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We show that it is possible to successfully, rapidly, and robustly transfer a topological vibrational edge mode
across a time-varying mechanical chain. The stiffness values of the springs of the chain are arranged in an
alternating staggered way such that we obtain a mechanical analog of the quantum Su-Schrieffer-Heeger model,
which exhibits a nontrivial topological phase. Using optimal control methods, we are able to design control
schemes for driving the stiffness parameters such that the transfer is done with high fidelity, speed, and robustness
against disorder as well as energy amplification of the target edge mode.
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I. INTRODUCTION

The discovery of topological insulators [1] in condensed
matter physics expands rapidly into many other fields of
physics. The example of mechanical metamaterials [2–4]
shows the impact of this discovery with the realization of
classical mechanical analogs of topological systems [5–7].
Moreover, designing the topology of advanced materials as
a tool to control the energy flow or other properties of the
mechanical structure has recently attracted a lot of interest
[8–10].

In the meanwhile, recent studies have explored strategies
of exploiting topological properties for the state transfer of
localized excited states in quantum systems [11–17], a process
of great importance for quantum technologies. The inspira-
tion of most works connecting state transfer and topology is
the concept of Thouless adiabatic quantized pumping [18],
which is based on an adiabatic cyclic modulation of the
one-dimensional (1D) potential parameters. It has been re-
alized in several platforms such as semiconductor quantum
dots [19,20], cold atoms [21–24], photons [25–27], artificial
spin systems [28,29], and mechanical materials [8,9]. The
key advantage topology offers in such processes is the in-
herent protection of boundary edge modes lying in the band
gap of the dispersion relation when the bulk is topologically
nontrivial. This results in a degree of robustness against disor-
der. However, in most of these works, topological protection
is accompanied with adiabaticity requirements and therefore
demands slow processes with sufficiently long total times of
evolution in order to avoid nonadiabatic excitations to the bulk
states. These are either too slow for the intended application
or subject to decoherence effects in quantum and several types
of energy loss in mechanical materials.

The scope of this work is to show how to control the energy
flow in order to substantially speed up the transfer, with high
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fidelity and robustness against disorder. A bonus feature of
our optimal control schemes is the possibility of amplification
of the final target mode, in the sense that more energy is
accumulated in this mode by the end of the process compared
to its initial energy. We obtain these targets by exploiting the
robustness of topologically protected edge modes, the toolbox
of optimal control, and the possibility to accumulate energy
on specific vibrational modes. Let us underline that the latter
is prohibited in quantum systems due to unitarity, while it is
an extremely useful property in acoustic metamaterials, for
instance, in order to compensate for inherent losses.

II. TIME-VARYING MECHANICAL DIMER CHAIN

Our model is the benchmark classical system of N-coupled,
single-degree-of-freedom oscillators, with alternating values
of the spring stiffnesses κ1 and κ2, see Fig. 1(a). It is a relevant
model for phonon dynamics and various types of mechanical
crystals and metamaterials, such as, for instance, granular
systems [30], phononic lattices [8], and magnetomechanical
structures [9], among others. The Lagrangian of small vibra-
tions of this dimer chain is given by

L = 1
2 q̇T Mq̇ − 1

2 qT Kq, (1)

where q is the vector of displacements of size N equal to the
number of masses and M = mIN is the mass matrix. K is the
stiffness matrix, given by

K =

⎡
⎢⎢⎢⎢⎢⎣

κ −κ2 0 . . .

−κ2 κ −κ1 0 . . .

0 −κ1 κ −κ2 . . .

. . .

. . . −κ2 κ −κ1

. . . 0 −κ1 κ

⎤
⎥⎥⎥⎥⎥⎦

, (2)

where κ = κ1 + κ2. Note, as it is depicted in Fig. 1(a), that
fixed boundary conditions are used. The alternating value of
the spring stiffness κ1 and κ2 induces topological features and,
as we will see below, guarantees the existence of robust edge
modes.

2469-9950/2020/102(17)/174312(9) 174312-1 ©2020 American Physical Society

https://orcid.org/0000-0003-0132-6689
https://orcid.org/0000-0003-2984-4197
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.174312&domain=pdf&date_stamp=2020-11-18
https://doi.org/10.1103/PhysRevB.102.174312


I. BROUZOS et al. PHYSICAL REVIEW B 102, 174312 (2020)

FIG. 1. (a) Sketch of classical SSH chain with an odd number of
masses connected with springs with alternating stiffness κ1, κ2 and
fixed ends. (b) Eigenfrequencies as a function of κ2 − κ1 keeping
κ = 4. The edge mode’s frequency is kept constant. (c) Amplitudes
of the initial and target edge modes that are supported by the system
when κ1 > κ2 and κ2 > κ1, respectively. We show how with optimal
time modulation of κ1(t ) and κ2(t ) we can achieve a transfer from
the initial to the target mode with high fidelity in a very short time.
(d) Profile of the edge mode at the closed gap point.

