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Abstract

Recent advances in Artificial Intelligence (AI) have revived the quest for agents
able to acquire an open-ended repertoire of skills. Although this ability is funda-
mentally related to the characteristics of human intelligence, research in this field
rarely considers the processes and ecological conditions that may have guided the
emergence of complex cognitive capacities during the evolution of the species.
Research in Human Behavioral Ecology (HBE) seeks to understand how the be-
haviors characterizing human nature can be conceived as adaptive responses to
major changes in our ecological niche. In this paper, we propose a framework
highlighting the role of environmental complexity in open-ended skill acquisition,
grounded in major hypotheses from HBE and recent contributions in Reinforce-
ment learning (RL). We use this framework to highlight fundamental links between
the two disciplines, as well as to identify feedback loops that bootstrap ecological
complexity and create promising research directions for AI researchers. We also
present our first steps towards designing a simulation environment that imple-
ments the climate dynamics necessary for studying key HBE hypotheses relating
environmental complexity to skill acquisition.

1 Introduction

Be it morphological, behavioral or cultural, the open-endedness of biological life has been a puzzle
for researchers in natural sciences trying to analyze it [1, 2] and an inspiration for researchers in
Artificial Intelligence (AI) trying to implement it [3, 4]. While a definition of AI has long eluded
scientists, it has been proposed that a key property of an intelligent agent may be its ability to adapt
to an open-ended set of environments [5, 6]. From a reinforcement learning (RL) perspective, an
agent with open-ended learning abilities should be able to adapt to an unbounded set of diverse tasks
[4, 7], a new paradigm that comes in contrast to the classical approach of explicitly engineering
learning algorithms upon encountering a new task. A significant part of past and present RL literature
is concerned with the design of new: (i) algorithms and architectures for learning [8, 9] (ii) cost
functions [10, 11, 9] (iii) benchmarks and environments [12, 13, 8, 14].

A seminal observation in the study of the evolution of cognitive processes such as perception and
problem-solving, is that they did not emerge out of an unconstrained optimization process but were
rather largely shaped by the ecologies they inhabited [15]. In the AI community, a similar intellectual
dialogue is unfolding: intelligence is only as general as its environment requires, an observation that
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suggests that we should abandon the quest for artificial general intelligence [6, 16, 5] and progress
our understanding of how the environment biases the learning abilities of agents [17, 18]. In deep
RL in particular, past experiences of agents bias their learning abilities by shaping internal reward
mechanisms, studied under the term of intrinsic motivation [19] and representation functions [20]
and acting as a curriculum [21, 18]. Under this new paradigm, it has been proposed to optimize RL
benchmarks for their curriculum building ability [18] and study how environmental properties in
reset-free, sparse reward settings impact the problem-solving abilities of agents [22].

Despite this progress, research in RL does not often acknowledge that open-ended skill acquisition is
fundamentally related to the characteristics of human intelligence [3]. In this work, we take a step
back from our computer-scientific lens and turn our attention towards Human Behavioral Ecology
(HBE), a field concerned with the effect that ecology has had on the evolution of the human species
[23, 2, 24]. Works in this field have studied among others how speciation, extinction and dispersal
arose in the human history [23], cooperative groups [25], resource management [26], tool use [27],
the development of human language [28] and the emergence of cultural norms and institutions [29].

Admittedly, there are many paths to the acquisition of open-ended skills in AI; grounding our study
in human ecology seems to be but one of the options. But there’s a number of reasons that may
persuade us to explore it: (i) examining all possible ecologies is infeasible considering our modern
and foreseeable computational power [18] (ii) ecologies that are more familiar to ours make it
easier to define evaluation criteria. For example, human-ecology inspired metrics such as equality,
sustainability and social welfare have been employed to evaluate agents on their ability to forage
[30], find optimal taxation strategies [31] and play games [32] (iii) Darwinian evolution offers an
existence proof for human-like open-ended skill acquisition [18], as well as empirical data and
testable hypotheses (iv) similar attempts at grounding AI research in a non-computational field have
already proven to be a fruitful approach. For example, concepts from Development Science such as
intrinsic motivation [33, 34] and embodied language acquisition [35] have had a significant impact on
modern AI research (v) the potential of knowledge transfer between HBE and RL has already been
recognized [36], with the transfer of ideas having the opposite direction from the one proposed here.
A proposal to study major evolutionary transitions in ecology in order to understand the general laws
that underlie innovation and transfer insights to artificial evolution is presented in [37]. Our proposal
follows a similar direction but focuses on highlighting the overlap between concepts in RL and HBE.
In addition, a number of works in RL have recently resorted to theories from ecology, psychology
and economics for inspiration [38–40, 30, 41].

