𝑙′ departs from the same platform and leaves the 

railway station by the external section 𝑒𝑜𝑢𝑡
𝑙′ . 

Three types of circulation are defined: 

 An entering circulation is a circulation of a train which 

travels from an external section to a platform, see Fig. 

3. The set of entering circulations is denoted by 𝐿𝑒𝑛𝑡 .  

 

 
                                     Fig. 3. Entering circulation. 

 

 A leaving circulation is a circulation of a train which 

travels from a platform to an external section, see Fig. 

4. The set of leaving circulations is denoted by 𝐿𝑙𝑒𝑎𝑣 .  

 
                                       Fig. 4. Leaving circulation. 

 

 A crossing circulation is a circulation of a train which 

passes through the railway station from an external 

section to another external section and does not stop at 

any platform, see Fig. 5. The set of crossing circulations 

is denoted by 𝐿𝑐𝑟𝑜𝑠𝑠.  

 

 
                  Fig. 5. Crossing circulation of a passing train. 

   

Note: Trains can stop at only one platform but they are 

allowed to traverse other platforms. Crossing circulations do 

not stop at any platform but they can traverse platforms to go 

through the railway infrastructure. 



  

Reference time. An entering circulation 𝑙 ∈ 𝐿𝑒𝑛𝑡  is 

associated to a reference time 𝐴𝑙. This reference time 𝐴𝑙 is the 

preferred arrival time to the platform by the circulation l. 

Circulation can arrive late to platform within a permissible 

deviation time. The maximum permissible deviation is 

denoted by L. It means that the latest arrival time of 

circulation at its platform is 𝐴𝑙 + 𝐿. 

Stopping time. The time taken for circulations remaining 

stopped at a platform to take passengers onboard is denoted 

by 𝐷𝑙 . 

Route. The route of a circulation is a sequence of reachable 

sections from one to another that the train uses for this 

circulation. One circulation can have many routes and we 

have to determine which one is the most appropriate. 

A route of a circulation 𝑙𝑡 of train t denoted by 𝑟 consists 

of a set of ordered reachable sections 𝑆𝑟 ={𝑠1
𝑟 , 𝑠2

𝑟 , . . , 𝑠𝑆𝑟
𝑟 } 

where 𝑆𝑟 is the cardinal number of 𝑆𝑟. 

In France, nowadays the TGV (Train Ã Grande Vitesse, 

"high-speed train") is France’s intercity high-speed rail 

service, operated by SNCF, French National Railway 

Company. TGVs have semi-permanently coupled articulated 

un-powered coaches (chair cars) with bogies between the 

coaches. At each end of the trains, Power cars, lead vehicles 

with machinery for supplying heat or electrical power to other 

parts of trains, have their own bogies. Trains can be 

lengthened by coupling two TGVs, using couplers hidden in 

the noses of the power cars. 

In this study, we consider that every train t consists of a 

maximum of two entering circulations and one leaving 

circulation (or one entering circulation and two leaving 

circulations). Trains can stop at only one platform and they 

are allowed to traverse other platforms (they do not stop at 

these platforms). The entering circulations of a train must 

stop at the platform selected for the train and the leaving 

circulations of the train must leave the same platform. The 

assumption used in this model is that for all entering 

circulations arriving at a platform, the reference arrival time 

of the platform and the stopping time at platform are known. 

 

III. MIXED-INTEGER LINEAR PROGRAMMING MODEL 

In this section, we propose a mathematical model as a 

mixed-integer linear program with the parameters and 

hypotheses we presented in above.  

A. Parameters 

Every train 𝑡 ∈ 𝑇 has some parameters corresponding, see 

Table II:  

 
               TABLE II: PARAMETERS OF TRAINS’ ACTIVITIES 

 
     

Note: Three types of stopping train in this study: 

 Stopping trains that have only one entering circulation 

and one leaving circulation. The set of this type of train 

is denoted by 𝑇11. 

 Stopping trains that have two entering circulations and 

one leaving circulation (train coupling). The set of this 

type of train is denoted by 𝑇21. We consider 𝐴𝑙1<𝐴𝑙2 , it 

means that circulation 𝑙1  enters platform before 

circulation 𝑙2.  

 Stopping trains that have one entering circulation and 

two leaving circulations (train decoupling). The set of 

this type of train is denoted by 𝑇12. 

    There are no train having two entering circulations and two 

leaving circulations because we can consider two trains 

having one entering circulation and one leaving circulation in 

this case. 

The time taken to traverse section s by circulation l is 

denoted by Δ𝑠
𝑙 . It depends on the length of sections and the 

speed of trains, can be given as:         

Δ𝑠
𝑙 =

length of sections

speed of circulationl
 

The time taken for a circulation l going through a connector 

is denoted by Θ𝑙. It depends on the length and the speed of 

trains, can be given as:  

 

              Θ𝑙 =
length of train

speed of circulation l
 

 

 The time taken for a coupling system or decoupling system 

at platform is denoted by Γ𝑡.  

    Note: We assume that the speed of train does not change 

during a circulation. 

    H is a sufficiently large constant.  

B. Decision Variables 

    The function 𝛿(𝑄) is an indicator such that 𝛿(𝑄) = 1 if 

the condition Q is valid, otherwise 0. 

 𝑺𝒔
𝒍 : boolean variable, represents the passage of 

circulation l going through section s. 𝑆𝑠
𝑙 = 𝛿 (circulation 

l passes through section s). 

 𝑪𝒄
𝒍 : boolean variable, represents the passage of 

circulation l going through connector c. 𝐶𝑐
𝑙 =

𝛿(circulation l passes through connector c). 