Research on time-dependent elastic structures has received
considerable attention over the last three years. Theoretical
studies revealed that time modulations of the material’s con-
stitutive properties could be induced in various materials,
including photosensitive [31], magnetoelastic [32], piezoelec-
tric [33], or phase-changed chalcogenide [34]. In addition,
various experimental platforms with temporal modulated
elastic structures have been developed the last two years
[33,35,36]. These developments allow us to consider in this
work the spring stiffnesses as time-dependent functions: κ1 =
κ1(t ) and κ2 = κ2(t ).

A. Eigenspectrum and edge modes

The Lagrangian (1) leads to the equations of motion

mq̈ = −K(t )q. (3)

For the case of time-independent spring stiffnesses, looking
for solutions q(t ) ∝ eiωit qi, we obtain

mω2
i qi = Kqi, (4)

where ωi are the eigenfrequencies and qi the eigenmodes
of the mechanical model. The index i = 1, ..., N runs in as-
cending order of discrete eigenfrequencies, while we use an
odd-sized chain with N = 21 identical masses throughout this
work. In Fig. 1(b) we show the eigenfrequencies ωi of K as a
function of the difference κ2 − κ1 keeping a constant κ = 4 in
arbitrary units κ0.

The mechanical dimer chain has chiral symmetry [37],
which results, for the odd-sized finite chains, in the existence
of one edge mode localized at one side of the chain with
frequency equal to ω̃ = √

κ/m. It is well separated from the
bulk modes which, due to the finite size of the system, do not
form continuous bands. Moreover, the edge mode has a left
(right) localized profile of amplitudes of the corresponding

eigenvector q̃ if κ1 > κ2 (κ2 > κ1), as shown in Fig. 1(c),
with a red dotted (green dashed) line. Hereafter, every vari-
able or parameter with a tilde corresponds to the edge mode.
The length unit is the normalization length of the edge-mode
amplitude vector L = |q̃| and therefore the energy unit is
κ0L2 and time unit

√
m/κ0. In the following, without loss of

generality we set κ0 = 1.
This profile of the edge modes holds as soon as κ1 �= κ2 and

is more localized the more these two values of stiffness differ.
As we approach κ1 = κ2, a point in the stiffness parameter
space which we call the closed gap point, the frequencies
of the bulk modes approach the edge mode’s frequency, as
shown in Fig. 1(b). Exactly at this point the profile of the edge
mode, shown in Fig. 1(d), does not differ qualitatively from
that of the bulk modes. However, due to the finite size of the
system, the difference between the frequencies of bulk and
edge modes is not vanishing at the closed gap point and it
decays algebraically to zero for N → ∞.

B. Energy

Introducing the conjugate momenta pi ≡ ∂L/∂ q̇i with i =
1, ..., N we obtain the Hamiltonian

H(q, p, t ) = 1
2 [pT p + qT K(t )q], (5)

describing the phase-space evolution of the considered sys-
tem. Since K(t ) is a symmetric matrix of positive type, it can
be diagonalized by an orthogonal matrix, the instantaneous
modal matrix A(t ), which is composed by the instantaneous
eigenvectors qi(t ) of K(t ). It also holds that A(t )T K(t )A(t ) =
�(t ), where �(t ) = diag[ω2

1(t ), ..., ω2
N (t )] is the diagonal

matrix with elements the instantaneous eigenfrequencies.
With the use of the modal matrix, we can now change the
variables (q, p) to normal variables (Q, P), given by

Q = AT q, P = AT p. (6)

Using the above transformation we can rewrite the Hamilto-
nian in Eq. (5), keeping in mind that the new variables Q, P
are not phase-space variables for H anymore, since they do
not obey the appropriate Poisson bracket conditions with H,

H = 1
2 [PT P + QT �(t )Q], (7)

and Eq. (7) can be then used for writing the total energy as a
sum of the modal energy contribution Ei,

E =
N∑

i=1

Ei =
N∑

i=1

(
Pi

2

2m
+ 1

2
mωi

2Q2
i

)
. (8)

Notice that the values of Etot and Ei vary with time and there-
fore the initial energy E (0) may not be the same as the final
one E (T ), resulting in an energy loss or gain. Of course, the
same holds for each modal energy contribution Ei, allowing
us to refer to amplification of the target edge mode in the case
that Ẽ (T ) > Ẽ (0).

