Matthias Englert 
  
Piotr Hofman 
  
Lawomir Lasota 
  
Ranko Lazić 
  
Jérôme Leroux 
  
Juliusz Straszyński 
  
A lower bound for the coverability problem in acyclic pushdown VAS $

Keywords: context-free grammars, pushdown vector addition systems, one-counter machines, coverability problem, reachability problem

We investigate the coverability problem for a one-dimensional restriction of pushdown vector addition systems with states. We improve the lower complexity bound to PSpace, even in the acyclic case.

Preliminaries

This paper is on extension of the classical model of vector addition system (VAS) by a pushdown store. For convenience, we prefer to work with an equivalent model of grammar-controlled VAS (GVAS) [START_REF] Leroux | On the Coverability Problem for Pushdown Vector Addition Systems in One Dimension[END_REF], i.e., a VAS whose transitions are controlled by a context-free grammar. We restrict our attention to one-dimensional GVAS, referred to as 1GVAS, which is just a context free grammar whose terminal symbols are a finite subset of integers 1 . As an example, consider the following 1GVAS with one nonterminal S and two terminals {-1, 1}:

S → 1 S -1 | -1 S 1 | ε (1) 
which generates, as a context-free grammar, anti palindromes over {-1, 1} of even length.

For a word over terminal symbols w = a 1 . . . a k we write w to denote the sum k j=1 a j of its letters. A word w = a 1 . . . a k is called admissible if the sum of every prefix of w is nonnegative: a 1 . . . a i ≥ 0 for every i = 1 . . . k. The sums a 1 . . . a i are called prefix sums in the sequel. For instance, an antipalidrome generated by the grammar (1) is admissible if the sum of every prefix of its first half is nonnegative (then the sum of every suffix of its second half is forcedly nonnegative too, and moreover the total sum is necessarily 0).

A derivation of an admissible word from the starting nonterminal is called admissible too. The covering problem is to decide, given a 1GVAS with terminals encoded in binary, whether it has an admissible derivation.

The prefix sums allow us to speak of input and output value of every subtree of a derivation tree, or even of every infix of the derived word. Indeed, consider a derivation of an admissible word wvu of terminals, where the infix v is derived from a nonterminal Y:

The prefix sum w can be called the input of the subtree derived from the symbol Y , and the prefix sum wv = w + v can be called the output of that subtree. Note that the input of the whole derivation tree is 0, and the output is non-negative.

As context-free grammars are essentially stateless pushdown automata, we could consider equivalently the model of one-dimensional pushdown vector addition systems (1PVAS), i.e., 1VAS (one-dimensional VAS) extended with a pushdown store. Furthermore, this model is expressively equivalent to pushdown automata extended with a counter which can be incremented and decremented by every transition but cannot be tested for 0, and which is not allowed to drop below 0 during a run (the counter values along a run correspond to prefix sums). This latter model is known as one-dimensional pushdown vector addition systems with states (1PVASS). In this setting the coverability problem is equivalently rephrased as follows: given a counterextented pushdown automaton, decide whether it has a run starting with the empty stack and counter value 0, and ending with the empty stack (and arbitrary non-negative counter value). The problem remains equivalent if the stack emptiness at the end of a run is dropped, but the run is required to end in an accepting control state. The mentioned equivalence of 1GVAS, 1PVAS and 1PVASS extends to higher dimensions.

The complexity of the problem does not change if unary encoding of terminals is assumed instead of binary one: Proposition 1. At the cost of a logarithmic-space reduction, we may assume that the terminals in the given 1GVAS are from {-1, 1}.

Proof. Let t / ∈ {-1, 0, 1} be a terminal of absolute value |t| > 1. Let b . . . b 1 be the binary representation (where b is the most significant bit) of |t| if t ≥ 0, and symmetrically let -b . . . -b 1 be the binary representation of |t| if t < 0. Thus b i ∈ {-1, 0, 1} for every i ≤ . We add new nonterminal symbols X 1 t , . . . , X t to our grammar as well as the rule X t → b and, for

each i ∈ {2, . . . , }, a rule X i-1 t → b i-1 X i t X i t .
This way, X 1 t can only derive a single word w of terminals such that w is exactly the value of t. We can therefore replace every occurrence of the terminal t by X 1 t . The construction, applied to all terminals t with |t| > 1, yields a grammar with terminals in {-1, 0, 1}. Finally, all appearances of the terminal 0 can be safely removed.

The result. Prior to this work, the best upper complexity bound for the coverability problem in 1GVAS was ExpSpace and the best lower complexity bound was NP, both due to [START_REF] Leroux | On the Coverability Problem for Pushdown Vector Addition Systems in One Dimension[END_REF]. Our contribution is a simple proof of PSpace-hardness of the problem, even in the case of acyclic 1GVAS. In consequence, we obtain PSpace-completeness in case of acyclic 1GVAS.

Related work.