 𝒀𝒔
𝒍𝒍′ : boolean variable, represents the chronological 

order of two circulations l, l’ using routes containing a 

common section s. 𝑌𝑠
𝑙𝑙′ = 𝛿(circulation l passes through 

section s before circulation l’). 

 𝑿𝒄
𝒍𝒍′ : boolean variable, represents the chronological 

order of two circulations l, l’ using routes containing a 

common connector c. 𝑋𝑐
𝑙𝑙′ = 𝛿 (circulation l passes 

through connector c before circulation l’). 

 𝒁𝒔𝒔′
𝒍 : boolean variable, represents the passage from 

section s to section s’ in the route of circulation l. 𝑍𝑠𝑠′
𝑙 =

𝛿 (circulation l travels from section s to section s’). 

    The time interval of occupation of sections and connectors 

are represented in Fig. 6:  

 
             Fig. 6. Occupation time variables. 



  

    Note: A section is reserved when a train arrives at the 

connector connected with this section and the section is 

released when train leaves the other connector connected with 

this section. 

 [𝜶𝒔
𝒍 ,𝜷𝒔

𝒍 ]: integer variables, the actual time interval of 

occupation of section s by circulation l. 

 [𝝊𝒄
𝒍 , 𝝎𝒄

𝒍 ]: integer variables, the actual time interval of 

occupation of connector c by circulation l. 

 𝑾𝒔
𝒍 : integer variable, the time taken for circulation l 

remaining stopped at section s. 

 𝑷𝒑
𝒍 : boolean variables, represents the stopping platform 

of circulation l. 𝑃𝑝
𝑙 = 𝛿 (platform p is allocated to 

circulation l as a stopping platform).  

C. Constraints 

    Routing constraints. This section presents constraints 

which ensure that circulations can travel from their origin to 

their destination. 

 If the doublet (𝑠, 𝑠′) does not exist, it means that section 

s is not reachable from s’. Thus, 𝑍𝑠𝑠′
𝑙  is equal to 0:  

 

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑡 , ∀𝑠 ∈ 𝑆, ∀𝑠′ ∉ 𝑆𝑠         𝑍𝑠𝑠′
𝑙 = 0 (1) 

  

 

 If a circulation passes from section s to s’, it cannot pass 

from section s’ to s:  

 

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑡 , ∀𝑠 ∈ 𝑆, ∀𝑠′ ∈ 𝑆𝑠        𝑍𝑠𝑠′
𝑙 + 𝑍𝑠′𝑠

𝑙 ≤ 1 (2) 

 

    Route of circulation: 
 If a circulation enters a section, this circulation must 

pass through this section:  

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑡 , ∀𝑠 ∈ 𝑆        ∑

𝑠′∈�̂�𝑠

𝑍𝑠′𝑠
𝑙 = 1 ⇒ 𝑆𝑠

𝑙 = 1 

     The constraint is expressed using the linear constraint 

below:  

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑡 , ∀𝑠 ∈ 𝑆        𝑆𝑠
𝑙 ≥ ∑𝑠′∈�̂�𝑠

𝑍𝑠′𝑠
𝑙  (3) 

 If a circulation leaves a section, this circulation must 

pass through this section:  

 

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑡 , ∀𝑠 ∈ 𝑆        ∑𝑠′∈𝑆𝑠
𝑍𝑠𝑠′

𝑙 = 1 ⇒ 𝑆𝑠
𝑙 = 1    

      The constraint is expressed using the linear constraint 

below:  

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑡 , ∀𝑠 ∈ 𝑆        𝑆𝑠
𝑙 ≥ ∑𝑠′∈𝑆𝑠

𝑍𝑠𝑠′
𝑙  (4) 

 

    Note: The inequality in constraints (3) and (4) represents 

the case of external sections and platforms. For example, a 

circulation can pass through an external section but it cannot 

enter this external section in case that this external section is 

the first section in the route of this circulation. 

 If a circulation travels from section s to section s’, it 

must use the connector 𝑐𝑠𝑠′ between these two sections:  

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑡 , ∀𝑠 ∈ 𝑆, ∀𝑠′ ∈ 𝑆𝑠        𝑍𝑠𝑠′
𝑙 = 1 ⇒ 𝐶𝑐𝑠𝑠′

𝑙 = 1 

     

The constraint is expressed using the linear constraint 

below:  

 

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑡 , ∀𝑠 ∈ 𝑆, ∀𝑠′ ∈ 𝑆𝑠        𝑍𝑠𝑠′
𝑙 ≤ 𝐶𝑐𝑠𝑠′

𝑙       (5) 

 

     Constraints of external sections: 

 Entering circulation l must pass through and leave the 

external section given 𝑒𝑖𝑛
𝑙 :  

 

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑒𝑛𝑡
𝑡         𝑆

𝑒𝑖𝑛
𝑙

𝑙 = 1 (6) 

  

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑒𝑛𝑡
𝑡         ∑𝑠′∈𝑆

𝑒𝑖𝑛
𝑙

𝑍
𝑒𝑖𝑛

𝑙 𝑠′

𝑙 = 1 (7) 

 

  This entering circulation l must not pass through others 

external sections:  

  

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑒𝑛𝑡
𝑡 , ∀𝑠 ∈ 𝐸\{𝑒𝑖𝑛

𝑙 }        𝑆𝑠
𝑙 = 0 (8) 

    

 Leaving circulation l must enter and pass through the 

external section given 𝑒𝑜𝑢𝑡
𝑙 : 

 

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑙𝑒𝑎𝑣
𝑡         𝑆

𝑒𝑜𝑢𝑡
𝑙

𝑙 = 1 (9) 

  

