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We numerically investigate the topological phase transition induced purely by disorder in a spring-mass chain.
We employ two types of disorders—chiral and random types—to explore the interplay between topology and
disorder. By tracking the evolution of real-space topological invariants, we obtain the topological phase diagrams
and demonstrate the bilateral capacity of disorder to drive topological transitions, from topologically nontrivial to
trivial and vice versa. The corresponding transition is accompanied by the realization of a mechanical topological
Anderson insulator. The findings from this study hint that the combination of disorder and topology can serve as
an efficient control knob to manipulate the transfer of mechanical energy.

DOI: 10.1103/PhysRevResearch.3.033012

I. INTRODUCTION

With the discovery of topological insulators in condensed
matter [1,2], there have been tremendous efforts to explore
topological phases in classical wave systems, including pho-
tonic [3–6], acoustic [7–9], and elastic [10–15] systems.
Based on the bulk-edge correspondence for topological in-
sulators, one can predict the existence of topological states
on the boundary of the system by characterizing the bulk
of a material with an invariant. Such states are protected
by the internal symmetries and are immune to certain types
and levels of disorder [16]. As disorder inevitably destroys
the periodicity of the system, it is natural to think that the
presence of disorder tends to suppress topological properties.
However, the discovery of topological Anderson insulators
(TAIs) [17–23] suggests that disorder can actually induce
the abnormal transition from topologically trivial to nontriv-
ial states, which brings studies on the interplay of topology
and disorder into a new era. Later, the concept of TAIs has
been further illustrated and experimentally verified in atomic
wires [24], in photonic systems [25], and recently in acoustic
waveguides [26]. In all these cases, the one-dimensional (1D)
Su-Schrieffer-Heeger (SSH) tight-binding model was used.
However, the interplay of both topology and disorder in lat-
tices described by second-order differential equations in time,
capable of describing the dynamics of not only a variety of
mechanical systems (e.g., spring-mass model) but also several
electric structures (LC circuits), has not been explored.
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Here, inspired by previous studies, we propose a dimer
spring-mass system mimicking the 1D SSH model [27] to
realize the topological phase transition. Despite some similar-
ities with previous models, this mechanical system has some
important differences that can lead to distinctive behaviors in
the presence of disorder. First, the band-gap region is around
a finite frequency as opposed to zero frequency in the SSH
model. Second, in the SSH model, hopping disorder only
changes the energy spectrum while preserving the system’s
chiral symmetry. In contrast, disorder in the spring stiffness
of a spring-mass chain usually breaks the chiral symmetry,
since the perturbation is reflected in the diagonal entries of
the dynamical matrix as well. Third, as noted earlier, the equa-
tions of motions are governed by the second-order differential
equations in time, such that the topological characterization of
real space obtained from the transient response of the system
should be handled carefully. Therefore, to understand the ef-
fect of disorder on the topological properties of this classical
system comprehensively, we introduce two types of disorder
in our spring-mass chain: (i) a chiral (chiral-symmetry pre-
serving) and (ii) a random disorder. To probe the topological
properties for various disorder scenarios, we use three kinds of
topological invariants defined in the real space (displacements
of the masses). Moreover, we keep track of the localization
length in the system to capture the boundaries between topo-
logically distinct phases. While the random type of disorder
is more common in mechanical settings, we demonstrate that
in the carefully designed setting of chiral disorder, we can
achieve both kinds of topological phase transitions, from topo-
logically nontrivial to trivial and vice versa. The latter type
leads to the mechanical analog of the TAI.

II. MODEL

A. Equations of motion

In this paper, we consider a 1D dimer spring-mass chain,
as shown in Fig. 1, which is composed of particles of uniform
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FIG. 1. Schematic of the 1D dimer spring-mass chain with
ground springs. Unit cells are highlighted with the dashed boxes.

mass (m = 0.01 throughout this paper) connected by alternat-
ing springs. All the particles are attached to the ground with
an on-site spring (K0), which acts in the horizontal direction.
Each unit cell contains two particles. The springs located
within the unit cell are defined as intracell springs (Ka), while
those connecting neighboring unit cells are called intercell
springs (Ke). We assume that the 1D dimer chain contains n
unit cells, i.e., N = 2n particles and N + 1 intercell and intra-
cell springs in total. By imposing fixed boundary conditions
on both ends, the equations of motion of the system can be
written as

mü1 = −k1u1 − k2(u1 − u2) − k0
1u1,

mü j = k j (u j−1 − u j ) − k j+1(u j − u j+1) − k0
j u j,

j ∈ [2, N − 1],

müN = kN (uN−1 − uN ) − kN+1uN − k0
N uN , (1)

where u j is the displacement of the jth particle, k j is the spring
constant between the ( j − 1)th and jth particles, and k0

j is
the jth on-site spring constant, such that k j = Ke for odd j,
k j = Ka for even j, and k0

j = K0 ∀ j.
We can rearrange the equations of motion into a matrix

form as follows:

Ü(t ) + DU(t ) = 0, (2)

where U(t ) and D are the displacement vector of length N
and the dynamical matrix of dimension N × N , respectively.
The dynamical matrix is real and symmetric and takes the
following form:

D = 1

m

⎡⎢⎢⎢⎣
Ka + Ke + K0 −Ka · · · 0 0

−Ka Ka + Ke + K0 −Ke · · · 0
· · · · · · · · · · · · · · ·
0 · · · −Ke Ka + Ke + K0 −Ka

0 0 · · · −Ka Ka + Ke + K0

⎤⎥⎥⎥⎦. (3)

To get the system’s time-history response, we can rewrite
Eq. (2) as a first-order state equation

Ẋ = AX, (4)

where X = [U(t )
V(t )] is the state vector consisting of displace-

ment and velocity components of all the particles and A =
[ 0 I
−D 0]

2N×2N
with I being the identity matrix.