At this point it is worth noting that the variable change
given in Eq. (6) is canonical, while the generating function
of this transformation,

F (p, Q, t ) = −pT AQ, (9)
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suggests that the Hamiltonian H′(Q, P, t ) in the normal-mode
representation, i.e., the Hamiltonian that describes the sys-
tem’s dynamics in terms of the normal variables Q, P, and
time t , reads

H′(Q, P, t ) = 1
2 [PT P + QT �(t )Q] − PT AT ȦQ. (10)

The first two terms of H′ can be written as a sum of N
independent Hamiltonians of harmonic oscillators. However,
the matrix AT Ȧ is not a diagonal one, and when the initial
conditions lead to a single normal mode’s oscillation, the last
term of H′ is causing excitations to other normal modes.

C. Mechanical vs quantum topological chain

The under-study classical chain acts as an analog of the Su-
Schrieffer-Heeger model (SSH) [38]. The latter was initially
conceptualized as a diatomic linear quantum system, with
next-neighbor interaction, exhibiting topological properties
[11]. The Hamiltonian of this quantum model is similar to the
K matrix canceling the diagonal terms: HSSH = K − κI.

There are nevertheless some important differences be-
tween the quantum and classical case. The quantum system
evolves according to the Schrödinger equation ih̄ dψ

dt = HSSHψ

with ψ = (ψ1, ..., ψN )T , which is first order in time, while
the classical system follows Newton’s equation d2q

dt2 = −Kq.
Moreover, the relevant eigenvalue-eigenvector problem for the
quantum case is that of the Hamiltonian operator, HSSHψi =
Eiψi, where ψi and Ei are the eigenvectors and eigenenergies
of the SSH Hamiltonian, whereas, for the classical case, it is
that of the K matrix [Eq. (4)].

The K matrix possesses nonvanishing diagonal elements
[see Eq. (2)], while in HSSH the diagonal elements vanish [39].
Moreover, HSSH is a Hermitian tridiagonal matrix, implying
that when N is odd, an edge state with zero energy is supported
and the energies Ei of the bulk states are also symmetric
around zero. However, in the mechanical dimer chain, the
form of the off-diagonal part of the K matrix is similar to
HSSH, while the diagonal elements are all equal to κ . Hence,
from Eq. (4) it follows that (i) the eigenfrequencies squared
of the bulk modes, ω2

i , are symmetric around ω̃2, i.e., the
eigenfrequency squared of the edge mode, and (ii) ω̃2 is equal
to κ .

The eigenfrequencies squared are also connected to each
normal mode’s eigenenergy εi. As explained before, the total
energy of the mechanical chain is written as a sum of the
modal energy contribution of each mode. Therefore εi are
equal to ω2

i /2, which are symmetric around ω̃2/2. However,
the evolution in time of each mode’s contribution Ei is propor-
tional to exp(2iωit ), implying that the energy contributions of
the bulk modes do not evolve symmetrically in time, since the
eigenfrequencies of the bulk modes are not symmetric around
ω̃ (see Appendix A for more details).

III. STATE TRANSFER VIA TOPOLOGICAL CHAINS

The SSH model has been used recently in the context of
robust state transfer [13–17]. The subject of state transfer has
attracted major interest over the years, while the concept of
quantum state transfer has been accomplished directly via
photons [40], in linear spin chains [41], with quantum dots

[42], and in many other platforms. However, it was the need
for robustness against disorder that led to the use of a nontriv-
ial topological SSH chain with alternating couplings instead
of the trivial homogeneous spin chain or engineered coupling
chain [41].

There are several protocols based on either odd-sized
or even-sized SSH chains. For the latter case discussed in
[15–17], the edge states are two and localized in either side of
the chain. None of them is an eigenstate of the system: They
are both actually a superposition of symmetric and antisym-
metric eigenstates lying close to zero energy (but not exactly
vanishing). Therefore there is a Rabi coupling among the left
and right side localized edge states which is very small but can
be used for transfer among them [16]. There are also methods
to accelerate this transfer protocol [15,17]. Moreover, for the
even-sized chain, we have the adiabatic Thouless pumping
scenario, which is performed under the Rice-Mele model. The
latter is a modification of the SSH with diagonal terms that can
induce a pumping cycle of Thouless type both in the quantum
and mechanical case [9,11,14,15,21–23].

