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We examine the role of strong nonlinearity on the topologically robust edge state in a one-dimensional system.
We consider a chain inspired from the Su-Schrieffer-Heeger model but with a finite-frequency edge state and the
dynamics governed by second-order differential equations. We introduce a cubic onsite nonlinearity and study
this nonlinear effect on the edge state’s frequency and linear stability. Nonlinear continuation reveals that the
edge state loses its typical shape enforced by the chiral symmetry and becomes generally unstable due to various
types of instabilities that we analyze using a combination of spectral stability and Krein signature analysis. This
results in an initially excited nonlinear-edge state shedding its energy into the bulk over a long time. However,
the stability trends differ both qualitatively and quantitatively when softening and stiffening types of nonlinearity
are considered. In the latter, we find a frequency regime where nonlinear edge states can be linearly stable. This
enables high-amplitude edge states to remain spatially localized without shedding their energy, a feature that
we have confirmed via long-time dynamical simulations. Finally, we examine the robustness of frequency and
stability of nonlinear edge states against disorder, and find that those are more robust under a chiral disorder
compared to a nonchiral disorder. Moreover, the frequency-regime where high-amplitude edge states were found
to be linearly stable remains intact in the presence of a small amount of disorder of both types.

DOI: 10.1103/PhysRevB.103.024106

I. INTRODUCTION

Band topology has emerged as a mathematical tool in
understanding fundamental properties of electronic materials
[1]. It has also led to exciting developments in the bosonic
systems, such as cold atom lattices [2], photonics [3], and
phononics [4,5]. The main idea of this notion of topology is to
characterize the dispersion properties of an infinite (bulk) ma-
terial and predict how the boundaries of its finite counterpart
behave [6]. This, so-called “bulk-boundary correspondence,”
has turned out to be a direct route to design systems with
interesting energy localization properties on their corners,
edges, and surfaces [7–9]. The topological nature of the bulk
also imparts certain robustness to the boundary properties,
and therefore, those become insensitive to imperfections, i.e.,
“topologically robust.”

Though this framework is powerful in predicting and
designing exotic systems in various spatial and synthetic
dimensions, it is commonly linked to linear dynamics. There-
fore one of the emerging questions in the field of topological
materials is: How does nonlinearity affect the characteristics
of a topological system? This includes not only studying the
effect of nonlinearity on the topologically robust properties,
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but also exploring ways to predict purely nonlinear states.
Even though a nonlinear system breaks the conventional no-
tion of topological robustness by making the Berry phase
nonquantized [10,11], recent studies on the interplay between
topology and nonlinearity have sparked a tremendous interest
in several other aspects [12]. For example, nonlinearity has
been used as the tuning knob to modulate the frequency and
generate the harmonics of edge states [13–19]. It has also been
used to make topologically robust solitons propagating on
edges [20–25]. Furthermore, studies have shown that insights
from topological band theory can help us interpret nonlin-
ear solutions, such as gap solitons [26–30], nonlinear Dirac
cones [31], “self-induced” boundary states [21,32–36] and
domain walls [37–39]. In a driven-damped system, the chaotic
dynamics have been shown to exhibit topological features
[40]. Recently, stability of topological states in periodically
driven systems such as nonlinear quantum walks has also been
discussed [41–43].

While most of the previous works have explored weakly
nonlinear regimes where nonlinearity is considered as a per-
turbation to the topological states, the works in strongly
nonlinear regime have been relatively scarce and restricted
to only specific setups. In particular, the study of stability of
topological states in these regimes is a quite subtle issue that
requires a systematic approach to investigate the role of sev-
eral possible types of nonlinearity across different platforms
[44,45]. In addition, previous works on the stability of topo-
logical states typically involve dynamics that is governed by
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first-order ordinary differential equations (ODEs), while the
dynamics of second-order ODEs, for example, in phononics
[14] and electrical circuits [46] are less explored.

Here we explore the linear stability of topological edge
states in the strongly nonlinear regime of a mechanical lattice.
We are particularly interested in mechanical systems since
they can host a variety of nonlinear functional forms [47–50],
and thus, provide a versatile platform to study rich physics re-
sulting from the interplay between topology and nonlinearity.
Moreover, it is possible to use shape optimization algorithms
to identify structures that provide specified nonlinear mechan-
ical responses [51–53] that could be required to enhance the
desired characteristics of the topological states. From a more
practical point of view, such mechanical systems promise
efficient solutions for applications such as vibration isolation,
sensing, noise mitigation, and energy harvesting [54–56].