B. Spectrum

To perform the eigenanalysis, we assume a harmonic sys-
tem response. By substituting the ansatz U(t ) = Ueiωt into
Eq. (2), we get:

DU j = ω2
j U j, (5)

where U j is an eigenvector corresponding to the eigenfre-
quency ω j . We note that after the removal of the diagonal
term (Ka + Ke + K0)/m from the dynamical matrix of Eq. (3),

which shifts the spectrum to the frequency ω0 =
√

Ka+Ke+K0
m ,

the remaining matrix obeys the anticommutative relation

�
[
D − ω2

0I
] + [

D − ω2
0I

]
� = 0, (6)

where IN×N denotes the identity matrix and � is the chiral
operator (see Appendix A for details). The system in this case
is said to possess the chiral symmetry, and in combination
with the time-reversal symmetry, it results in a symmetric
square of the spectrum (ω2) around the midgap square fre-
quency (ω2

0). In addition, all the eigenvectors have their chiral
partner; namely, for every eigenvector Uk with eigenfrequency

ωk , there is an eigenvector Ul with eigenfrequency ωl such
that �Uk = Ul and ω2

k − ω2
0 = −(ω2

l − ω2
0 ).

C. Disorder arrangement

Although in the clean limit (without disorder), the dy-
namic matrix of the dimer spring-mass chain shares the same
topological property with the Hamiltonian matrix of a 1D
SSH chain, these two systems become quite different in the
presence of disorder. Mathematically speaking, the diagonal
terms of the SSH Hamiltonian matrix depend only on the on-
site energies. By introducing disorder on the hoppings in the
SSH tight-binding model, we will only vary the off-diagonal
terms of the SSH Hamiltonian matrix. In contrast, the diagonal
terms of the dynamic matrix of a spring-mass chain are the
summation of two neighboring springs and the on-site ground
spring. In consideration of such a difference, we introduce
two types of disorder to study their effects on topological
phase transitions in the 1D mechanical system. The disorder
strengths of intercell and intracell springs are noted as We and
Wa, respectively. Then, the jth disordered spring stiffness can
be written as

k j =
{

Ke + δ j = Ke + Weε j if j is odd
Ka + δ j = Ka + Waε j if j is even, (7)

where ε j are random, independent numbers chosen uniformly
from the range [−1, 1].

First, we discuss the case of chiral disorder, which we call
type I disorder in this paper. For this particular type, in order to
keep the chiral symmetry of the system, we choose the ground
springs to take values k0

j = K0 + δ0
j with δ0

j = −δ j − δ j+1. By
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doing so, we balance out the disorders of the coupling springs,
and thus the diagonal terms of the spring matrix are constant.

Then, the dynamical matrix of the system with chiral disorder
can be expressed as

DI = 1

m

⎡⎢⎢⎢⎣
Ka + Ke + K0 −Ka − δ2 · · · 0 0

−Ka − δ2 Ka + Ke + K0 −Ke − δ3 · · · 0
· · · · · · · · · · · · · · ·
0 · · · −Ke − δN−1 Ka + Ke + K0 −Ka − δN

0 0 · · · −Ka − δN Ka + Ke + K0

⎤⎥⎥⎥⎦. (8)

Note that we have again �[DI − ω2
0I] + [DI − ω2

0I]� = 0. Therefore the disorder matrix DI − ω2
0I is chiral symmetric, as in

the clean case, and a symmetric spectrum is expected to be formed around ω2
0.

We call the random disorder type II disorder. Here, we only introduce disorders independently on intercell (Ke) and intracell
(Ka) springs, while keeping the on-site springs unperturbed. In this case, the dynamical matrix takes the following form:

DII = 1

m

⎡⎢⎢⎢⎣
Ka + Ke + K0 + �1 −Ka − δ2 · · · 0 0

−Ka − δ2 Ka + Ke + K0 + �2 −Ke − δ3 · · · 0
· · · · · · · · · · · · · · ·
0 · · · −Ke − δN−1 Ka + Ke + K0 − �N−1 −Ka − δN

0 0 · · · −Ka − δN Ka + Ke + K0 − �N

⎤⎥⎥⎥⎦, (9)

where � j = δ j + δ j+1. As one can easily check, due to the
nonconstant diagonal terms, the disorder matrix DII is not
chiral, and the spectrum is not symmetric around the ω2

0 any-
more. Note that we mainly focus on the stiffness disorder in
this paper. The reason for this is that with disorder in masses
the diagonal terms of the dynamical matrix are not identical
and the system does not possess chiral symmetry. Therefore
we expect the effect of mass disorder to be similar to that
of random stiffness disorder, which also breaks the chiral
symmetry.

