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aUniversity of Warsaw
bUniversity of Warwick
cUniversity of Bordeaux

Abstract

We investigate the coverability problem for a one-dimensional restriction of
pushdown vector addition systems with states. We improve the lower com-
plexity bound to PSpace, even in the acyclic case.
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1. Preliminaries

This paper is on extension of the classical model of vector addition sys-
tem (VAS) by a pushdown store. For convenience, we prefer to work with an
equivalent model of grammar-controlled VAS (GVAS) [1], i.e., a VAS whose
transitions are controlled by a context-free grammar. We restrict our atten-
tion to one-dimensional GVAS, referred to as 1GVAS, which is just a context
free grammar whose terminal symbols are a finite subset of integers1. As
an example, consider the following 1GVAS with one nonterminal S and two
terminals {−1, 1}:

S → 1 S −1 | −1 S 1 | ε (1)

which generates, as a context-free grammar, antipalindromes over {−1, 1} of
even length.

IThis work has been partially supported by the NCN grant 2017/27/B/ST6/02093.
1In case of d-dimensional GVAS, the terminal symbols would be a finite subset of Zd.
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For a word over terminal symbols w = a1 . . . ak we write
∑

w to denote
the sum

∑k
j=1 aj of its letters.

A word w = a1 . . . ak is called admissible if the sum of every prefix of w
is nonnegative:

∑
a1 . . . ai ≥ 0 for every i = 1 . . . k. The sums

∑
a1 . . . ai are

called prefix sums in the sequel. For instance, an antipalidrome generated
by the grammar (1) is admissible if the sum of every prefix of its first half
is nonnegative (then the sum of every suffix of its second half is forcedly
nonnegative too, and moreover the total sum is necessarily 0).

A derivation of an admissible word from the starting nonterminal is called
admissible too. The covering problem is to decide, given a 1GVAS with
terminals encoded in binary, whether it has an admissible derivation.

The prefix sums allow us to speak of input and output value of every
subtree of a derivation tree, or even of every infix of the derived word. Indeed,
consider a derivation of an admissible word wvu of terminals, where the infix
v is derived from a nonterminal Y:

} }

w
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The prefix sum
∑

w can be called the input of the subtree derived from the
symbol Y , and the prefix sum

∑
wv =

∑
w +

∑
v can be called the output

of that subtree. Note that the input of the whole derivation tree is 0, and
the output is non-negative.

As context-free grammars are essentially stateless pushdown automata,
we could consider equivalently the model of one-dimensional pushdown vector
addition systems (1PVAS), i.e., 1VAS (one-dimensional VAS) extended with
a pushdown store. Furthermore, this model is expressively equivalent to
pushdown automata extended with a counter which can be incremented and
decremented by every transition but cannot be tested for 0, and which is
not allowed to drop below 0 during a run (the counter values along a run
correspond to prefix sums). This latter model is known as one-dimensional
pushdown vector addition systems with states (1PVASS). In this setting the
coverability problem is equivalently rephrased as follows: given a counter-
extented pushdown automaton, decide whether it has a run starting with
the empty stack and counter value 0, and ending with the empty stack (and
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arbitrary non-negative counter value). The problem remains equivalent if
the stack emptiness at the end of a run is dropped, but the run is required
to end in an accepting control state. The mentioned equivalence of 1GVAS,
1PVAS and 1PVASS extends to higher dimensions.

The complexity of the problem does not change if unary encoding of
terminals is assumed instead of binary one:

Proposition 1. At the cost of a logarithmic-space reduction, we may assume
that the terminals in the given 1GVAS are from {−1, 1}.

Proof. Let t /∈ {−1, 0, 1} be a terminal of absolute value |t| > 1. Let b` . . . b1
be the binary representation (where b` is the most significant bit) of |t| if
t ≥ 0, and symmetrically let −b` . . .−b1 be the binary representation of |t|
if t < 0. Thus bi ∈ {−1, 0, 1} for every i ≤ `. We add ` new nonterminal
symbols X1

t , . . . ,X
`
t to our grammar as well as the rule X`

t → b` and, for
each i ∈ {2, . . . , `}, a rule Xi−1

t → bi−1X
i
tX

i
t. This way, X1

t can only derive a
single word w of terminals such that

∑
w is exactly the value of t. We can

therefore replace every occurrence of the terminal t by X1
t .

The construction, applied to all terminals t with |t| > 1, yields a grammar
with terminals in {−1, 0, 1}. Finally, all appearances of the terminal 0 can
be safely removed.

The result. Prior to this work, the best upper complexity bound for the
coverability problem in 1GVAS was ExpSpace and the best lower complex-
ity bound was NP, both due to [1]. Our contribution is a simple proof of
PSpace-hardness of the problem, even in the case of acyclic 1GVAS. In
consequence, we obtain PSpace-completeness in case of acyclic 1GVAS.