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑙𝑒𝑎𝑣
𝑡         ∑𝑠′∈�̂�

𝑒𝑜𝑢𝑡
𝑙

𝑍
𝑠′𝑒𝑜𝑢𝑡

𝑙
𝑙 = 1 (10) 

 

 This leaving circulation l must not pass through others 

external sections:  

 

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑙𝑒𝑎𝑣
𝑡 , ∀𝑠 ∈ 𝐸\{𝑒𝑜𝑢𝑡

𝑙 }        𝑆𝑠
𝑙 = 0      (11) 

 

 Crossing circulation l must pass through and leave the 

external section given 𝑒𝑖𝑛
𝑙  and it must enter and pass 

through the external section given 𝑒𝑜𝑢𝑡
𝑙 :  

 

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑐𝑟𝑜𝑠𝑠
𝑡         𝑆

𝑒𝑖𝑛
𝑙

𝑙 = 1              (12) 

  

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑐𝑟𝑜𝑠𝑠
𝑡         ∑𝑠′∈𝑆

𝑒𝑖𝑛
𝑙

𝑍
𝑒𝑖𝑛

𝑙 𝑠′

𝑙 = 1 (13) 

  

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑐𝑟𝑜𝑠𝑠
𝑡         𝑆

𝑒𝑜𝑢𝑡
𝑙

𝑙 = 1 (14) 

  

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑐𝑟𝑜𝑠𝑠
𝑡         ∑𝑠′∈�̂�

𝑒𝑜𝑢𝑡
𝑙

𝑍
𝑠′𝑒𝑜𝑢𝑡

𝑙
𝑙 = 1 (15) 

 

  This crossing circulation l must not pass through others 

external sections:  

  

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑐𝑟𝑜𝑠𝑠
𝑡 , ∀𝑠 ∈ 𝐸\{𝑒𝑖𝑛

𝑙 , 𝑒𝑜𝑢𝑡
𝑙 }        𝑆𝑠

𝑙 = 0 (16) 

  

Constraints of internal sections: If a circulation enters an 

internal section, it must leave this internal section. 

Conversely, if this circulation leaves this internal section, it 

must enter this internal section.  

 

 ∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑡 , ∀𝑠 ∈ 𝐼        ∑𝑠′∈�̂�𝑠
𝑍𝑠′𝑠

𝑙 = ∑𝑠′′∈𝑆𝑠
𝑍𝑠𝑠′′

𝑙  (17) 

 

    Constraints of non-stopping platforms: We consider that 

trains can pass through some platforms but might not stop at 

these platforms. If a circulation enters an non-stopping 

platform, it must leave this platform. Conversely, if this 

circulation leaves this platform, it must enter this platform:  

  

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑡 , ∀𝑝 ∈ 𝑃    𝑃𝑝
𝑙 = 0 ⇒ ∑

𝑠′∈𝑆𝑝

𝑍𝑝𝑠′
𝑙 = ∑

𝑠′′∈�̂�𝑝

𝑍𝑠′′𝑝
𝑙

 

 



  

    These constraints are expressed using the linear constraints 

below:  

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑡 , ∀𝑝 ∈ 𝑃                        

{
∑𝑠′∈𝑆𝑝

𝑍𝑝𝑠′
𝑙 − ∑𝑠′′∈�̂�𝑝

𝑍𝑠′′𝑝
𝑙 ≤ 𝐻 ⋅ 𝑃𝑝

𝑙

∑𝑠′′∈�̂�𝑝
𝑍𝑠′′𝑝

𝑙 − ∑𝑠′∈𝑆𝑝
𝑍𝑝𝑠′

𝑙 ≤ 𝐻 ⋅ 𝑃𝑝
𝑙

 (18) 

 

    Note: If 𝑃𝑝
𝑙 = 0 , the inequation (20) implies that 

∑𝑠′∈𝑆𝑝
𝑍𝑝𝑠′

𝑙 − ∑𝑠′′∈�̂�𝑝
𝑍𝑠′′𝑝

𝑙 ≤ 0  and ∑𝑠′′∈�̂�𝑝
𝑍𝑠′′𝑝

𝑙 −

∑𝑠′∈𝑆𝑝
𝑍𝑝𝑠′

𝑙 ≤ 0, it means that ∑𝑠′∈𝑆𝑝
𝑍𝑝𝑠′

𝑙 = ∑𝑠′′∈�̂�𝑝
𝑍𝑠′′𝑝

𝑙 . If 

𝑃𝑝
𝑙 = 1 , the inequation is always true because H is a 

sufficiently big constant. 

    Constraints of stopping platforms: 
 There is only one stopping platform for entering 

circulation and leaving circulation:  

 

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑒𝑛𝑡
𝑡 ∪ 𝐿𝑙𝑒𝑎𝑣

𝑡         ∑𝑝∈𝑃 𝑃𝑝
𝑙 = 1 (19) 

 

 There is no stopping platform for crossing circulation:  

 

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑐𝑟𝑜𝑠𝑠
𝑡         ∑𝑝∈𝑃 𝑃𝑝

𝑙 = 0 (20) 

 

    • Entering circulations and leaving circulations of the 

same train must have the same platform:  

 

∀𝑡 ∈ 𝑇, ∀𝑙, 𝑙′ ∈ 𝐿𝑒𝑛𝑡
𝑡 ∪ 𝐿𝑙𝑒𝑎𝑣

𝑡 , ∀𝑝 ∈ 𝑃        𝑃𝑝
𝑙 = 𝑃𝑝

𝑙′   (21) 

 

 An entering circulation must enter the stopping 

platform:  

  