In this study we focus on the odd-sized chain scenario like
in [13,14]. This choice is mainly made because we aim at an
edge mode which is an eigenmode of the system initially and
finally independently from our choice of κ1 and κ2 parameters.
Additionally, we ensure that our initial and target edge modes
do not have leaks to other modes and thus we can accumulate
and store energy. Since the initial excitation is an eigenmode
[see Fig. 1(c), red dotted line], a time change of the parameters
is needed to drive the system (Rabi-type processes do not
occur here).

The purpose of our study is to transfer the energy from the
left-localized mode [Fig. 1(c), red dotted line] to the right-
localized one [Fig. 1(c), green dashed line]. We try to achieve
this by time dependently modulating the spring stiffnesses,
which exchange values between initial and final time, namely,

κ1(0) = κ2(T ) , κ2(0) = κ1(T ). (11)

The values we chose for initial parameters, κ1(0) = 3 and
κ2(0) = 1, result in a well-localized edge mode, as shown in
Fig. 1(c). Nevertheless, the localization length of our edge
mode is not vanishing, as in most cases of the literature, where
the small coupling parameter is considered to be vanishing
such that there is only a single-site excitation (in our case that
would correspond to κ2(0) = 0). We also have the physical
restriction that κ1(t ), κ2(t ) > 0 for the whole duration of the
process.

The initial and target edge mode are adiabatically con-
nected, meaning that, if the operation is done in very long
time T → ∞, one can in principle assume a path through the
instantaneous edge mode q̃(t ) without any excitation, which
will drive the system from q̃(0) on the left to q̃(T ) on the
right side. When the time is finite there will be typically some
(even very small) nonadiabatic excitations to instantaneous
bulk eigenmodes, i.e., Ei(t ) �= 0 for t > 0 and i �= N+1

2 .
One intensively studied method to overcome nonadiabatic

effects and overthrow the adiabatic constraint of a sufficiently
long total time needed for a successful process is shortcut
to adiabaticity, also known as counteradiabatic or superadi-
abatic driving [43]. With this method one finds a control
Hamiltonian, added to the initial one, that literally cancels
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the nonadiabatic excitations. Very recently, the first relevant
work on state transfer via a quantum topological chain has
appeared [44], with the control Hamiltonian adding next-to-
nearest-neighbor interactions.

In this work we refrain from adding counteradiabatic terms
to the Hamiltonian. Therefore we subsequently always have
(even very small) nonadiabatic excitations. Remaining with
the SSH coupling terms, we will show how optimal control
schemes [45,46] improve the time needed to obtain an almost
perfect transfer of energy across the edge modes of the chain.
This is done by genuinely controlling the energy flow by
efficiently using the instantaneous separation of the band gap
[see Fig. 1(b)], a main feature of the topological nature of
the system. Optimal control, which has also been used in a
state transfer context [47], is based on a proper definition of
a quantity usually called fidelity (or cost function infidelity)
that has to be maximized (or minimized) as a function of the
control parameters of the system under specific constraints.

We are interested here in the transfer fidelity of the energy
of a vibrational eigenmode to another eigenmode of the final
system. At the start of the process this eigenmode may be at
any phase of its oscillation and be transferred at any phase too.
Moreover, as mentioned before, the complication here is that
both initial and target modes are not single-site excitations,
and therefore we cannot simply define transfer fidelity as the
excitation energy of a single site (mass in our case).

In order to define a proper fidelity we need to analyze
the energy flow in the mass-spring system. To this end we
use the Ei’s in order to define a quantity that is normalized
for every time instant: Ci(t ) = Ei (t )

E (t ) . Let us call this quantity
modal energy share. We use the modal energy share of the
edge mode (corresponding to index i = N+1

2 ) at final time T ,
namely,

F = C̃(T ) = Ẽ (T )

E (T )
, (12)

while F depends in general on the initial phase φ0, since the
initial edge mode is an oscillating eigenmode. Therefore we
consider the initial phase as a free parameter ranging from
[0, 2π ) and define fidelity as the minimum F in this phase
interval (see Appendix B),

F = min
φ0

F. (13)

IV. RESULTS: SPEEDING UP THE TRANSFER

As we explained above, for finite time nonadiabatic excita-
tions will appear in our system and therefore it is not possible
to have perfect transfer F = 1. We set therefore a lower
bound for the fidelity F = 0.99 and we search for protocols
that minimize the necessary total time to achieve it. Instead
of directly showing final numerical results, we will go step
by step to improve the speed of the protocol and highlight
the underlying physics of energy flow management that each
protocol accomplishes.