Related work. We remark that the coverabilty problem easily reduces to the
reachability problem, in which we seek a derivation of an admissible word
w with zero output:

∑
w = 0. For the latter problem, decidability remains

open even in 1GVAS and we know no better lower bound than the one for
coverability. It is thus feasible (and believable) that both the problems are
PSpace-complete in 1GVAS. For 1GVAS extended with resets of the counter
the coverability problem becomes undecidable, as recently shown in [2].

Nothing is known on GVAS in arbitrary dimension except for a non-
elementary lower bound for the coverability problem shown in [3], and decid-
ability of the termination and boundedness problems [4]. The latter prob-
lems are known to be decidable in exponential time in dimension 1, as shown
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in [5]. In arbitrary dimension reachability reduces (and is thus equivalent) to
the coverability problem, due to a simple logarithmic-space reduction that
increases dimension by 1. Hence the lower bound of [3] is subsumed by a
recent non-elementary lower bound for the reachability problem in VASS [6].

2. Lower Bound for acyclic 1GVAS

By a cycle of G we mean a derivation of a word wYw′ from a nonterminal
Y, for some words w,w′ over terminals. The lower bound shown in this
section applies even to acyclic 1GVAS, i.e., ones without cycles. Its proof is
based on the masters thesis of the last author [7].

Theorem 1. For acyclic 1GVAS, the coverability problem is PSpace-hard.

Proof. We reduce from the alternating subset sum problem [8]: given non-
negative integers a1, a

′
1, e1, e

′
1, . . . , ak, a′k, ek, e′k and s, all encoded in binary,

to decide

∀x1 ∈ {a1, a′1} ∃y1 ∈ {e1, e′1} · · · ∀xk ∈ {ak, a′k} ∃yk ∈ {ek, e′k}
x1 + y1 + · · ·+ xk + yk = s .

Equivalently: in a k-round game between two players, the universal and
the existential one (where in every ith round the former player chooses a
number xi ∈ {ai, a′i} and then the latter one chooses a number yi ∈ {ei, e′i}),
decide whether the existential player has a strategy to enforce the end sum
x1 +y1 + · · ·+xk +yk to be equal to s. This problem is PSpace-complete [8].

Construction of a 1GVAS. Given an instance of the alternating subset sum
problem, we produce an acyclic 1GVAS whose derivations are essentially
existential player’s strategy trees. Formally, an admissible derivation will
correspond to an existential player’s strategy such that:

1. the end sum of a play against every universal player’s counter-strategy
is at least s;

2. the cumulative sum of end sums of all plays against all universal player’s
counter-strategies is at most 2ks.

As there are exactly 2k counter-strategies, an existential strategy verifying
conditions (1) and (2) enforces the end sum to be equal to s, irrespectively
of universal player’s counter-strategy.
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Admissible derivations of the following acyclic 1GVAS G1 with 2k+1 non-
terminals (A1 is the starting one) correspond to existential player’s strategies
verifying condition (1):

Ai → ai Ei (−ai + a′i) Ei (−a′i) (i = 1, . . . , k)

Ei → ei Ai+1 (−ei) | e′i Ai+1 (−e′i) (i = 1, . . . , k)

Ak+1 → (−s) s

(Nonterminals Ai correspond to moves of the universal player, while nonter-
minals Ei correspond to the responses of the existential one.) Indeed, the
input to every subtree derived from Ak+1 corresponds to the end sum of
a play, and every admissible derivation enumerates all plays of some fixed
strategy of the existential player.

Similarly, admissible derivations of the following acyclic 1GVAS G2 (X
is the starting nonterminal) correspond to strategies of the existential player
verifying condition (2):

X → (2ks) A1

Ai → (−2k−iai) Ei (−2k−ia′i) Ei (i = 1, . . . , k)

Ei → (−2k−iei) Ai+1 | (−2k−ie′i) Ai+1 (i = 1, . . . , k)

Ak+1 → ε

Indeed, the initial credit 2ks is decremented by integers chosen by players in
all plays of some fixed existential player’s strategy, and the multiplicity 2k−i

of every integer chosen in ith round corresponds to the number of plays this
integer takes part in.