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑒𝑛𝑡
𝑡 , ∀𝑝 ∈ 𝑃        𝑃𝑝

𝑙 = 1 ⇒ ∑

𝑠∈�̂�𝑝

𝑍𝑠𝑝
𝑙 = 1

 

 

The constraint is expressed using the linear constraint 

below:  

 

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑒𝑛𝑡
𝑡 , ∀𝑝 ∈ 𝑃        ∑𝑠∈�̂�𝑝

𝑍𝑠𝑝
𝑙 ≥ 𝑃𝑝

𝑙
 (22)  

  

 An entering circulation must not leave the stopping 

platform:  

 

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑒𝑛𝑡
𝑡 , ∀𝑝 ∈ 𝑃        𝑃𝑝

𝑙 = 1 ⇒ ∑

𝑠∈𝑆𝑝

𝑍𝑝𝑠
𝑙 = 0 

 

The constraint is expressed using the linear constraint 

below:  

 

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑒𝑛𝑡
𝑡 , ∀𝑝 ∈ 𝑃        ∑𝑠∈𝑆𝑝

𝑍𝑝𝑠
𝑙 ≤ (1 − 𝑃𝑝

𝑙)  (23) 

 

 A leaving circulation must leave a stopping platform:  

 

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑙𝑒𝑎𝑣
𝑡 , ∀𝑝 ∈ 𝑃        ∑𝑠∈𝑆𝑝

𝑍𝑝𝑠
𝑙 ≥ 𝑃𝑝

𝑙
     (24) 

 

 A leaving circulation must not enter the stopping 

platform:  

 

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑙𝑒𝑎𝑣
𝑡 , ∀𝑝 ∈ 𝑃        ∑𝑠∈�̂�𝑝

𝑍𝑠𝑝
𝑙 ≤ (1 − 𝑃𝑝

𝑙)   (25) 

Constraints of relations between sections and 

connectors: We consider that circulations are not allowed to 

pass through a connector many time in this model. 

Circulations can pass a connector only one time. If a 

circulation l passes through a connector c, there must be two 

sections, connected to this connector, which are in the route 

of circulation l:  

 

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑡 , ∀𝑐 ∈ 𝐶        𝐶𝑐
𝑙 = 1 ⇒ ∑

𝑠∈𝑆𝑐

𝑆𝑠
𝑙 = 2 

  

This constraint is expressed using the linear constraint 

below:  

 

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑡 , ∀𝑐 ∈ 𝐶        {
∑𝑠∈𝑆𝑐

𝑆𝑠
𝑙 − 2 ≤ 𝐻 ⋅ (1 − 𝐶𝑐

𝑙)

2 − ∑𝑠∈𝑆𝑐
𝑆𝑠

𝑙 ≤ 𝐻 ⋅ (1 − 𝐶𝑐
𝑙)

(26) 

 

    Note: We remind that 𝑆𝑐 is a set of sections connected with 

connector c. 

    Actual time interval of occupation of sections and 

connectors. 

    The actual time interval of occupation of a section 𝑠 ∈ 𝑆 

by a circulation l is defined by [𝛼𝑠
𝑙 , 𝛽𝑠

𝑙] and the time taken for 

circulation l remaining stopped at section s is defined by 

variables 𝑊𝑠
𝑙. 

The actual time interval of occupation of a connector 𝑐 ∈
𝐶 by a circulation l is defined by [𝜐𝑐

𝑙 , 𝜔𝑐
𝑙 ].  

 

 
Fig. 7. Actual time intervals of occupation of sections and connectors. 

 

 The actual time intervals of occupations of sections and 

connectors are represented in Fig. 7. The constraints of 

all connectors are expressed as follows:  

 

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑡 , ∀𝑐 ∈ 𝐶        𝜔𝑐
𝑙 = 𝜐𝑐

𝑙 + Θ𝑙 (27) 

 

 The constraints of all sections which are not the 

stopping platform are expressed as follows:  

  

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑡 , ∀𝑠 ∈ 𝐼    𝛽𝑠
𝑙 = 𝛼𝑠

𝑙 + Δ𝑠
𝑙 + 2Θ𝑙 + 𝑊𝑠

𝑙   (28) 

 ∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑡 , ∀𝑠 ∈ 𝐸    𝛽𝑠
𝑙 = 𝛼𝑠

𝑙 + Δ𝑠
𝑙 + Θ𝑙 + 𝑊𝑠

𝑙    (29) 

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑡 , ∀𝑝 ∈ 𝑃                        

𝑃𝑝
𝑙 = 0 ⇒ 𝛽𝑝

𝑙 = 𝛼𝑝
𝑙 + Δ𝑝

𝑙 + 2Θ𝑙 + 𝑊𝑝
𝑙 

 

This constraint is expressed using the linear constraints 

below:  

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑡 , ∀𝑝 ∈ 𝑃                        

{
𝛼𝑝

𝑙 + Δ𝑝
𝑙 + 2Θ𝑙 + 𝑊𝑝

𝑙 − 𝛽𝑝
𝑙 ≤ 𝐻 ⋅ 𝑃𝑝

𝑙

𝛽𝑝
𝑙 − 𝛼𝑝

𝑙 − Δ𝑝
𝑙 − 2Θ𝑙 − 𝑊𝑝

𝑙 ≤ 𝐻 ⋅ 𝑃𝑝
𝑙

 (30) 

     To pass through an internal section or a platform, trains 

pass through two connectors (constraints (28) and (30)). To 



  

pass through an external section, trains pass through only one 

connector (constraint (29)). 

    Succession of sections: 
The actual time intervals of occupations of two consecutive 

sections are represented in Fig. 8.  

 

 
       Fig. 8. Actual time intervals of occupation of two consecutive sections. 