We begin our analysis by studying a scheme considered in
[13] which consists of a single-frequency, semicyclic trigono-
metric control function. This scenario belongs to a wider class

FIG. 2. (a) κ1(t ) and κ2(t ) for the trigonometric protocol.
(b) F (T ) and (c) ωi(t ) for the trigonometric protocol.

of protocols, which can be written in the form

κ1(t ) = κ+ + κ− f (t ), κ2(t ) = κ+ − κ− f (t ), (14)

where κ+ = κ1(0)+κ2(0)
2 and κ− = κ1(0)−κ2(0)

2 , while the specific
choice of f (t ) for the trigonometric protocol is given by

f (t ) = cos
(πt

T

)
. (15)

This control scheme, shown in Fig. 2(a), results in a fidelity
F that increases smoothly with T and approaches unity as
T → ∞ [see Fig. 2(b)], while it reaches the target fidelity
F > 99% at Ttrig = 297.

The trigonometric protocol has the property that for every
t , κ (t ) = κ1(t ) + κ2(t ) is constant and equal to κ1(0) + κ2(0),
resulting in a constant edge-mode frequency during the whole
time of the process (recall that ω̃(t ) = √

κ (t )), as shown in
Fig. 2(c). We will now illustrate why this protocol is not
appropriately using the features of the dispersion relation and
what type of control functions improve the total time needed
to achieve the target fidelity.

To this end, we consider now a simple protocol, the linear
protocol, consisting of couplings changing linearly in time
[see Fig. 3(a)], namely,

f (t ) = 1 − 2
t

T
. (16)

As shown in Fig. 3(b), this protocol has smoothly increasing
fidelity with T and reaches F > 99% for total time Tlinear =
192. The improvement we see here in total time needed, com-
pared to the trigonometric protocol, is due to the following
fact: The linear function approaches to and departs from the
closed gap point at the same rate, while the trigonometric
function is slower in the beginning (and in the end) when the
gap is very open and fast when it approaches the closed gap

FIG. 3. (a) κ1(t ) and κ2(t ) for the linear protocol. (b) F (T ) and
(c) ωi(t ) for the linear protocol.
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FIG. 4. (a) κ1(t ) and κ2(t ) for tangential and step protocols.
(b) F (T ) for the corresponding schemes of (a). (c), (d) Time evo-
lution of the absolute value of the particle displacements of the chain
for the tangential and step protocols, respectively.

point. This can also be seen by comparing Fig. 3(c) for the
linear with Fig. 2(c) for the trigonometric. The probability of
nonadiabatic excitations becomes higher when the gap closes,
while it is very suppressed when the topologically induced gap
is open. Therefore we conclude that the trigonometric pro-
tocol is on the wrong direction of energy flow manipulation
and therefore needs relatively longer times to suppress nona-
diabatic excitations and reach the target fidelity than other
protocols.

Let us then change the control function in a direction
opposite to that of the trigonometric protocol and consider
now the scenario of approaching rather fast the closed gap
point and staying longer in its vicinity. A convenient control
function, among others, that can be used to implement and test
this scenario is the tangential protocol, with a control function
given by

f (t ) = tan(πt/Tf + α)

tan α
, (17)

where Tf = πT
2π−2α

, with free parameter α ∈ (π/2, π ). With
a simple optimization search in the range of the parameter
α of the tangential protocol, we find that for the value α =
π/2 + 0.4 [shown in Fig. 4(a)] the system reaches the desired
fidelity at Ttan = 89 [see Fig. 4(b)], which is 70% shorter than
the trigonometric protocol. Moreover, in Fig. 4(c) we show the
spatiotemporal evolution of the absolute value of the particle
displacements with zero initial phase, meaning zero initial
velocities and maximum displacements. With the evolution at
a final time 2T , with κ1,2(T � t � 2T ) = κ1,2(T ), we verify
that the edge mode remains localized at the other side of the
chain after reaching the target mode at time Ttan.