III. TOPOLOGICAL CHARACTERIZATION

For an infinitely long clean dimer chain, its topological
property could be characterized by the winding number de-
fined in the wave-vector space [16]. It is quantized and can
take only integer values in a system possessing chiral symme-
try. However, such a formula cannot be applied to the disorder
system directly, since the translational symmetry is broken.
Therefore we need to handle the topological invariant in the
real space. Following Ref. [24], we introduce three types
of topological invariants calculated by the real-space wave
functions, specifically, the local topological marker ν, mean
chiral displacement C(t ), and infinite-time limit of mean chiral
displacement C∞.

Local topological marker (LTM). The local topologi-
cal marker is based on the eigenfunctions of the sys-
tem and gives a local value for the topological invari-
ant when this is evaluated away from the boundaries
[24]; see the Appendix of Ref. [24] for more informa-
tion. First, we construct a modal matrix U by arrang-
ing all the normalized eigenvectors U j with correspond-
ing eigenfrequencies in ascending order. Specifically, U =
[U1, U2, . . . , Un, Un+1, . . . , UN ]. Let U− = [U1, U2, . . . , Un]
and U+ = [Un+1, Un+2, . . . , UN ]. Then the projectors of the
negative (below the band gap) and positive (above the band
gap) energy spectrum are given as P− = U−UT

− and P+ =
U+UT

+ , respectively. We can then define the “flat-band Hamil-
tonian” as Q = P+ − P−. The Q matrix is decomposed as

Q = QAB + QBA = �AQ�B + �BQ�A, where �A and �B re-
fer to the projectors onto the A and B particles, respectively,
and � = �A − �B is the chiral operator (see Appendix A).
Then, the LTM can be defined as

ν(l ) = 1

2

∑
a=A,B

{(QBA[X,QAB])la,la + (QAB[QBA,X])la,la},

(10)

where X is the position operator (see Appendix A), l is the
unit cell number, and lA and lB indicate the entries of the
matrix corresponding to the A and B particle, respectively,
for the lth unit cell. This marker works as a local topological
invariant when evaluated in a region away from the boundary
of the system. To extract a value for the winding number in a
disordered system, we need to average ν(l ) over a small region
in the center of the chain for a single disorder realization (ν̄)
and then over multiple disorder realizations (〈ν̄〉).

Mean chiral displacement (MCD). Another type of variable
that can detect the winding in a 1D chiral system is the mean
chiral displacement [28,29], given as

C(t ) = 2〈�(t )|�̂X̂|�(t )〉, (11)

where �(t ) = e−iHt |0a〉 represents the time evolution of an
initially localized state in a quantum-mechanical system.
Unlike the quantum-mechanical system, which is governed
by the Schrödinger equation, a first-order differential equa-
tion, our 1D spring-mass chain is governed by second-order
differential equations. Therefore we cannot use the above
definitions of MCD directly. Instead, we first map our me-
chanical system to a quantum-mechanical problem. Following
the framework proposed by Süsstrunk and Huber [30], we
introduce

�(t ) =
[√

D 0
0 i

][
U(t )
V(t )

]
, (12)

which transform the time evolution equation given in Eq. (4)

into i�̇(t ) = H�(t ) with H = [ 0
√
D√

D 0
] being a Hermitian
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matrix. This resembles the Schrödinger equation. Moreover,
we define the extended chiral operator and displacement
operator as �̂ = [� 0

0 �] and X̂ = [X 0
0 X], respectively. With

these extended operators we can then calculate the MCD from
Eq. (11).

Infinite-time limit of mean chiral displacement (IMCD). As
t → ∞, the MCD converges to a time-independent variable
given as

C∞ = 2
2N∑
j=1

|αa j |2〈�̂ j |�̂X̂|�̂ j〉, (13)

where �̂ j is the jth normalized eigenvector of the transformed
Hamiltonian H and αa j indicates the projection of the initial
state �(0) on the jth eigenvector.

A. Capturing topological transition through localization length

Apart from the aforementioned topological invariants, we
may also study the system’s localization properties, since it
is found that a topological transition is accompanied with a
divergence of the localization length 
 [21,23] at the Fermi
level, corresponding to the midgap frequency ω0 in our case.
Indeed, for the chiral-disorder case, at ω0 the following solu-
tions can be obtained:

u2n−1 = (−1)n−1
n−1∏
j=1

k2 j

k2 j+1
u1,

u2n = (−1)n−1
n−1∏
j=1

k2 j+1

k2 j+2
u2, (14)

where the k j’s are given by Eq. (7). Then, assuming an ex-
ponential form for these solutions and applying Birkhoff’s
theorem (see Ref. [23]), one obtains the following expression
for 
:


−1 =
∣∣∣∣∣1

2

∫ 1
−1 dε

∫ 1
−1 dε′(ln |Ke + Weε| − ln |Ka + Waε

′|)
4

∣∣∣∣∣,
(15)

where an ensemble average has been used. Note that the
normalization factor 1/4 appears since the random variables ε

and ε′ are uniformly distributed in the interval [−1, 1] as men-
tioned before. After performing the integration, we deduce


−1 = 1

4

∣∣∣∣ln [ |Ke + We|(Ke/We+1)

|Ke − We|(Ke/We−1)

|Ka − Wa|(Ka/Wa−1)

|Ka + Wa|(Ka/Wa+1)

]∣∣∣∣. (16)

The latter expression, which is valid for the case of chiral
disorder, will be used later to indicate the critical line in the
(Ka,W ) parametric plane, where 
 diverges.