 

 If circulation l travels from section s to section s’ by 

connector 𝑐, we consider that the section s’ is reserved 

when connector c is occupied by circulation l. Thus, we 

have the constraint below:  

 

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑡 , ∀𝑠 ∈ 𝑆, ∀𝑠′ ∈ 𝑆𝑠        𝑍𝑠𝑠′
𝑙 = 1 ⇒ 𝜐𝑐𝑠𝑠′

𝑙 = 𝛼𝑠′
𝑙  

 

    This constraint is expressed using the linear constraints 

below:   

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑡 , ∀𝑠 ∈ 𝑆, ∀𝑠′ ∈ 𝑆𝑠

{
𝜐𝑐𝑠𝑠′

𝑙 − 𝛼𝑠′
𝑙 ≤ 𝐻 ⋅ (1 − 𝑍𝑠𝑠′

𝑙 )

𝛼𝑠′
𝑙 − 𝜐𝑐𝑠𝑠′

𝑙 ≤ 𝐻 ⋅ (1 − 𝑍𝑠𝑠′
𝑙 )

 (31) 

 According to Fig. 8, if a circulation l travels from 

section s to section s’, their corresponding occupation 

times must respect the constraint below:  

 

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑡 , ∀𝑠 ∈ 𝑆, ∀𝑠′ ∈ 𝑆𝑠   𝑍𝑠𝑠′
𝑙 = 1 ⇒ 𝛽𝑠

𝑙 = 𝛼𝑠′
𝑙 + Θ𝑙 

 

    This constraint is expressed using the linear constraints 

below: 

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑡 , ∀𝑠 ∈ 𝑆, ∀𝑠′ ∈ 𝑆𝑠    

{
𝛼𝑠′

𝑙 + Θ𝑙 − 𝛽𝑠
𝑙 ≤ 𝐻 ⋅ (1 − 𝑍𝑠𝑠′

𝑙 )

𝛽𝑠
𝑙 − 𝛼𝑠′

𝑙 − Θ𝑙 ≤ 𝐻 ⋅ (1 − 𝑍𝑠𝑠′
𝑙 )

 (32) 

Actual time interval of occupation of stopping 

platform: The time interval of occupation of stopping 

platform of an entering circulation must respect the preferred 

arrival time 𝐴𝑙 which can be adjusted within a time interval L 

(Fig. 9). 

 

 
                                   Fig. 9. Deviation L. 

 

                  Fig. 10 Actual time interval of occupation of a platform 

    The actual time interval of occupation of a platform is 

represented in Fig. 10, we assume that the entering circulation 

of a train arrives at a stopping platform when the train leaves 

the connector connected with the platform. Hence, the 

entering circulation allows passengers to board or unboard 

the train. After that, the leaving circulation of this train will 

pass through and leaves the platform. 

    • The time interval of occupation of a stopping platform of 

an entering circulation must respect the preferred arrival time 

of platform 𝐴𝑙, see Fig. 9:  

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑒𝑛𝑡
𝑡 , ∀𝑝 ∈ 𝑃                

𝑃𝑝
𝑙 = 1 ⇒ 𝐴𝑙 ≤ 𝛼𝑝

𝑙 + Θ𝑙 ≤ 𝐴𝑙 + 𝐿
 

    This constraint is expressed using the linear constraint 

below:  

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑒𝑛𝑡
𝑡 , ∀𝑝 ∈ 𝑃                  

{
𝐴𝑙 − 𝛼𝑝

𝑙 − Θ𝑙 ≤ 𝐻 ⋅ (1 − 𝑃𝑝
𝑙)

𝛼𝑝
𝑙 + Θ𝑙 − 𝐴𝑙 ≤ 𝐿 + 𝐻 ⋅ (1 − 𝑃𝑝

𝑙)

 (33) 

 The time interval of occupation of stopping platform of 

an entering circulation must respect the stopping time at 

platform 𝐷𝑙:  

 

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑒𝑛𝑡
𝑡 , ∀𝑝 ∈ 𝑃        𝑃𝑝

𝑙 = 1 ⇒ 𝛽𝑝
𝑙 = 𝛼𝑝

𝑙 + Θ𝑙 + 𝐷𝑙  

 

    This constraint is expressed using the linear constraint 

below:  

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑒𝑛𝑡
𝑡 , ∀𝑝 ∈ 𝑃                  

{
𝛽𝑝

𝑙 − 𝛼𝑝
𝑙 − Θ𝑙 − 𝐷𝑙 ≤ 𝐻 ⋅ (1 − 𝑃𝑝

𝑙)

𝛼𝑝
𝑙 + Θ𝑙 + 𝐷𝑙 − 𝛽𝑝

𝑙 ≤ 𝐻 ⋅ (1 − 𝑃𝑝
𝑙)

 (34) 

   Note: If trains have two entering circulations, each entering 

circulation has its own arrival time 𝐴𝑙 and stopping time 𝐷𝑙  

at platform. 