We stress here that although we have found a protocol
which speeds up the energy transfer by a faster approach of
the closed gap point and a longer stay in its vicinity, one
cannot assume that this can be taken to the extreme. Indeed,
for example, the tangential protocol with α = π/2 + 0.001
(close to step function), shown in Fig. 4(a), does not reach
high values of fidelity and F (T ) oscillates strongly as shown

FIG. 5. (a) κ1(t ) and κ2(t ) for the 3-step protocol. (b) F (T ) and
(c) ωi(t ) for the 3-step protocol.

in Fig. 4(b). Furthermore, Fig. 4(d), illustrating the spatiotem-
poral evolution at the final time T = 89, i.e., the final time
that the previous scheme reaches the target fidelity, shows that
the initial edge mode truly does not reach the target one. Let
us explain. The longer the stay at the vicinity of the closed
gap the more prominent the excitation dynamics between the
modes are, as well as the phase oscillations of each mode.
Therefore the modal energy contribution at final time Ei(T )
depends a lot on the duration of the process with respect to the
timescales of these inter- and intramode dynamics. In general,
we conclude that in order to speed up this transfer process one
needs to carefully and appropriately use the properties of the
dispersion relation of the topological model in a very subtle
way.

All the aforementioned schemes have the property of keep-
ing the edge mode’s frequency constant during the whole
process. The question we will try to answer now is whether we
could gain some transfer speed if we raise this constraint. We
begin this part by studying the 3-step protocol, a protocol that
does not keep ω̃ constant during the process; it is, however,
bounded by the initial value of springs κ1 (or the final value of
springs κ2), meaning κ1,2(t ) � κ1(0) [or κ1,2(t ) � κ2(T )] for
every t of the process. This control scheme, shown in Fig. 5(a),
consists of three time intervals: (i) in the first time interval the
large stiffness remains constant to maximum value and the
small stiffness increases up to this value; (ii) in the second
time interval we have both stiffness constants and they’re
equal to their maximum value, and (iii) in the third time
interval the large stiffness drops to the small stiffness value
and the other one remains constant at the maximum value.
In fact, if we keep the mirror symmetry κ2(t ) = κ1(T − t ),
there is only one free parameter: The slope of the linear drive,
or equivalently, the time interval given for the stiffness to
increase (decrease) from initial to final value (and vice versa).
Searching the optimal value of this time interval as a portion
of the total time we find that top = 0.4T . The correspond-
ing fidelity with total time F (T ), shown in Fig. 5(b), has
oscillating behavior, as expected from the time spent near
closed gap. Nevertheless, the first peak reaches target fidelity
F > 99% at time T3-step = 39, which is seven times shorter
than the trigonometric scheme. A note on optimization within
the above functional constraints is in order here. For both
the 3-step and the tangential schemes, even if we raise the
mirror symmetric condition κ2(t ) = κ1(T − t ) and allow two
free parameters (one for κ1 and one for κ2), the optimization
procedure returns values for the corresponding optimized pa-
rameters that render back the mirror symmetry.
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FIG. 6. (a) κ1(t ) and κ2(t ) for the 3-step up protocol. (b) F (T )
and (c) ωi(t ) for the 3-step up protocol.

But what makes the 3-step protocol faster? It is exactly
the idea of not keeping a constant κ but actually increasing
the timescales by effectively increasing the mean value of
stiffness of the springs during the transfer process. This shifts
up and down the value of the instantaneous eigenfrequency
ω̃ as a function of time, as shown in Fig. 5(c). Therefore the
timescales which may be considered inverse proportional to
the time average of ω̃ effectively decrease.

Following this line of thought, a direct step towards speed-
ing up the transfer further is to raise the upper bound of the
maximum κ in the sense that the couplings can exceed the
reference value κ1(0) [or κ2(T )]. Let us take another 3-step
protocol, which we refer to as the 3-step up protocol, where
in the second time interval the constant maximum value of
stiffness is κmax = 30, i.e., one order of magnitude larger than
the corresponding value of the previous protocol, as shown in
Fig. 6(a). Both κ1 and κ2 increase now in the first time interval,
which may be different for each of them. Optimization of
four total parameters now renders back the mirror symmetry
κ2(t ) = κ1(T − t ) again and therefore constrains the parame-
ter space to two parameters. The time interval in which κ1 is
constant at value κmax is [0.138T, 0.546T ], suggesting that the
corresponding time interval for κ2 to be constant at this value
is [0.454T, 0.862T ]. Moreover, the fidelity has an oscillating
behavior as a function of the total time, as shown in Fig. 6(b),
but it reaches F > 99% at total time T3-step up = 22, which is
another significant reduction of 43% compared to the 3-step
protocol.

The qualitative difference of the 3-step up protocol is
apparent if one observes the instantaneous eigenfrequency
evolution ωi, as shown in Fig. 6(c), in comparison to 3-step
[Fig. 5(c)]. The eigenfrequencies change substantially here,
while the closed gap occurs at large value of κ1 = κ2 =
κmax = 30.