Complementarily, we also calculate the localization length
at ω0 employing the transfer-matrix approach [31,32]. Specif-
ically, we can rewrite Eq. (1) as(

u j+2

u j+1

)
= T j

(
u j+1

u j

)
(17)

and get the transfer matrix T j given by

T j =
(

k j+2+k j+1+k0
j+1−mω2

0

k j+2
− k j+1

k j+2

1 0

)
. (18)

Then, the Lyapunov exponents γ1 and γ2 are calculated nu-
merically using the typical numerical schemes described in
Refs. [32–34]. We found that γ1 ≈ −γ2 = γ . The localization
length is then determined through the relation 
 = 1

γ
.

IV. NUMERICAL RESULTS

A. No disorder

Before moving to the disorder study, we need to verify the
aforementioned three types of real-space topological invari-
ants in a finite clean system. We consider a chain composed
of n = 250 unit cells, i.e., 500 particles and 501 intercell
and intracell springs. In the following numerical simulations,
we fix K0 = 5. First, let us look at a case with Ke = 1 and
Ka = 0.5. For Ke > Ka, the periodic system is topological,
which is characterized by a winding number v = 1. In a finite
chain, we expect to see two localized edge modes exist in the
topological band gap as shown in Fig. 2(a) [see also Fig. 7(a)
in Appendix B for the whole spectrum]. The red circle and
blue square represent the two states localized on the left, |L〉,
and right boundary, |R〉, respectively, at the midgap frequency
ω0. In fact, a hybridization of the edge states is expected,
which leads to a frequency splitting, meaning that the two
eigenfrequencies are not exactly located at ω0 but at ω+

0 and
ω−

0 (the two corresponding eigenstates are approximated as

|ω+
0 〉 = e−iφ/2|L〉+eiφ/2|R〉√

2
and |ω−

0 〉 = e−iφ/2|L〉−eiφ/2|R〉√
2

for some φ)
[35]. However, for large system sizes, as in our case, one can
consider that the energy splitting is sufficiently small, and
thus we have a “degeneracy” of the eigenstates |L〉 and |R〉
at ω0. The shapes of the localized edge modes are shown
in the insets of Fig. 2(a). Note that the two localized edge
modes have a characteristic profile with only sites from one
sublattice excited ( j either even or odd). This is a well-known
consequence of the chiral symmetry. As we increase Ka to 1.5,
the system becomes trivial with a winding number of zero,
where the localized edge modes do not exist anymore [see
Fig. 2(b) and also Fig. 7(b) in Appendix B].

Based on the eigenmodes obtained from Eq. (5), we can
calculate the LTM of the system as defined in Eq. (10).
Figure 2(c) shows the calculated LTM as a function of the
unit cell number in the topologically nontrivial (red line) and
trivial cases (blue line), respectively. As we see, the LTM is
well quantized to either zero or 1 in the bulk of the chain,
whereas approaching the boundary, it deviates from the theo-
retical value. To overcome such a boundary effect, we take
the average value over 100 unit cells in the middle of the
chain, noted as v̄. We then get v̄ = 1 for the nontrivial and
v̄ = 0 for the trivial configurations. Similarly, by plugging
the eigenmodes into Eq. (13), we obtain the IMCD, which is
Cinf = 1 and Cinf = 0 for nontrivial and trivial configurations,
respectively. To derive the time-dependent MCD, we take
the initial displacement u251(0) = 0.1 and perform transient
simulations. After normalizing the time-history response at
each time t and plugging this into Eq. (11), we get the MCD
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FIG. 2. Eigenfrequencies for a finite topologically (a) nontrivial
and (b) trivial 1D spring-mass chain. Shapes of the topological edge
modes are shown in the inset of (a). The gray areas represent the
band gaps. (c) LTM calculated from the eigenmodes of the nontrivial
(blue) and trivial (red) system. (d) Time-dependent MCD for the
nontrivial (blue) and trivial (red) system under initial displacement
excitation. (e) Evolution of the three kinds of real-space topological
invariants during a topological transition. (f) Localization length of
the eigenmode at the frequency ω0.

as a function of time. Figure 2(d) demonstrates its evolution
in a nontrivial (blue curve) or trivial (red curve) system. It is
clear that the MCD oscillates and tends to converge to 1 (0)
in a topologically nontrivial (trivial) system despite the oscil-
lations. We conduct the time average from t = 0 to t = 60 to
eliminate the influence of fluctuations, which gives C̄(t ) = 1
[C̄(t ) = 0]. The time window is selected to avoid possible
wave reflections at the system boundaries.