We remark that the coverabilty problem easily reduces to the reachability problem, in which we seek a derivation of an admissible word w with zero output: w = 0. For the latter problem, decidability remains open even in 1GVAS and we know no better lower bound than the one for coverability. It is thus feasible (and believable) that both the problems are PSpace-complete in 1GVAS. For 1GVAS extended with resets of the counter the coverability problem becomes undecidable, as recently shown in [START_REF] Schmitz | Coverability Is Undecidable in One-Dimensional Pushdown Vector Addition Systems with Resets[END_REF].

Nothing is known on GVAS in arbitrary dimension except for a nonelementary lower bound for the coverability problem shown in [START_REF] Lazic | What Makes Petri Nets Harder to Verify: Stack or Data?[END_REF], and decidability of the termination and boundedness problems [START_REF] Leroux | Hyper-Ackermannian bounds for pushdown vector addition systems[END_REF]. The latter problems are known to be decidable in exponential time in dimension 1, as shown in [START_REF] Leroux | On Boundedness Problems for Pushdown Vector Addition Systems[END_REF]. In arbitrary dimension reachability reduces (and is thus equivalent) to the coverability problem, due to a simple logarithmic-space reduction that increases dimension by 1. Hence the lower bound of [START_REF] Lazic | What Makes Petri Nets Harder to Verify: Stack or Data?[END_REF] is subsumed by a recent non-elementary lower bound for the reachability problem in VASS [START_REF] Czerwiński | The reachability problem for Petri nets is not elementary[END_REF].

Lower Bound for acyclic 1GVAS

By a cycle of G we mean a derivation of a word wYw from a nonterminal Y, for some words w, w over terminals. The lower bound shown in this section applies even to acyclic 1GVAS, i.e., ones without cycles. Its proof is based on the masters thesis of the last author [START_REF] Straszyński | Complexity of the reachability problem for pushdown Petri nets[END_REF].

Theorem 1. For acyclic 1GVAS, the coverability problem is PSpace-hard.

Proof. We reduce from the alternating subset sum problem [START_REF] Travers | The complexity of membership problems for circuits over sets of integers[END_REF]: given nonnegative integers a 1 , a 1 , e 1 , e 1 , . . . , a k , a k , e k , e k and s, all encoded in binary, to decide

∀x 1 ∈ {a 1 , a 1 } ∃y 1 ∈ {e 1 , e 1 } • • • ∀x k ∈ {a k , a k } ∃y k ∈ {e k , e k } x 1 + y 1 + • • • + x k + y k = s .
Equivalently: in a k-round game between two players, the universal and the existential one (where in every ith round the former player chooses a number x i ∈ {a i , a i } and then the latter one chooses a number y i ∈ {e i , e i }), decide whether the existential player has a strategy to enforce the end sum

x 1 + y 1 + • • • + x k + y k to be equal to s. This problem is PSpace-complete [8].
Construction of a 1GVAS. Given an instance of the alternating subset sum problem, we produce an acyclic 1GVAS whose derivations are essentially existential player's strategy trees. Formally, an admissible derivation will correspond to an existential player's strategy such that:

1. the end sum of a play against every universal player's counter-strategy is at least s; 2. the cumulative sum of end sums of all plays against all universal player's counter-strategies is at most 2 k s.

As there are exactly 2 k counter-strategies, an existential strategy verifying conditions (1) and ( 2) enforces the end sum to be equal to s, irrespectively of universal player's counter-strategy.

Admissible derivations of the following acyclic 1GVAS G 1 with 2k+1 nonterminals (A 1 is the starting one) correspond to existential player's strategies verifying condition (1):

A i → a i E i (-a i + a i ) E i (-a i ) (i = 1, . . . , k) E i → e i A i+1 (-e i ) | e i A i+1 (-e i ) (i = 1, . . . , k) A k+1 → (-s) s
(Nonterminals A i correspond to moves of the universal player, while nonterminals E i correspond to the responses of the existential one.) Indeed, the input to every subtree derived from A k+1 corresponds to the end sum of a play, and every admissible derivation enumerates all plays of some fixed strategy of the existential player.

Similarly, admissible derivations of the following acyclic 1GVAS G 2 (X is the starting nonterminal) correspond to strategies of the existential player verifying condition (2):

X → (2 k s) A 1 A i → (-2 k-i a i ) E i (-2 k-i a i ) E i (i = 1, . . . , k) E i → (-2 k-i e i ) A i+1 | (-2 k-i e i ) A i+1 (i = 1, . . . , k) A k+1 → ε
Indeed, the initial credit 2 k s is decremented by integers chosen by players in all plays of some fixed existential player's strategy, and the multiplicity 2 k-i of every integer chosen in ith round corresponds to the number of plays this integer takes part in.