Up to now we have gained a lot of speed in the transfer.
Further improvement can occur if we assume other control
schemes with functional forms including more parameters.
For instance, we can have 3-step cubic protocols/3-step cubic
up protocols in the sense that each interval of time is a cubic
polynomial with adjusted optimal parameters. We have opti-
mized such control schemes involving a parameter space with
16 independent parameters. The protocols found and shown in
Fig. 7 decrease the time even further. Specifically, the 3-step
cubic protocol reaches the fidelity F > 99% at total time
T3-step cubic = 35 (recall that T3-step = 39), while for the 3-step
cubic up protocol this total time is T3-step cubic up = 12 (recall
that T3-step up = 22). We also report that, if we set the initial

FIG. 7. (a) κ1,2(t ) for the 3-step cubic protocol. (b) Correspond-
ing κ1,2(t ) for the 3-step cubic up protocols.

phase of the edge-mode oscillation to a known value [e.g.,
zero like in Fig. 1(c)] and not search over all initial phases in
order to define fidelity, then we can even find 3-step cubic up
protocols that drive to the target mode in total times less than
the edge-mode period Tcub ≈ 1 < T̃ = π .

V. ROBUSTNESS AND AMPLIFICATION

So far, we have seen how to gain a lot of transfer speed with
various modifications of the way that the couplings change in
time. However, one may be worried whether this improvement
in speed is in cost of robustness against disorder due to the
presence of fast processes in the system’s evolution. Next, we
study the impact of disorder on the following representative
control schemes: The trigonometric, the tangential, the 3-step,
and the 3-step up protocols.

We consider a disorder that does not affect the control
schemes but only shifts up and down the initial values of
couplings. Its effect is described by

κn(0) → κn(0)(1 + εwn) , n = 1, ..., N + 1, (18)

with ε = 0.2 and wn ∈ [−1, 1] a uniformly distributed ran-
dom number. Notice that the system consists of N + 1
couplings (22 in our case), while when the index n is odd
(even), the couplings are of type κ1 (κ2) [see Fig. 1(a)]. We
also note that the under-study disorder changes the edge-
mode’s frequency, which is no longer equal to κ , since each
diagonal element of K is altered by a different quantity [see
Eq. (2)]. Consequently, the system’s chiral symmetry is bro-
ken. Nevertheless, it is a natural choice, since all couplings are
perturbed differently and according to their initial values.

Without loss of generality we take different realizations of
this disorder with vanishing initial phase, calculating F (φ0 =
0) for each realization, and show its statistical distribution in
Fig. 8. Note that the total time is fixed for each protocol to
the values calculated before, when each realization reaches
F > 0.99 in order to check weather the improvement in speed
comes with a deficit for robustness.

Indeed, the trigonometric protocol (with the slowest speed
and thus longest time) is apparently outperforming in ro-
bustness the tangential and the 3-step. However, the 3-step
up is actually even more robust than the trigonometric. This
increased robustness is attributed to the fact that the edge
mode remains well separated from the bulk throughout the
process, as we have seen in Fig. 6(c).
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FIG. 8. Robustness against disorder for four protocols and ε =
0.2. (a) Trigonometric. (b) Tangential. (c) 3-step and (d) 3-step
up. Shown is the statistical distribution out of 105 realizations of
disorder.

The 3-step up protocol, apart from being the fastest and
the most robust, also has an additional bonus property. It can
result in amplification, i.e., the final vibrational energy of the
target right-localized edge mode can exceed the initial energy
of the left-localized edge mode.

Note that in the classical system there is nothing pro-
hibiting the modal energy contribution of the target edge
mode Ẽ (T ) taking a greater (or lower) value than the en-
ergy given at the start of the process to the initial edge
mode [which is also the initial excitation energy given to
the system Ẽ (0) = E (0)]. Therefore we can define a quantity
which we will call energy amplification of the edge mode as
follows:

A = Ẽ (T )

Ẽ (0)
= Ẽ (T )

E (0)
. (19)

We additionally note here that the amplification A, as well as
most of the quantities defined before, depend on the initial
phase φ0.

FIG. 9. Amplification A as a function of the initial phase φ0 for
the 3-step up protocol and when κmax = 30.

In Fig. 9 we show that we can achieve A > 1 using the 3-
step up protocol (with kmax = 30 as before) for various values
of φ0, but we can also get A < 1 for several initial phases. The
maximum value of A in this case is 1.637, while for φ0 = 0
we get A ≈ 1.24. We stress here that the fidelity is above 99%
for all of these cases.