In these two cases, all three topological invariants are
closely quantized to 0 or 1, which shows a great agreement
with the theoretical winding number of an infinite system
defined in the momentum space. Figure 2(e) summarizes the
evolution of the different topological invariants during an in
situ topological phase transition. During the process, we vary
Ka from 0.5 to 1.5 with a 0.025 step while keeping Ke = 1.
Clearly, all three kinds of real-space topological invariants

(a) (b)

(c) (d)

FIG. 3. (a) Topological phase diagram under chiral disorder
with disorder ratio W = Wa = 2We. The color bar ranging from 0
to 1 stands for the LTM averaged over 250 disorder realizations.
(b) The localization length at the midgap frequency, 
(ω0), from
the transfer-matrix method (color map) and the analytical expression.
(c) and (d) The evolution of topological markers with the increase in
disorder strength for Ka = 0.6 [yellow line in (a)] and 1.05 [green
line in (a)], respectively. The curves and shaded areas represent the
mean and standard deviation of the LTM, respectively. The crosses
and circles indicate the mean of the MCD and IMCD, respectively.

agree well with each other and can accurately probe the
topological phase transition in a clean 1D mechanical system,
which happens when the gap closes, namely, at Ka = Ke = 1.
Finally, in Fig. 2(f), we also plot the the localization length of
the edge modes as we vary the coupling Ka from 0.5 to 1.5,
which is given by the analytical expression 
 = 2

| ln(Ka/Ke )| .
Notice that at the point where the topological transition oc-
curs, i.e., Ka = Ke = 1, the localization length diverges. This
is expected since, as we mentioned, the topological transition
occurs when the gap closes and thus the edge mode transforms
into an extended mode.

B. Chiral disorder

In this section, we explore the topological phase transi-
tion of a spring-mass system induced by the chiral disorder
with the dynamical matrix DI . Figure 3(a) shows the numer-
ically calculated LTM as a function of the intracell spring
stiffness Ka and the disorder strength W = Wa = 2We under
chiral disorder. We again choose Ke = 1. Each data point is a
disorder-averaged result over 250 realizations. Evidently, the
surface map can be approximately divided into two regions
separated by a blurry white boundary. The region with a red
(blue) tone has topological marker close to 1 (0) correspond-
ing to a topologically nontrivial (trivial) system. In most real
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mechanical systems, the spring stiffness tends to be positive.
The black dashed line follows the relation given by min(|Ke −
We|, |Ka − Wa|) = 0 for sufficiently large K0. Therefore only
the area on the left of the dashed black line in the surface
plot could be realized without the necessity of negative-
stiffness springs. However, note that by tuning the disorder
ratio (We/Wa), we can further shift the topological phase dia-
gram and change the critical boundary (see Appendix C). Note
also that effective negative-stiffness springs can be designed
utilizing the symmetry of modes and a sophisticated geometry
of the coupling of the neighbor particles; look, for example,
to Refs. [36,37] for an implementation of negative hoppings
in elastic and acoustic systems, respectively.

Figure 3(b) shows the localization length at ω0, obtained
numerically using the transfer-matrix method, as a function of
the same parameters (Ka and W ). We note here that the trans-
fer matrix was iterated 106 times at each point of Fig. 3(b).
The solid black curve shown in Figs. 3(a) and 3(b) indicates
the critical boundary obtained by the analytical diverging line
from Eq. (16). It is clear that the numerical solutions [blurry
white regions in Fig. 3(a) and highlighted area in Fig. 3(b)]
match with the analytical results (solid black curves). This
denotes that the topological phase transition is related with
a critical point at which the localization length diverges.

Figure 3(c) shows the evolution of the topological marker
with the increase in the disorder strength for Ka = 0.6, which
corresponds to the yellow line in Fig. 3(a). In the clean limit
(W = 0), this finite system is nontrivial with a topological
marker of v̄ = 1. As expected, the topological marker remains
constant in the presence of weak and medium-level disorder,
as the topological properties of this system are protected
by the chiral symmetry and the topological edge modes
are immune to weak disorder. However, when the disorder
strength rises and reaches a sufficiently large amount, the
topological marker falls sharply and eventually stabilizes
near zero under strong disorder, which indicates a transition
process from a topologically nontrivial system to a trivial
one. We also notice that the disorder-averaged results show
larger standard deviation in this region, which is reasonable
in strong disorder. Disorder-averaged mean values of MCD
and IMCD are marked by the crosses and circles in Fig.
3(c), respectively. See Appendix D for typical time-history
responses of the 1D spring-mass chain under different levels
of disorder. All three kinds of topological invariants therefore
show good agreement in capturing the general trends of
disorder-induced topological transition. For the time-history
response, note that negative stiffness of intersite or on-site
springs caused by the strong disorder does not necessarily
lead to dynamical instability of our system. Within the
disorder ranges that we are interested in, our system remains
stable (see Appendix E for more details).