 If trains have one entering circulation and one leaving 

circulation (train type denoted by 𝑇11 ), their 

corresponding occupation times must respect the 

constraint below: 

∀𝑡 ∈ 𝑇11, ∀𝑙1 ∈ 𝐿𝑒𝑛𝑡
𝑡 , ∀𝑙2 ∈ 𝐿𝑙𝑒𝑎𝑣

𝑡 , ∀𝑝 ∈ 𝑃  𝑃𝑝
𝑙1 = 1 ⇒ 𝛼𝑝

𝑙2 = 𝛽𝑝
𝑙1  

    This constraint is expressed using the linear constraint 

below:  

∀𝑡 ∈ 𝑇, 𝑙1 ∈ 𝐿𝑒𝑛𝑡
𝑡 , 𝑙2 ∈ 𝐿𝑙𝑒𝑎𝑣

𝑡 , ∀𝑝 ∈ 𝑃

{
𝛽𝑝

𝑙1 − 𝛼𝑝
𝑙2 ≤ 𝐻 ⋅ (1 − 𝑃𝑝

𝑙1)

𝛼𝑝
𝑙2 − 𝛽𝑝

𝑙1 ≤ 𝐻 ⋅ (1 − 𝑃𝑝
𝑙1)

 (35) 

   

 If trains have two entering circulations 𝑙1, 𝑙2 with 𝐴𝑙1  < 

𝐴𝑙2  and one leaving circulation 𝑙3 (train type denoted by 

𝑇21 ), see Fig. 11, the time interval of occupation of 

stopping platform of leaving circulation 𝑙3 must depend 

on the time interval of occupation of a stopping platform 

of the second entering circulation 𝑙2.  

 

 



  

Fig. 11 Coupling system of trains. 

    The entering circulation 𝑙1 must enter a platform before 𝑙2 

(𝐴𝑙1  < 𝐴𝑙2). The constraint of the time interval of occupation 

of a stopping platform of entering circulations and leaving 

circulation is expressed below:  

∀𝑡 ∈ 𝑇11, ∀𝑙1 ∈ 𝐿𝑒𝑛𝑡
𝑡 , ∀𝑙2 ∈ 𝐿𝑙𝑒𝑎𝑣

𝑡 , ∀𝑝 ∈ 𝑃  𝑃𝑝
𝑙1 = 1 ⇒ 𝛼𝑝

𝑙2 = 𝛽𝑝
𝑙1  

 

 

This constraint is expressed using the linear constraint 

below:  

   

∀𝑡 ∈ 𝑇21, 𝑙1, 𝑙2 ∈ 𝐿𝑒𝑛𝑡
𝑡 , 𝑙3 ∈ 𝐿𝑙𝑒𝑎𝑣

𝑡 , ∀𝑝 ∈ 𝑃

{
𝛽𝑝

𝑙2 − 𝛼𝑝
𝑙3 ≤ 𝐻 ⋅ (1 − 𝑃𝑝

𝑙1)

𝛼𝑝
𝑙3 − 𝛽𝑝

𝑙2 ≤ 𝐻 ⋅ (1 − 𝑃𝑝
𝑙1)

 (36) 

 

 
                         Fig. 12. Decoupling system of trains. 
 

 If trains have one entering circulation 𝑙1 and two leaving 

circulations 𝑙2, 𝑙3  (train type denoted by 𝑇12), see Fig. 

12, the time interval of occupation of a stopping 

platform of the first leaving circulation 𝑙2 (circulation 𝑙2 

must leave the platform before 𝑙3) must depend on the 

time interval of occupation of a stopping platform of the 

entering circulation 𝑙1 . This constraint is expressed 

below:  

 

∀𝑡 ∈ 𝑇12, ∀𝑙1 ∈ 𝐿𝑒𝑛𝑡
𝑡 , ∀𝑙2, 𝑙3 ∈ 𝐿𝑙𝑒𝑎𝑣

𝑡 , ∀𝑝 ∈ 𝑃

  𝑃𝑝
𝑙1 = 1 ⇒ 𝛼𝑝

𝑙2 = 𝛽𝑝
𝑙1

 

    This constraint is expressed using the linear constraint 

below:  

∀𝑡 ∈ 𝑇12, 𝑙1 ∈ 𝐿𝑒𝑛𝑡
𝑡 , 𝑙2, 𝑙3 ∈ 𝐿𝑙𝑒𝑎𝑣

𝑡 , ∀𝑝 ∈ 𝑃

{
𝛽𝑝

𝑙1 − 𝛼𝑝
𝑙2 ≤ 𝐻 ⋅ (1 − 𝑃𝑝

𝑙1)

𝛼𝑝
𝑙2 − 𝛽𝑝

𝑙1 ≤ 𝐻 ⋅ (1 − 𝑃𝑝
𝑙1)

 (37) 

    The second leaving circulation can begin to occupy the 

platform only after the first leaving circulation leaves the 

stopping platform. The constraint of the time interval of 

occupation of a stopping platform of two leaving circulations 

𝑙2, 𝑙3 is expressed below: 

∀𝑡 ∈ 𝑇12, ∀𝑙1 ∈ 𝐿𝑒𝑛𝑡
𝑡 , ∀𝑙2, 𝑙3 ∈ 𝐿𝑙𝑒𝑎𝑣

𝑡 , ∀𝑝 ∈ 𝑃

  𝑃𝑝
𝑙1 = 1 ⇒ 𝛼𝑝

𝑙3 = 𝛽𝑝
𝑙2

 

 

    This constraint is expressed using the linear constraint 

below:  

∀𝑡 ∈ 𝑇12, 𝑙1 ∈ 𝐿𝑒𝑛𝑡
𝑡 , 𝑙2, 𝑙3 ∈ 𝐿𝑙𝑒𝑎𝑣

𝑡 , ∀𝑝 ∈ 𝑃

{
𝛽𝑝

𝑙2 − 𝛼𝑝
𝑙3 ≤ 𝐻 ⋅ (1 − 𝑃𝑝

𝑙1)

𝛼𝑝
𝑙3 − 𝛽𝑝

𝑙2 ≤ 𝐻 ⋅ (1 − 𝑃𝑝
𝑙1)

 (38) 

 

 The constraint of the time interval of occupation of 

stopping platform of a leaving circulation is expressed 

below:  