Therefore we conclude that the 3-step up protocol features
all desirable properties of state transfer: Fastness, robustness,
and amplification. Of course, similar results with even im-
proved such properties can be obtained with protocols like
3-step cubic up that involve more optimized parameters as
we have shown. Let us note that all protocols constrained
to the initial regime of the parameter (trigonometric, linear,
tangential, 3-step, 3-step cubic) do not exhibit the feature of
amplification.

VI. CONCLUSIONS AND PERSPECTIVES

We have examined the properties of a mechanical analog of
the topological SSH model. We defined properly the quantities
to study the energy flow in the system in order to be able to
optimize with respect to the fidelity of the energy transfer on
specific vibrational modes. We have designed several proto-
cols that decrease the time needed to transfer the energy from
an edge mode of a topological mass-spring chain localized on
one end to the mirror symmetric one on the other end. The
important qualitative modifications those protocols induce on
the dynamics of the system have been explained. We have
provided a simple protocol consisting of three time intervals
with linear increase, constant and linear decrease of the spring
stiffness parameter that has high fidelity, robustness against
disorder, and energy amplification on the target edge mode.

The promising results of our research for robust and rapid
control of energy flow in mechanical metamaterials open a
lot of questions and further research directions. For instance
one may consider the comparison of our optimal control
approach with other approaches for speeding up adiabatic
processes such as transitionless, superadiabatic shortcuts to
adiabaticity. Another perspective is to look deeper at the
connection between degree of adiabaticity, the optimal pa-
rameters for each functional form of the control schemes
(and the symmetries occurring among them), and the energy
amplification. Additionally, a lot of the characteristics of the
optimal schemes, e.g., the mirror symmetry and the parameter
space, can unveil further insight about the problem. Last but
not least, the multiple platforms for realization of such transfer
processes in experimental setups may signify additional con-
straints and possibilities for the control, which could induce
further research with respect to the size of the system, the
range of the parameters, and robustness against other sources
of disorder.
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FIG. 10. (a) The frequencies ωi are not symmetric around the
edge mode’s frequency. (b) The eigenenergies εi are symmetric
around ε̃.

APPENDIX A: NONSYMMETRIC EXCITATION OF BULK

In the quantum SSH system the eigenenergies are always
symmetric around the zero-energy state, i.e., |Ei| = |EN−i|.
In the mechanical system, the stiffness matrix K has a very
similar form with HSSH, implying that the eigenvalues of K
are symmetric around the eigenvalue that corresponds to the
edge mode. However, the eigenvalues of K are proportional
to the eigenfrequencies squared; therefore ω2

i as well as the
mode’s eigenenergies εi which are equal to ω2

i /2 are symmet-
ric around ω̃2 and ε̃, respectively, as shown in Fig. 10(b). Due
to this symmetry of ω2

i around ω̃2 we immediately obtain that∣∣ω N+1
2

− ω N+1
2 −m

∣∣ >
∣∣ω N+1

2
− ω N+1

2 +m

∣∣. (A1)

This asymmetry, shown in Fig. 10(a), affects the time evo-
lution of the mass-spring chain, since the important dynamical
parameters are the eigenfrequencies ωi (and not the eigenener-
gies) and also suggests that the excitations to the upper band’s
modes are higher than the excitations to the corresponding
modes of the lower band.

FIG. 11. F as a function of the initial phase φ0 for the 3-step up
protocol and for a final time T = 15. (b) Same as (a) but for a final
time T = 22.

APPENDIX B: OSCILLATIONS OF F(φ0)

The reason for defining the minimum of F over all initial
phases as fidelity is the following: The initial edge mode
is oscillating with period T̃ = 2π/ω̃ and therefore we may
choose any phase φ0 of this oscillation in order to determine
the initial conditions, i.e., initial displacements and velocities.
However, the quantity F , which measures the fraction of the
system’s final energy that is stored at the target edge mode,
depends on the initial phase φ0. As an illustration, consider
that the two couplings change in time through the 3-step up
control scheme that is studied in the main text. In Fig. 11(a) we
show that for a fixed final time T = 15, F strongly oscillates
as a function of the initial phase φ0. However, when the final
time is T = 22 [Fig. 11(b)], F is always above 0.99. Therefore
in order to ensure that the transfer has been achieved with
a certain target fidelity (99% in this case), we consider the
minimum of F to be this fidelity.
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