Our proposal can be seen as an attempt to ground an “ecological theory of RL” in hypotheses from
HBE, motivated by the observation that paleoclimatology data offer us insights into how environments
offered affordances for humans to evolve cognitive mechanisms that could potentially drive artificial
agents towards open-ended skill acquisition. In this work, we: (i) examine a range of hypotheses
from HBE and map them to key research question in RL (ii) present a conceptual framework that
formalizes links between HBE and RL (iii) identify desiderata for a simulation environment that
enables experimentation with HBE hypotheses related to environmental complexity and present a
preliminary examination of resource availability patterns emerging in such an environment.

Section 2 provides related background, in particular offering a review of recent advances in AI from
the perspective of open-ended skill acquisition and a bird’s eye view of the field of HBE, focusing on
hypotheses associating climate variability to major events in human evolution that took place at the
Rift Valley approximately 5 million years ago. Finally, Section 3 presents our contributions towards a
dialogue between the AI and HBE communities, in the form of a shared conceptual framework and
an ecologically-valid playground for the study of skill acquisition in AI.

2 Two monologues on open-ended skill acquisition

Although both fields of AI and HBE study open-ended skill acquisition today, they differ significantly
in the trajectories they have followed: open-endedness has been central for HBE since its birth, as
the curiosity for it in essence defined the field. Research on AI on the other hand, has only recently
reached the maturity levels required to experiment with open-endeness in simulated worlds.
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Figure 1: Environmental complexity as a main driver in human behavioral ecology. Feed-forward
and feedback arrows indicate relationships between the different ecological components, analyzed in
the corresponding references from HBE literature provided as labels.

2.1 Perspectives from Artificial Intelligence

The interplay between environmental complexity and open-ended skill acquisition in intelligent
agents has been investigated from various perspectives.

Single-agent settings have focused on different elements of an agent’s architecture: (i) the neural
networks employed for function approximation, whose generalization abilities are an ongoing debate
[42, 43]. It has been proposed that the ability of a neural network to generalize emerges in a complex
environment, characterized by multi-modal signals situated in temporally and physically rich spaces
that allow for diversity in the agent’s perspective [44] (ii) the cost function or type of intrinsic
motivation considered. Useful skills may emerge as an agent minimizes future surprise, attempting to
counteract the uncertainty inherent in its environment [10]. In curiosity-driven exploration, learning
progress generates intrinsic rewards that push an agent to explore and create its own learning curricula
[19, 45].

In the multi-agent reinforcement learning (MARL) literature, the automatic discovery of new envi-
ronments is achieved by multi-agent autocurricula, where environmental complexity arises due to the
co-existence of multiple agents [17, 21, 32, 46]. In addition to self-play originally used in two-player
problem settings [47], the presence of multiple agents can give rise to an arms race [32] or create
population dynamics that lead to the emergence of cooperation [30] and a drive for exploration [46].

Meta RL aims at equipping agents with the ability to generalize to tasks or environments that have not
been encountered during training. Two nested processes of adaptation are traditionally considered: the
inner level is a standard RL algorithm operating on a given environment, analog to a developmental
learning process. The outer level is tuning the parameters of the inner loop such that it performs
well on a distribution of environments, analog to an evolutionary process. Mechanisms are either
gradient-based [48] or memory-based [49].

The recent introduction of quality-diversity algorithms [50] has signified a departure from a purely
performance-based view of artificial evolution and has renewed interest in mechanisms related to
the preservation of diversity arising in natural evolution. An important link between artificial and
natural evolution is made by behavioral niches, which, resembling ecological niches, introduce local
competition in the evolutionary dynamics and, thus, contribute to higher diversity [51].

2.2 Perspectives from Human Behavioral Ecology
Which factors contributed to the manifested ability of humans to generalize? What differentiated the
human species from others that went extinct due to their inability to adapt to novel environments?
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These are some of the important questions that have preoccupied HBE, a field that emerged from
anthropology and is today closely related to evolutionary psychology and cultural evolution. The
spotlight is on the Rift Valley at East Africa during a period that lasted approximately from 7 to 2
million years ago. This period constitutes a turning point in our evolutionary trajectory characterized
by the first appearance of modern humans and their expansion to other geographical areas [23]. This
evolutionary leap was originally studied under theories that layed emphasis on specific environmental
changes. The Savannah hypothesis, for example, suggests that the change in fauna favored bipedal
walking, which enabled migration and the creation of new niches for humans . Later hypotheses
under the pulsed climate variability (PCV) framework , however, suggest that the key change was
instead the general environmental complexity characterizing that period [56, 23, 57].