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑙𝑒𝑎𝑣
𝑡 , ∀𝑝 ∈ 𝑃                

𝑃𝑝
𝑙 = 1 ⇒ 𝛽𝑝

𝑙 = 𝛼𝑝
𝑙 + Δ𝑝

𝑙 + Θ𝑙 + Γ𝑡 + 𝑊𝑝
𝑙 

 

    This constraint is expressed using the linear constraint 

below: 

∀𝑡 ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑙𝑒𝑎𝑣
𝑡 , ∀𝑝 ∈ 𝑃                        

{
𝛼𝑝

𝑙 + Δ𝑝
𝑙 + Θ𝑙 + Γ𝑡 + 𝑊𝑝

𝑙 − 𝛽𝑝
𝑙 ≤ 𝐻 ⋅ (1 − 𝑃𝑝

𝑙)

𝛽𝑝
𝑙 − 𝛼𝑝

𝑙 − Δ𝑝
𝑙 − Θ𝑙 − Γ𝑡 − 𝑊𝑝

𝑙 ≤ 𝐻 ⋅ (1 − 𝑃𝑝
𝑙)

 (39) 

    Security constraints. The security constraints ensure that 

two circulations cannot pass the same section or the same 

connector at the same time. We use the actual time interval 

variables and ordering variables defined previously to express 

these constraints. 

 When two circulations using the same section, one 

circulation must be scheduled before the other:  

 

∀𝑡, 𝑡′ ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑡 , ∀𝑙′ ∈ 𝐿𝑡′, 𝑙 ≠ 𝑙′, ∀𝑠 ∈ 𝑆    𝑌𝑠
𝑙𝑙′ + 𝑌𝑠

𝑙′𝑙 = 1
 (40) 

 

    Occupation of sections: Two circulations passing through 

a common section cannot be scheduled during the same time 

interval. 

    If two circulations are not in the same train, the constraint 

is expressed below: 

∀𝑡, 𝑡′ ∈ 𝑇, 𝑡 ≠ 𝑡′, ∀𝑙 ∈ 𝐿𝑡 , ∀𝑙′ ∈ 𝐿𝑡′, ∀𝑠 ∈ 𝑆

        {
𝛽𝑠

𝑙 ≤ 𝛼𝑠
𝑙′ + 𝐻 ⋅ (3 − 𝑆𝑠

𝑙 − 𝑆𝑠
𝑙′ − 𝑌𝑠

𝑙𝑙′)

𝛽𝑠
𝑙′ ≤ 𝛼𝑠

𝑙 + 𝐻 ⋅ (3 − 𝑆𝑠
𝑙 − 𝑆𝑠

𝑙′ − 𝑌𝑠
𝑙′𝑙)

 (41) 

   Note: If section s is in the route of both circulations l and l’, 

so that 𝑆𝑠
𝑙 = 1, 𝑆𝑠

𝑙′ = 1  and either 𝑌𝑠
𝑙𝑙′ = 1  or 𝑌𝑠

𝑙′𝑙 = 1 . It 

means that 3 − 𝑆𝑠
𝑙 − 𝑆𝑠

𝑙′ − 𝑌𝑠
𝑙𝑙′ = 0  or 3 − 𝑆𝑠

𝑙 − 𝑆𝑠
𝑙′ − 𝑌𝑠

𝑙′𝑙 =
0. In the first case, we have 𝛽𝑠

𝑙 ≤ 𝛼𝑠
𝑙′, it means that circulation 

l leaves section s before the arriving of circulation l’ at section 

s. The second constraint is trivially verified (𝑌𝑠
𝑙′𝑙 = 0). In the 

other case, we have 𝛽𝑠
𝑙′ ≤ 𝛼𝑠

𝑙 , it means that circulation l’ 

leaves section s before the arriving of circulation l at section 

s. 

    In case that two circulations are in the same train, the 

constraint is expressed below for all sections which are not 

platform: 

∀𝑡 ∈ 𝑇, ∀𝑙, 𝑙′ ∈ 𝐿𝑡 , ∀𝑠 ∈ 𝑆\𝑃        

{
𝛽𝑠

𝑙 ≤ 𝛼𝑠
𝑙′ + 𝐻 ⋅ (3 − 𝑆𝑠

𝑙 − 𝑆𝑠
𝑙′ − 𝑌𝑠

𝑙𝑙′)

𝛽𝑠
𝑙′ ≤ 𝛼𝑠

𝑙 + 𝐻 ⋅ (3 − 𝑆𝑠
𝑙 − 𝑆𝑠

𝑙′ − 𝑌𝑠
𝑙′𝑙)

  (42) 

    In case that section is a non-stop platform, the constraint is 

expressed below:  

∀𝑡 ∈ 𝑇, ∀𝑙, 𝑙′ ∈ 𝐿𝑡 , ∀𝑝 ∈ 𝑃        

{
𝛽𝑝

𝑙 ≤ 𝛼𝑝
𝑙′ + 𝐻 ⋅ (3 − 𝑆𝑝

𝑙 − 𝑆𝑝
𝑙′ − 𝑌𝑝

𝑙𝑙′ + 𝑃𝑝
𝑙)

𝛽𝑝
𝑙′ ≤ 𝛼𝑝

𝑙 + 𝐻 ⋅ (3 − 𝑆𝑝
𝑙 − 𝑆𝑝

𝑙′ − 𝑌𝑝
𝑙′𝑙 + 𝑃𝑝

𝑙)

 (43) 

 

     Note: The constraint of occupation of sections for the 

stopping platform is expressed in the constraints (33)-(39) in 

the previous part of this section. 