For Ka = 1.05 [green line in Fig. 3(a)], however, we
observe a more sophisticated topological phase transition pro-
cess, as shown in Fig. 3(d). The system is trivial with v̄ = 0
when there is no disorder. For very weak disorder W < 0.3,
the topological marker remains near zero. However, as we in-
troduce stronger disorder, the topological marker surprisingly
surges up to reach a plateau (v̄ ≈ 0.98) which is very close to
1 (not exactly 1 due to finite size). If we keep increasing the
disorder strength, it drops again close to zero. This procedure

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 4. Eigenfrequencies and two modes in the center of the
frequency spectrum of a finite spring-mass chain (Ka = 1.05 and
Ke = 1) under chiral disorder with disorder ratio W = Wa = 2We

for (a) W = 0.25, (b) W = 1.25 (TAI phase), and (c) W = 2.5.
These correspond to three typical realizations with different disorder
strengths in Fig. 3(d). The chiral nature of the two edge modes
lying at the center of the band gap is shown in the insets. (d)–(f)
Spatial profiles of these two modes for one disorder realization.
(g)–(i) Histograms of the center of mode (COM) obtained by 1000
disorder realizations, describing the probability of the COM lying in
a 50-particle interval throughout the chain.

is particularity interesting since we demonstrate a two-way
transition by purely increasing disorder in the system. The
spring-mass chain starts as a trivial system, then changes
into a nontrivial one, and finally becomes a trivial Anderson
insulator. The MCD and IMCD results as marked with crosses
and circles in Fig. 3(d) also corroborate the LTM trend. There-
fore the intermediary nontrivial state is the realization of a
mechanical analog to the TAI.

So far, we have quantitatively demonstrated the topological
phase transitions by tracking the real-space topological invari-
ants. Now we investigate their characteristics in more detail.
We choose the configuration of the system that supports the
TAI phase, i.e., with Ka = 1.05 and Ke = 1 in Fig. 3(d), and
analyze its eigenfrequencies and modes as a function of dis-
order strength. Figures 4(a)–4(c) show the eigenfrequencies
of a finite chain under one realization with disorder strengths
W = 0.25, W = 1.25, and W = 2.5. The gray regions rep-
resent the topological band gaps in the clean (W = 0) case.
After we introduce disorder in the system, the topological
band gap shrinks in the regime of weak disorder [Fig. 4(a) for
W = 0.25] and is eventually closed under strong disorder [see
Figs. 4(b) and 4(c) for W = 1.25 and W = 2.5, respectively].
We then plot the shapes of the center modes (250th and
251st) in Figs. 4(d)–4(f). We find that for weak disorder (W =
0.25), the modes are quite extended. Of course, as the disor-
der strength increases, the modes become spatially strongly
localized. The TAI phase (W = 1.25) is distinct in a way that
the localized modes appear on the boundaries of the system
as in a nontrivial system, whereas the localized modes need
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(a) (b) (c)

FIG. 5. (a) Topological phase diagram under random disorder
with disorder ratio W = Wa = 2We. Color bar ranging from 0 to
1 stands for the LTM averaged over 250 disorder realizations.
(b) Localization length 
(ω0) under random disorder. The transfer
matrix was again iterated 106 times at each point. (c) The evolution
of the topological marker with increase in disorder for Ka = 1.05
(green) and Ka = 0.6 (yellow). The shaded area shows the standard
deviation.

not be at the boundaries for an Anderson insulator (W = 2.5)
and reside at the same location with only phase differences at
some particles.

We further demonstrate the validity of this statement for all
disorder realizations by defining the center of mode (COM) as

COM =
∑N

i=1 xiu2
i∑N

i=1 u2
i

, (19)

where xi and ui denote the position and displacement of the
ith mass. We study the statistical distribution of the COM
for 1000 disorder realizations. Figures 4(g)–4(i) show the
histograms of the COM of the 250th and 251st modes under
chiral disorder for varying disorder strengths. This agrees
with the topological phase diagram [see Fig. 3(d)] and the
eigenanalysis [Figs. 4(d)–4(f)]. When the system has weak
(W = 0.25) or strong (W = 2.5) disorder, the 250th and 251st
modes are likely to be all along the chain; however, for the
TAI phase (W = 1.25), the modes are most likely localized at
the boundaries [Fig. 4(h)]. A similar inference can be made
for the configuration with Ka = 0.6 and Ke = 1, and that has
been included in Appendix F.

C. Random disorder

We now discuss the effect of random disorder on topology
by removing the disorder on the on-site ground springs. As
given in Eq. (9), the diagonal entries of the random-disordered
stiffness matrix are not identical anymore, which leads to the
breaking of the system’s chiral symmetry. Since the topology
in the 1D SSH model is mainly protected by the chiral sym-
metry, we expect to see a stronger influence of the random
disorder over topology. Figure 5(a) shows the topological
phase diagram under random disorder with W = Wa = 2We.
It is clear that the topological states can only survive much
weaker random disorder compared with the chiral one. More-
over, Fig. 5(b) shows the localization length at ω0, and in
contrast to the case of chiral disorder there is no signature
of the localization length divergence at this frequency, which
also contributes to the uncertainty of the clear phase transition
due to nonchiral disorder. Furthermore, even with a very small
amount of disorder, we see that the topological marker devi-