In Figure 1, we introduce a conceptual framework that recognizes important ecological components,
as well as the feedforward and feedback links that relate them. In the remainder of this section, we
discuss hypotheses studying these relationships in the human ecosystem and, in Section 3.1, associate
them with research questions in the study of artificial ecosystems. Under the proposed framework,
environmental complexity is essentially driven by climate variability, which implies instability in
the ecological conditions, in particular through changes in resource availability and exposition to
predators [54, 36, 2]. This complexity has a strong influence on two major phenomena. First, it drives
adaptability both at the evolutionary time scale, through speciation and extinction, [24, 56] and at the
developmental time scale through cognitive mechanisms for exploration, learning and abstraction
[58, 36]. Second, varying the levels of resource availability and exposition to predators has a strong
influence on multi-agent dynamics through the modulation of cooperation and competition pressures
[55, 59].

The influence of environmental complexity on adaptation and multi-agent dynamics can then have
feedback and feedforward effects on the ecological system. First, increased morphological and
cognitive complexity due to adaptation, as well as increased complexity in the multi-agent dynamics,
feed back to environmental complexity through the modification of resource availability and predation
pressure [53, 52]. For example, the Red Queen hypothesis [60] proposes that competition among
different species is a major drive of evolution, possibly driving an arms race between co-adapting
species. Second, adaptation and multi-agent dynamics can bootstrap in a feedforward manner the
emergence of more advanced behaviors related to technology (e.g. tool use [27]), communication
(e.g. language [59, 28]) and culture (e.g. social norms [59], institutions [59] and religions [61]). Here
again, the emergence of these new behaviors feeds back into environmental complexity through the
process of social niche construction [53], thus creating a positive feedback loop potentially driving
the ever-expanding social complexity of human ecology [54, 62].

3 A proposed dialogue between Artificial Intelligence and Ecology

3.1 Towards a shared conceptual framework

There seems to be a significant overlap between the questions that RL research poses in its study
of the acquisition of open-ended behavior and the hypotheses examined by HBE. In this section,
we focus on three emergent phenomena attracting the interest of the RL community: adaptability
of individual agents, multi-agent dynamics of groups and their cultural repertoire. By referring to
concepts depicted in Figure 1 and highlighted in this section, we initiate a dialogue between the two
fields and identify key links that we believe deem further investigation by the RL community.

3.1.1 Adaptability

Insights from ecology Under the PCV framework discussed in Section 2.2, environmental factors
such as climate variability, resource availability and predation pressure have served as a drive for
the ability of humans to adapt to complex environments. Adaptability is achieved through mechanisms
whose form depends on properties of the environment. If the environment is constant across time and
space, natural selection may favor innate behaviors. By contrast, if the environment varies, natural
selection might favor behavioral plasticity: based on environmental observations an agent may be
able to switch between different behaviors following innate, and not learned instructions [58, 63, 36].
In cases where the environment changes noticeably across generations but slowly enough within
a generation , behavioral plasticity is guided by a process of developmental selection, an example
of which is the learning process, where an agent’s past behavior guide its future behavior. Another
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example is intrinsic motivation, i.e. the evolution of an internal mechanism rewarding e.g. play
and exploration, independently of any external rewards [64]. Thus, adaptation to environmental
conditions operates on two scales: the evolutionary one drives speciation and extinction, shaping the
developmental one which drives learning and exploration. Adaptation feeds back into environmental
complexity by affecting how environmental changes affect species, equipped with different skill
repertoires. For example, during dry periods, the extinction rates of generalist species would reduce
as they would be better able to find resources, while specialist species would struggle having lost
their environmental niche and their competitive advantage [2].