 With two circulations using the same connector, one 

circulation must be scheduled before the other:  

 

∀𝑡, 𝑡′ ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑡 , ∀𝑙′ ∈ 𝐿𝑡′, 𝑙 ≠ 𝑙′, ∀𝑐 ∈ 𝐶    𝑋𝑐
𝑙𝑙′ + 𝑋𝑐

𝑙′𝑙 = 1
 (44) 



  

    Occupation of connectors: Two circulations passing 

through a common connector cannot be scheduled during the 

same time interval:  

∀𝑡, 𝑡′ ∈ 𝑇, ∀𝑙 ∈ 𝐿𝑡 , ∀𝑙′ ∈ 𝐿𝑡′, ∀𝑐 ∈ 𝐶

{
𝜔𝑐

𝑙 ≤ 𝜐𝑐
𝑙′ + 𝐻 ⋅ (3 − 𝐶𝑐

𝑙 − 𝐶𝑐
𝑙′ − 𝑋𝑐

𝑙𝑙′)

𝜔𝑐
𝑙′ ≤ 𝜐𝑐

𝑙 + 𝐻 ⋅ (3 − 𝐶𝑐
𝑙 − 𝐶𝑐

𝑙′ − 𝑋𝑐
𝑙′𝑙)

 (45) 

 

IV. NUMERICAL EXPERIMENTS 

In this experiment, our topology is depicted in Fig. 13 and 

the correspondences between sections of this figure are 

listed in Table III. 

 

 
                   Fig. 13. Topology of the railway station.  
 

TABLE III: CORRESPONDENCES BETWEEN SECTIONS OF FIG. 13 

 
     

TABLE IV: EXAMPLE OF PROBLEM 

 
 

Seven external sections (𝑒1 to 𝑒7) are considered for the 

arrival and departure of trains. There are three platforms (𝑝1 

to 𝑝3 ) which are used for the boarding or unboarding of 

passengers. There are a total of 27 sections and 16 connectors 

in this railway station. We assume that all sections are 

sections with two-way directions. For example, the set of 

doublets of connector 𝑐1  is 𝐾𝑐1
=

{(𝑠1, 𝑠11), (𝑠11, 𝑠1), (𝑠1, 𝑠15), (𝑠15, 𝑠1)}. All pairs of sections 

are not reachable (they are not doublets) even if two sections 

of these pairs are connected with a same connector. These 

pairs of unreachable sections are as follows: ( 𝑠15, 𝑠11 ), 

(𝑠11, 𝑠16), (𝑠15, 𝑠16), (𝑠15, 𝑠2), (𝑠16, 𝑠20), (𝑠16, 𝑠23), (𝑠20, 𝑠23), 

(𝑠20, 𝑠24), (𝑠23, 𝑠3), (𝑠23, 𝑠24), (𝑠24, 𝑠26), (𝑠14, 𝑠18), (𝑠14, 𝑠17), 

(𝑠17, 𝑠18), (𝑠18, 𝑠5), (𝑠17, 𝑠19), (𝑠19, 𝑠6), (𝑠22, 𝑠25), (𝑠25, 𝑠7). For 

example, the pair of unreachable sections (𝑠15, 𝑠16 ) means 

that trains are not allowed to travel from section 𝑠15 to section 

𝑠16 and from 𝑠16 to 𝑠15. 

We run the experiments for 9 trains (3 type 𝑇21, 3 type 𝑇12, 

2 type 𝑇11 et 1 type crossing train) which correspond to 23 

circulations. The data of each train are presented in Table 4. 

     The following constants are used: 

 Maximum permissible deviation for 𝐴𝑡: L=3 

 Duration to traverse section by circulation Δ=20 for all. 

 Duration to traverse connector by circulation Θ=2 for 

all. 

 Duration for a coupling system or uncoupling system of 

trains Γ𝑡=5 for all. 

    Note: Times are counted in seconds. 

    We run the experiments with the objective function of 

minimizing the total of waiting times ∑𝑙∈𝐿 ∑𝑠∈𝑆 𝑊𝑠
𝑙  and 

minimizing the total of ending occupation time of sections 

∑𝑙∈𝐿 ∑𝑠∈𝑆 𝛽𝑠
𝑙. 

    Objective function: MIN ∑𝑙∈𝐿 ∑𝑠∈𝑆 (𝐾1 ⋅ 𝑊𝑠
𝑙 + 𝐾2 ⋅ 𝛽𝑠

𝑙) 

    𝐾1: weight of total of waiting times 

    𝐾2: weight of total of ending occupation time of sections 

    In our experiments, we chose 𝐾1 = 0.6, 𝐾2 = 0.4 

 The computation study was conducted under C++ in Visual 

Studio 2017 and CPLEX version 12.8. The computer 

hardware runs Windows 64-bit operating system with Intel 

i7-870 CPU at 2.93 GHz and 4GB memory of RAM. The 

results are presented in Table 5. The time needed to solve the 

problem is 2.59 seconds. The results show that there are 6 

interruptions of trains with a total waiting time of 94 seconds. 

The model considered has 1750 constraints and 995 variables 

after the presolve of CPLEX. 

 
TABLE V: RESULTS OF PROBLEM 

 
 



  

V. CONCLUSION 

    In this paper, we propose a mathematical model and a 

mixed-integer linear programming formulation to solve 

optimal train routing and scheduling for railway stations. The 

model is validated by an illustrative experiment. In the next 

work, we will make the experiments on real data related to a 

French railway station which was tested by [6]. The topology 

corresponding to this railway station has a total of 52 sections 

and 18 connectors. In this busy railway station, there are 247 

trains and 504 circulations per day. We must add some 

working hypotheses that can be presumed still to correspond 

to the model of [6]. We will make a comparison of our results 

and their results to assess the performance of our method. 
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