FIG. 6. Eigenfrequencies and two modes in the center of the
frequency spectrum of a finite spring-mass chain (Ka = 0.6 and
Ke = 1) under random disorder with disorder ratio W = Wa = 2We

for (a) W = 0.25, (b) W = 1.25, and (c) W = 2.5. These correspond
to three typical realizations with different disorder strengths on the
yellow curve in Fig. 5(c). The nonchiral nature of the two modes
(marked) is shown in the insets. (d)–(f) Spatial profiles of these two
modes for one disorder realization. (g)–(i) Histograms of the center
of mode (COM) obtained by 1000 disorder realizations, describing
the probability of the COM lying in a 50-particle interval throughout
the chain.

ates from the quantized value as shown in Fig. 5(c). As we
expected, breaking the chiral symmetry leads to the variation
of the real-space topological marker, which is not well quan-
tized to an integer value but tends to saturate near a decimal
between 0 and 1. This leaves an open question as to whether
it is appropriate to discuss the concept of topology in a 1D
mechanical system in the absence of the chiral symmetry. If
so, what kind of quantities or phenomena should we use to
characterize the topological properties in these cases?

Despite the lack of a theoretical framework, we try to
extend the eigenanalysis and COM statistical study to exam-
ine the relation between random disorder and the topological
indicators in a 1D system. Figures 6(a)–6(c) show the eigen-
frequencies around the center of the frequency spectrum of a
finite chain (Ka = 0.6) under random disorder with strength
W = 0.25, W = 1.25, and W = 2.5, respectively. The gray
regions represent the topologically nontrivial band gaps in
the clean (W = 0) case. It is clear that the random disorder
causes more drastic change of the frequency spectrum. Es-
pecially, the two center modes no longer share a common
frequency and may shift out of the original band-gap re-
gion. Despite the frequency variations, the two center modes
of the system under weak (W = 0.25) random disorder are
still localized modes existing at the boundary, as shown in
Figs. 6(d), which is the key character of the topological edge
states. This is consistent with the topological invariant cal-
culation, which is very close to 1 in this configuration [see
the yellow curve in Fig. 5(c)]. As we increase the disorder
level, these center modes start to move into the bulk [see
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Figs. 6(e) and 6(f) for the spatial profiles of center modes
under disorder strength W = 1.25 and W = 2.5, respectively].
More interestingly, the two center modes tend to localize at
different positions in the chain, which is different from the
trivial chiral-disordered system where the two modes exist
at the same location [Fig. 4(f)]. A similar trend can also be
observed for the disordered study in the case of Ka = 1.05
(Appendix F). Finally, in Figs. 6(g)–6(i) we show the his-
tograms of the COM of the central modes under random
disorder for varying disorder strengths, with W = 0.25, W =
1.25, and W = 2.5, respectively. For weak (W = 0.25) dis-
order, the 250th and 251st modes are likely to be localized
at the boundaries, while for strong (W = 1.25 and W = 2.5)
disorder (both in the trivial Anderson phase) they can be
localized all along the chain.

V. CONCLUSION

In this paper, we explore the disorder-induced topological
phase transitions in a spring-mass chain. To probe the topo-
logical property in a disordered 1D mechanical system, we
use three kinds of topological invariants obtained from the
real-space wave functions to work as an effective winding
number. We introduce two types of disorder, chiral and ran-
dom, to study their influences on the topology in a mechanical
system. Under the chiral disorder, we demonstrate not only
the transition from topologically nontrivial to trivial but also
the abnormal reverse transformation leading to the realiza-
tion of a so-called topological Anderson insulator (TAI) in a
mechanical setup. However, for the case of random disorder,

we do not observe similar TAI phenomena. Instead, we find
that the random disorder suppresses the topological property,
as it breaks the internal system symmetry that protects the
topology. Our findings can be extended to higher-dimensional
mechanical systems to further study the interactions between
disorder and topology. In addition, despite the difficulties in
controlling stiffness in a disordered mechanical system, it
would be very interesting to implement and experimentally
verify the proposed framework in other highly tunable sys-
tems, such as electric circuits [38].
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APPENDIX A: DEFINITION OF THE CHIRAL OPERATOR
AND POSITION OPERATOR

For a 1D system with n = 250 unit cells, i.e., N = 2n =
500 particles, we first define the unit cell numbers as l =
[−125,−124, . . . , 0, . . . , 123, 124]. Then the chiral operator
and position operator are given as

� =

⎡⎢⎢⎢⎢⎣
1 0 0 0 · · ·
0 −1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 −1 · · ·
...

...
...

...
. . .

⎤⎥⎥⎥⎥⎦
N×N

, (A1)

�A =

⎡⎢⎢⎢⎢⎣
1 0 0 0 · · ·
0 0 0 0 · · ·
0 0 1 0 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .

⎤⎥⎥⎥⎥⎦
N×N

, �B =

⎡⎢⎢⎢⎢⎣
0 0 0 0 · · ·
0 1 0 0 · · ·
0 0 0 0 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .

⎤⎥⎥⎥⎥⎦
N×N

, (A2)

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−125 0 0 0 · · · 0 0
0 −125 0 0 · · · 0 0
0 0 −124 0 · · · 0 0
0 0 0 −124 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 124 0
0 0 0 0 · · · 0 124

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×N

. (A3)

APPENDIX B: SPECTRUM

In Fig. 7, we show all the eigenfrequencies of a clean chain
of 500 particles for both topologically trivial and nontrivial
phases. These are the same cases as shown in Figs. 2(a) and
2(b) of the main text.