State of the art in RL A recent work studied how environmental dynamics and, in particularly,
the initial state and transition dynamics, affect the behavior of deep RL agents in non-episodic
settings [22]. An important observation is that the artificial reset mechanism classically employed
in RL to address the problem of sparse rewards can be replaced by environmental shaping in a non-
episodic setting, which shifts the focus of the design from the algorithmic setup to the environment.
The outer and inner loop optimization procedure that meta-RL algorithms follow matches well
with the aforementioned biological mechanisms of adaptation. There is a lot of flexibility in the
choice of algorithms used to optimize the two loops, with both evolutionary and gradient-based
optimization being applicable on the outer loop [65, 66, 48, 67]. This comes in agreement with recent
proposals to view evolution as equivalent to learning [68] and development [69]. Based on ecological
insights, we can indicate the following research directions for investigating the effect of environmental
variability in adaptability: (i) as the optimal choice of the adaptation mechanism depends on dynamic
properties of environmental variability, the community can explore how different mechanisms emerge
for different ecological condition. This could for example be done by studying the environmental
conditions that favor the emergence of innate, learned and intrinsically motivated behaviors, following
the spirit of recent works [70, 71] (ii) tools from RL can be used to test the predictions proposed by
hypotheses under the PCV framework in simulation environments, potentially offering insights to
both communities.

How do ecological conditions affect the emergence of adaptation mechanisms? Can we experimentally
test the predictions proposed by behavioral ecology in simulation environments?

3.1.2 Multi-agent dynamics

Insights from ecology If cooperation requires that an agent pays a reproductive cost for someone
else’s benefit, how can cooperation emerge in a population of agents evolving selfishly? Under the big
mistake hypothesis [72], altruism emerged in small-scale groups due to kin selection or reciprocity.
In contrast, the interdependence hypothesis [52] proposes a theory for the emergence of cooperation
that replaces altruism with mutualistic collaboration. According to it, the need for foraging led to
the selective helping of those who were needed as collaborative partners in the future. In sufficiently
small groups, social selection was performed based on reputation. The size and structure of groups
was dynamically shaped by their need to maintain stability and defend themselves against other
groups. Competition between co-existing groups and species also gives rise to arms races, where
reciprocal selection and adaptation lead to co-evolution [73]. Even at this small scale, the multi-agent
dynamics feed back into environmental complexity through the source of social niche construction:
predation, nutrient excretion and habitat modification populations alter their environment and further
influence future populations [54].

State of the art in RL The emergence of cooperation has attracted significant interest in the
MARL community. In particular, sequential social dilemmas [] have attracted a significant amount
of attention. Here, groups of adaptive agents need to solve tasks such as foraging and hunting of
big animals [30]. An important departure from works on the classical social dilemmas studied by
game theory, is that the payoff matrices here are not given by the human designer but emerge from
the resource availability patterns and multi-agent dynamics, having the form of empirical payoff
matrices. In addition, Recent works have studied the role of intrinsic motivation based on the theories
of assortative matching and group selection [38], inequity aversion based on fairness norms [39]
and social influence [40]. Ecology-inspired hierarchical organizations have been used to facilitate
decentralized learning [74]. The feedback effect that multi-agent dynamics have in environmental
complexity has been studied from the perspective of multi-agent autocurricula [17] and arms races
between competing groups [32]. The effect that population dynamics have on the environment
was investigated in [46], where increase in population size indirectly lead to exploration. As our
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brief discussion of related HBE literature however reveals, there exist a number of hypotheses and
observations that researchers can leverage to further advance research in MARL: (i) according to
the inter-dependence hypothesis, the human drive to cooperate was born neither in scenarios that
required altruism nor in social dilemmas, which have served as an application ground for the majority
of works in MARL. Rather, cooperation arose in Stag hunt type situations, which favored mutualistic
collaboration [52]. Thus, human ecology can offer us insights on the types of social dilemmas we
should focus on and, in particular, in the order in which we need to attack them.; (ii) group properties
such as size and social structure are directly related to multi-agent dynamics such as the speed of
information spread [75]. Thus, their influence on the emerging multi-agent autocurricula requires
investigation.

3.1.3 Cultural repertoire

Insights from ecology Non-human species often exhibit impressive behavioral repertoires [76].
However, human ecology is characterized by a uniquely large behavioral repertoire: engineering,
language, social norms, institutions and religious beliefs constitute a complex cultural ecosystem
that has lead scientists on the search of factors that differentiated us from other species [52, 77, 61].
According to the inter-dependence hypothesis, social norms and institutions emerged to counteract
the fact that reputation alone could no longer alleviate the problem of free riding in large groups. In
addition, the social complexity hypothesis [76] states that language worked as a bonding mechanism
that replaced grooming, practiced in small-scale societies, and thus helped with maintaining group
stability in larger groups [55]. The feedforward and feedback links associated with tool use have also
been investigated under a number of, often contesting, hypotheses. Based on the data analysis in
[53], environmental variability such as risk of resource failure, mobility and climate characteristics
correlate significantly with tool use in food-gathering societies. However, it is the group size and
not these factors that affect tool use in food-producing societies. It is therefore conjectured that the
feedback link of societies with a larger cultural repertoire has a stabilizing effect, dampening the
forward impact of environmental variability [78].