Crucially, if we ignore the terminals appearing in the rules, the two grammars are (almost) the same. Moreover, the prefix sums in G 2 are bounded by the initial credit 2 k s. Therefore, we are able to combine G 1 with G 2 , if we multiply all integers appearing in the first one by S := 2 k s + 1. Intuitively, a prefix sum of G 1 becomes a more significant digit, and a prefix sum of G 2 becomes a less significant one, of a 2-digit number in the base S. This results in the following acyclic 1GVAS G with 2k + 2 nonterminals (X is the starting one), where i ranges over 1, . . . , k as before:

X → (2 k s) A 1 A i → (Sa i -2 k-i a i ) E i (S(-a i + a i ) -2 k-i a i ) E i (-Sa i ) E i → (Se i -2 k-i e i ) A i+1 (-Se i ) | (Se i -2 k-i e i ) A i+1 (-Se i ) A k+1 → (-Ss) (Ss)
Example. As a simple illustrating example, consider the following (positive) instance of the alternating subset sum problem: k = 1, a 1 = 3, a 1 = 5, e 1 = 4, e 1 = 6 and s = 9. Here are the corresponding grammars G 1 (one the left) and G 2 (on the right):

X → 18 A 1 A 1 → 3 E 1 2 E 1 -5 A 1 → -3 E 1 -5 E 1 E 1 → 4 A 2 -4 | 6 A 2 -6 E 1 → -4 A 2 | -6 A 2 A 2 → -9 9 A 2 → ε
The terminals are coloured to depict the way of obtaining the GVAS G as a combination of G 1 and G 2 (S = 2•9 + 1 = 19):

X → 18 A 1 A 1 → (19•3 -3) E i (19•2 -5) E i (-19•5) E 1 → (19•4 -4) A 2 (-19•4) | (19•6 -6) A 2 (-19•6) A 2 → (-19 • 9) (19 • 9)
The existential player wins by answering 3 by 6, and 5 by 4, and hence this strategy satisfies conditions (1) and (2). Consequently, both G 1 and G 2 have admissible derivations, of words 3 6 (-9) 9 (-6) 2 4 (-9) 9 (-4) (-5) and 18 (-3) (-6) (-5) (-4), respectively, corresponding to the winning strategy. The two derivations have both output 0, and can be combined into an admissible derivation in G of a word 18 (19

•3-3) (19•6-6) (-19•9) 19•9 (-19•6) (19•2-5) (19•4-4) (-19•9) 19•9 (-19•4) (-19•5
). Note that G 1 and G 2 have other admissible derivations, e.g., of 3 6 (-9) 9 (-6) 2 6 (-9) 9 (-6) (-5) and 18 (-3) (-4) (-5) (-4), respectively, with positive outputs, which however can not be combined into a a single admissible derivation of G.

Correctness. Derivations in G are in one-to-one correspondence with existential player's strategies. We need to argue that existential player has a winning strategy if, and only if the corresponding derivation of G is admissible. In one direction, we observe that whenever an existential player's strategy enforces the end sum to be equal to s, in the corresponding derivation the input to every subtree derived from A k+1 equals Ss + o for some 0 ≤ o ≤ 2 k s = S -1, and hence the derivation is forcedly admissible. For the other direction, supposing the 1GVAS has an admissible derivation, we argue that the corresponding existential strategy verifies conditions (1) and ( 2) and hence enforces the end sum equal to s. Condition (1) follows similarly as for G 1 : the input to every subtree derived from A k+1 is, on one hand, at most Sr + 2 k s < S(r + 1), where r is the end sum of the corresponding play, and on the other hand at least Ss; the two inequalities yield S(r + 1) > Ss which implies r ≥ s. For condition (2) observe, similarly as in case of G 1 , that the sum of all S-multiplied integers in the derivation equals 0. Therefore, as the output value is nonnegative, the initial credit 2 k s is decreased by at most this value, and hence the cumulative sum of all end sums is at most 2 k s as required.

The reduction can be performed in polynomial time (in particular all numbers appearing as terminals in the grammar are of polynomial bit-size), which proves PSpace-hardness of the coverability problem for acyclic 1GVAS.

Remark 1. As the proof of Proposition 1 preserves acyclicity, the lower bound applies to acyclic 1GVAS with terminals from {-1, 1}.

The coverability problem is easily shown to be decidable in polynomial space for acyclic GVAS in arbitrary dimension; in consequence, of Theorem 1 the problem is therefore robustly PSpace-complete for acyclic GVAS, also in dimension 1, no matter what encoding of numbers is chosen: Proposition 2. The coverability problem is PSpace-complete, both for acyclic GVAS and acyclic 1GVAS, under both unary and binary encoding of numbers.

Proof sketch. We only show the upper bound, for the lower bound relying on Proposition 1 and Theorem 1. Given an acyclic GVAS G with numbers in binary, a nondeterministic PSpace procedure performs a left-to-right traversal of a derivation tree which is guessed on the fly. The depth of the tree is bounded, due to acyclicity of G, by the number n of nonterminals, therefore the left-to-right traversal is doable using a stack of depth n. The space used by the procedure is thus polynomial (linear in fact) in the size of G.

We conclude with the remark concerning pushdown VAS and VASS: Remark 2. The PSpace-completeness applies also to the two equivalent models, namely PVAS and PVASS, and for their one-dimensional subclasses 1PVAS and 1PVASS, under a suitably translated acyclicity assumption.
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