APPENDIX C: TOPOLOGICAL PHASE DIAGRAM WITH
DIFFERENT COMBINATIONS OF DISORDER STRENGTH

In Sec. IV B of the main text, we discuss the disorder con-
figuration with specific ratio W = Wa = 2We. Here, we briefly
explore the effect of disorder ratio (We/Wa) by studying the
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(a) (b)

FIG. 7. The eigenfrequencies of a chain of 500 particles for the
topological (a) nontrivial phase (Ke = 1, Ka = 0.5) and (b) trivial
phase (Ke = 1, Ka = 1.5). For both cases, K0 = 5. The band gap is
highlighted with the shaded area.

topological transitions in the presence of chiral disorder with
different combination of Wa and We. Figures 8(a)–8(c) show
the topological phase diagrams under chiral disorder with
W = Wa and We = 0 [Fig. 8(a)], W = Wa = 4We [Fig. 8(b)],
and W = Wa = 0.5We [Fig. 8(c)]. It is clear that by changing
the disorder ratio (We/Wa), we can shift the critical boundaries
for the disorder-induced topological transitions.

APPENDIX D: SPATIOTEMPORAL DIAGRAMS
IN DISORDERED SYSTEMS

Figures 9(a)–9(d) show the typical time-history responses
of the 1D spring-mass chain with chiral disorder under
strength W = 0, W = 0.25, W = 1.25, and W = 2.5, respec-
tively. In a periodic system (W = 0), the energy is evenly
spreading to both sides of the system after the initial distur-
bance in the middle of the chain, as shown in Fig. 9(a). With
the increase in disorder strength, we start to see more and
more localization of the energy in the system due to Anderson
localization.

APPENDIX E: STABILITY OF DISORDERED SYSTEMS

The dynamics of our system is governed by Eq. (2). For
the stability of this system, the dynamical matrix must be
positive definite, implying that all the eigenvalues (ω2) are
positive. In Fig. 10, we show the stability diagram under
chiral disorder that corresponds to the case shown in Fig. 3(a)
of the main text. This highlights the probability of the dy-
namical matrix being positive definite with varying system

FIG. 8. Topological phase diagram under chiral disorder with
different combinations of Wa and We. (a) W = Wa and We = 0,
(b) W = Wa = 4We, and (c) W = Wa = 0.5We. The solid black curve
indicates the divergence of the localization length obtained analyti-
cally. The dashed line separates the region of negative stiffness.

FIG. 9. Spatiotemporal evolution of particle displacement (Ka =
0.6 and Ke = 1). We use chiral-disorder strengths (a) W = 0,
(b) W = 0.25, (c) W = 1.25, and (d) W = 2.5.

parameters. We can therefore conclude that our system re-
mains stable within the disorder range we are interested in
(W < 3).

APPENDIX F: SOME OTHER CASES OF CHIRAL
AND RANDOM DISORDER

To have a comprehensive understanding of the topologi-
cal transition process, we study two extra cases with chiral
and random disorders, respectively. In Fig. 11, we study a
spring-mass chain with configuration Ka = 0.6 and Ke = 1
under chiral disorder, which corresponds to Fig. 3(c). Simi-
larly, Fig. 12 shows the results of a system with configuration
Ka = 1.05 and Ke = 1 under random disorder corresponding
to the green curve in Fig. 5(c).

FIG. 10. Stability diagram of the 1D system as a function of Ka

and W under the chiral disorder. The color bar ranging from 0 to
1 stands for the probability (over 1000 disorder realizations) of the
dynamical matrix being positive definite.
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FIG. 11. Eigenfrequencies and two modes in the center of the
frequency spectrum of a finite spring-mass chain (Ka = 0.6 and
Ke = 1) under chiral disorder with disorder ratio W = Wa = 2We

for (a) W = 0.25, (b) W = 1.25, and (c) W = 2.5. These corre-
spond to three typical realizations with different disorder strengths
in Fig. 3(c). The chiral nature of the two edge modes lying at the
center of the band gap is shown in the insets. (d)–(f) Spatial profiles
of these two modes for one disorder realization. (g)–(i) Histograms
of the center of mode (COM) obtained by 1000 disorder realizations,
describing the probability of the COM lying in a 50-particle interval
throughout the chain.

FIG. 12. Eigenfrequencies and two modes in the center of the
frequency spectrum of a finite spring-mass chain (Ka = 1.05 and
Ke = 1) under random disorder with disorder ratio W = Wa = 2We

for (a) W = 0.25, (b) W = 1.25, and (c) W = 2.5. These correspond
to three typical realizations with different disorder strengths on the
green curve in Fig. 5(c). The nonchiral nature of the two modes
(marked) is shown in the insets. (d)–(f) Spatial profiles of these two
modes for one disorder realization. (g)–(i) Histograms of the center
of mode (COM) obtained by 1000 disorder realizations, describing
the probability of the COM lying in a 50-particle interval throughout
the chain.
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