Another important link at this level is the relationship between tool use, language and adaptability.
Studies of biological motor systems and language acquisition in infants have revealed that action
and language representation share a similar compositional structure [35]. To understand how this
similarity between two apparently distinct systems arose, one needs to turn to the origins of this
relationship in human ecology. According to the Corballis hypothesis [79], the ability of primates’ to
manipulate tools may have played a pivotal role in the evolution of language by creating the cognitive
representations that compositionality requires. At the same time, the compositional structure of
language is hypothesized to be an enabler of flexible and adaptable behavior, thus feeding back to
adaptability [35]. Finally, it has also been proposed that intrinsic motivation, a mechanism that might
have evolved for quickly adapting to rapidly changing environments [80], can guide and constrain
evolution by constituting a reservoir of behavioral and cognitive innovations which can be later on
recruited for functions not yet anticipated [19].

State of the art in RL The AI community has been studying language from two distinct per-
spectives: Natural Language Processing and emergent communication [81]. While the former has
achieved impressive results in tasks like translation and text generation, it ignores functional proper-
ties of communication, focusing on structural properties of language. In contrast, the emergence of
communication in MARL systems is closer to real-world settings, but has mostly been applied in
environments that are relatively simple [82] or not ecologically-valid [83]. In a similar spirit, MARL
has also studied social norms and conventions [41, 84, 85]. The effect that the structure of organiza-
tion has on communication learning in groups of deep reinforcement learning agents is investigated
in [86]. This work constitutes an important first step in the realm of the social complexity hypothesis
[55], but there remain a number of research directions lying at the intersection of MARL and meta RL:
(i) the feedback effect that the cultural repertoire has on environmental variability through cultural
niche construction [53] can potentially create more powerful autocurricula than the already studied
ones based on niche construction in small-scale groups [32, 30]; (ii) studying the stabilization effect
of cultural niche construction can provide important insights to the problem of scaling up artificial
multi-agent systems ; (iii) the relationship between action/language compositionality and the ability
of agents to generalize and adapt needs to be further investigated in order to transfer insights from
human language acquisition to intelligent agents [45].
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3.2 Towards an ecologically-valid environment

Climate variability is a key element in the framework of Figure 1. A variety of long-standing
hypotheses in HBE highlight the importance of climate dynamics in providing a wide diversity of
environmental constraints and opportunities for evolution. We, therefore, believe that the first step in
a dialogue between the HBE and AI communities is to model such climate dynamics and propose
the following desiderata for an ecologically-valid environment, in particular the implementation
of: (i) unbounded and realistic climate dynamics. Rather than requiring explicit design, patterns
of resource availability and exposition to predators thus emerge naturally, potentially exhibiting
complexdynamics (ii) spatial open-endedness, a requirement for the appearance of multiple niches.
This will enable the study of dispersal, which has been linked to evolvability [87] (iii) a variety of
tasks relevant to human evolution, such as navigation, harvesting, hunting and crafting through tool
use. This is crucial for enabling behavioral diversity, an important property of an open-ended system
[50, 88] (iv) environmental variability at multiple spatiotemporal scales, e.g., seasonal fluctuations
and day/night variation. This feature will enable the study of the interaction between evolution,
development and learning [89].

The recent surge of the RL community for open-ended skill acquisition has led to the creation of
many exciting environments [90, 91]. However, most existing environments do not display rich
intrinsic dynamics independently of the agents’ actions and, to the best of our knowledge, none
implements climate dynamics. The Jelly Bean World (JBW) is a two-dimensional grid-world where
agents navigate and collect items [92]. Originally introduced as a benchmark for continuous learning,
this environment automatically expands the world when the agent approaches its boundaries. The
necessity for generating new parts of the world on demand in JBW, led to the adoption of a low-
complexity yet powerful mechanism for creating new items. Specifically, the creation and deletion
of items is controlled by a probability distribution that can be configured through an intensity and
interaction function, the former determining the probability of existence of an item independently
of others, and the latter in relation to them. Using this mechanism, one can form a variety of item
patterns, such as clusters and custom, spatially non-stationary distributions.