Crucially, if we ignore the terminals appearing in the rules, the two gram-
mars are (almost) the same. Moreover, the prefix sums in G2 are bounded
by the initial credit 2ks. Therefore, we are able to combine G1 with G2, if we
multiply all integers appearing in the first one by S := 2ks + 1. Intuitively,
a prefix sum of G1 becomes a more significant digit, and a prefix sum of G2

becomes a less significant one, of a 2-digit number in the base S. This results
in the following acyclic 1GVAS G with 2k+2 nonterminals (X is the starting
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one), where i ranges over 1, . . . , k as before:

X → (2ks) A1

Ai → (Sai − 2k−iai) Ei (S(−ai + a′i)− 2k−ia′i) Ei (−Sa′i)
Ei → (Sei − 2k−iei) Ai+1(−Sei) | (Se′i − 2k−ie′i) Ai+1(−Se′i)

Ak+1 → (−Ss) (Ss)

Example. As a simple illustrating example, consider the following (positive)
instance of the alternating subset sum problem: k = 1, a1 = 3, a′1 = 5, e1 =
4, e′1 = 6 and s = 9. Here are the corresponding grammars G1 (one the left)
and G2 (on the right):

X → 18 A1

A1 → 3 E1 2 E1 −5 A1 → −3 E1 −5 E1

E1 → 4 A2 −4 | 6 A2 −6 E1 → −4 A2 | −6 A2

A2 → −9 9 A2 → ε

The terminals are coloured to depict the way of obtaining the GVAS G as a
combination of G1 and G2 (S = 2·9 + 1 = 19):

X → 18 A1

A1 → (19·3 −3) Ei (19·2 −5) Ei (−19·5)

E1 → (19·4 −4) A2 (−19·4) | (19·6 −6) A2(−19·6)

A2 → (−19 · 9) (19 · 9)

The existential player wins by answering 3 by 6, and 5 by 4, and hence this
strategy satisfies conditions (1) and (2). Consequently, both G1 and G2 have
admissible derivations, of words 3 6 (−9) 9 (−6) 2 4 (−9) 9 (−4) (−5) and
18 (−3) (−6) (−5) (−4), respectively, corresponding to the winning strategy.
The two derivations have both output 0, and can be combined into an admis-
sible derivation in G of a word 18 (19·3−3) (19·6−6) (−19·9) 19·9 (−19·6)
(19·2−5) (19·4−4) (−19·9) 19·9 (−19·4) (−19·5). Note that G1 and G2 have
other admissible derivations, e.g., of 3 6 (−9) 9 (−6) 2 6 (−9) 9 (−6) (−5)
and 18 (−3) (−4) (−5) (−4), respectively, with positive outputs, which how-
ever can not be combined into a a single admissible derivation of G.

Correctness. Derivations in G are in one-to-one correspondence with exis-
tential player’s strategies. We need to argue that existential player has a
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winning strategy if, and only if the corresponding derivation of G is ad-
missible. In one direction, we observe that whenever an existential player’s
strategy enforces the end sum to be equal to s, in the corresponding deriva-
tion the input to every subtree derived from Ak+1 equals Ss + o for some
0 ≤ o ≤ 2ks = S−1, and hence the derivation is forcedly admissible. For the
other direction, supposing the 1GVAS has an admissible derivation, we argue
that the corresponding existential strategy verifies conditions (1) and (2) and
hence enforces the end sum equal to s. Condition (1) follows similarly as for
G1: the input to every subtree derived from Ak+1 is, on one hand, at most
Sr + 2ks < S(r + 1), where r is the end sum of the corresponding play, and
on the other hand at least Ss; the two inequalities yield

S(r + 1) > Ss

which implies r ≥ s. For condition (2) observe, similarly as in case of G1, that
the sum of all S-multiplied integers in the derivation equals 0. Therefore, as
the output value is nonnegative, the initial credit 2ks is decreased by at most
this value, and hence the cumulative sum of all end sums is at most 2ks as
required.

The reduction can be performed in polynomial time (in particular all num-
bers appearing as terminals in the grammar are of polynomial bit-size), which
proves PSpace-hardness of the coverability problem for acyclic 1GVAS.

Remark 1. As the proof of Proposition 1 preserves acyclicity, the lower
bound applies to acyclic 1GVAS with terminals from {−1, 1}.

The coverability problem is easily shown to be decidable in polynomial
space for acyclic GVAS in arbitrary dimension; in consequence, of Theorem 1
the problem is therefore robustly PSpace-complete for acyclic GVAS, also
in dimension 1, no matter what encoding of numbers is chosen:

Proposition 2. The coverability problem is PSpace-complete, both for acyc-
lic GVAS and acyclic 1GVAS, under both unary and binary encoding of num-
bers.

Proof sketch. We only show the upper bound, for the lower bound relying on
Proposition 1 and Theorem 1. Given an acyclic GVAS G with numbers in
binary, a nondeterministic PSpace procedure performs a left-to-right traver-
sal of a derivation tree which is guessed on the fly. The depth of the tree is
bounded, due to acyclicity of G, by the number n of nonterminals, therefore
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the left-to-right traversal is doable using a stack of depth n. The space used
by the procedure is thus polynomial (linear in fact) in the size of G.

We conclude with the remark concerning pushdown VAS and VASS:

Remark 2. The PSpace-completeness applies also to the two equivalent
models, namely PVAS and PVASS, and for their one-dimensional subclasses
1PVAS and 1PVASS, under a suitably translated acyclicity assumption.
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