To enable the empirical experimentation of hypotheses proposed under the PCV framework, we have
equipped JBW with climate dynamics. Our objective is to observe the appearance of lakes with
interesting dynamics, such as quick expansion and chaotic contraction [93], which in its turn will
modulate the presence of resources available to the agents. To achieve this, we have extended the
existing item creation mechanism with context-dependent resource generation. From an ecological
perspective, the intensity function can be used to model an external climate-related parameter, which
in our case is the level of precipitation. Then, the interaction function can be used to model climate-
related constraints, such as “resources grow only near water” and “lakes change their size based on
humidity”. To implement this functionality, we defined new types of items, i.e., water cells that can
be used to form lakes, resources (called "jelly-beans" and "bananas") that grow near lakes and trees,
which cannot be consumed by the agent and act as obstacles. The creation of these items follows
interaction and intensity functions influenced by the two newly introduced control mechanisms of
precipitation and humidity. Specifically, the climate dynamics follow a four-step process: (i) the
user inputs the pattern of precipitation, a function of time and position that can be specially and
temporally variable. The user can tune this function in order to model a desired relationship between
the timescales at which climate variablity and learning dynamics take place. (ii) each cell of the
grid-world exhibits a humidity level computed based on precipitation and the proximity of lakes.
Humidity has a similar effect to precipitation and acts as a buffer mechanism that slows down the
death rate of water cells during periods of low precipitation. (iii) the birth and death of water cells
that form lakes depends on the levels of precipitation and humidity, with clustered water cells being
less likely to disappear compared to isolated ones; (iv) the presence of resources is also influenced
by humidity levels and the presence of lakes. Resources are more likely to appear near bigger lakes
and interact with other items in their neighborhood. They may disappear due to their predetermined
lifetime or due to low levels of humidity. Some resources are directly consumable (e.g. jelly-beans
and bananas), while others act as barriers and enable the growth of resources around them (e.g. trees)..

A simplified model of our proposed climate dynamics is depicted in Figure 2(a), while Figure 2(b)
presents the item presence patterns that arise from it. In this example, precipitation has a pulse
form, which allows us to compare item patterns between periods of low (in Figure 2(c)) and high
precipitation (2(d)).
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(a)
(c)

(b) (d)

Figure 2: Climate dynamics in our proposed environment: (a) simplified model of the climate
dynamics (b) temporal patterns of lake and item presence during simulations with a precipitation
function having a pulse form (c) a top-view of a gridworld where an agent navigates in a grid-world
populated by lakes (green), jelly-beans (purple), bananas (yellow) and trees (green), whose presence
is influenced by a user-designed precipitation function during a low-precipitation period (c) amd a
high-precipitation period (d)

This first step towards an ecologically-valid environment has obvious limitations: it only addresses
the first level in our conceptual framework and the implementation of multi-scale variability and
tool use has been left for future work. Nevertheless, by customizing the precipitation function the
current form our playground can be used to test various hypotheses related to resource consumption,
speciation and dispersal patterns, which can lead to novel insights in open-ended skill acquisition. Our
prediction is that our proposed environment will pose a challenge for standard methods in RL: deep
RL agents will struggle with non-stationarity while meta RL agents are ill-suited for the sequential
nature of the climate dynamics, as they are traditionally applied on independently sampled tasks. We
believe that bi-level optimization [94, 95] is an interesting direction as it can model the interaction
between evolutionary and developmental processes.

4 Discussion

Our proposal is but a preliminary step towards realizing the potential of a cross-disciplinary dialogue
between the HBE and RL communities, a glimpse of which has already been offered by recent
works [36]. On one hand, our discussion reveals that the potential of RL as a computational tool for
enriching the analytical toolbox of HBE has not been fully realized. On the other hand, our proposal
illustrates that AI research can gain more inspiration once a better overall picture and a thorough
examination of feedforward and feedback links taking place at different ecological levels has taken
place. We believe that conceptual frameworks, such as the one that guided our current analysis in
Figure 1, can serve as an important basis for the proposed inter-disciplinary dialogue, with different
questions zooming in on different sub-parts and potentially revealing lower-level relationships, and
that designing simulation environments with realistic climate dynamics, as the one proposed in
this work, is key to moving forward. We believe that this conceptual framework can lead to even
broader perspectives, in particular by modeling the interaction between ecological, environmental,
developmental and cultural dynamics, modulating the game-theoretic structure of the environment
and allowing for item compositionality. This will require the design of appropriate environments,
following the spirit of our current proposal.
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