In this study, we take inspiration from the Su-Schrieffer-
Heeger (SSH) model [57]—one of the most foundational
models for band topology—and construct a spring-mass lat-
tice with an onsite nonlinearity. Importantly, this supports
a band gap, along with an edge state, centered at a finite
frequency in the linear limit [4,58,59]. We choose the cubic
form of nonlinearity for simplicity. Also, with the goal of
demonstrating how the type of nonlinearity can drastically
change the dynamics in a nonlinear regime, we consider both
softening and stiffening types of nonlinearity and compare
their effects on the topological edge state. We closely examine
the amplitude and phase of its Floquet multipliers (FMs),
which characterize the linear stability of the corresponding
periodic orbit. We employ a Krein signature analysis [60–62]
to determine the regions and nature of instabilities. A key
finding is that stiffening nonlinearities may allow for regimes
of linear stability of the nonlinear topological states identified

herein. Finally, we introduce chiral and nonchiral types of
disorder in the chain and study their effect on the nonlin-
ear continuation and stability for both types of nonlinearity.
We observe that chiral disorder leads to lesser variations in
nonlinear continuation and stability in general. Moreover, in
the presence of weak disorder of both types in the stiffening
system, it is possible to retain the frequency regime where
nonlinear edge states were found to be linearly stable.

II. SYSTEM AND THE TOPOLOGICAL EDGE STATE

Our system consists of a chain of particles interconnected
with two alternating linear springs and grounded with non-
linear springs as shown in Fig. 1(a). The stiffnesses of the
two linear springs are 1 − γ and 1 + γ in normalized units.
The ground springs are characterized by a linear stiffness
of γ0 and a parameter � that introduces cubic nonlinearity.
The dynamics is thus governed by the following second-order
ODEs in time:

ẍ j = (1 + γ )(x j−1 − x j ) − (1 − γ )(x j − x j+1)
−γ0xi − �x3

i ,

ẍ j+1 = (1 − γ )(x j − x j+1) − (1 + γ )(x j+1 − x j+2)
−γ0x j+1 − �x3

j+1,

⎫⎪⎪⎬
⎪⎪⎭

(1)

where x j and x j+1 denote the dynamic displacements of two
masses inside the unit cell; overdots represent the derivatives
with respect to time t .

The linear component of the system (� = 0) is associated
with the following eigenvalue problem:

ω2X = DX, (2)

where ω and X denote the eigenfrequency and eigenvector of
lattice vibrations, respectively, and the dynamical matrix

D =

⎡
⎢⎢⎢⎣

2 + γ0 −(1 − γ ) . . . 0 0
−(1 − γ ) 2 + γ0 −(1 + γ ) . . . 0

. . . . . . . . . . . . . . .

0 . . . −(1 + γ ) 2 + γ0 −(1 − γ )
0 0 . . . −(1 − γ ) 2 + γ0

⎤
⎥⎥⎥⎦, (3)

for a chain that is fixed on its left and right ends and consists of
n ∈ 2Z particles. After the removal of the diagonal of this dy-
namical matrix, which simply shifts the spectrum to a nonzero
(finite) frequency, i.e., ω2 = 2 + γ0, the chiral symmetry of
the remaining matrix can be observed [4,58]. In other words,
we have an anticommutative relation

�z[D − (2 + γ0)I] + [D − (2 + γ0)I]�z = 0, (4)

where I denotes the identity matrix and �z is constructed from
the internal chiral operator σz = [1 0

0 −1] for the unit cell, such
that �z = σz ⊕ σz ⊕ · · · ⊕ σz.

As a result of the chiral symmetry, the spectrum (ω2) is
symmetric around the mid-gap frequency ω2 = 2 + γ0. For
a nonzero γ , the system supports a band gap centered at
the mid-gap frequency, which, in our case, is independent of
γ . We take a large chain of particles (n = 100) with fixed
and free boundary conditions on the left and right ends,

respectively, and plot its spectrum in Fig. 1(b). Note that
we keep the right end free, which slightly breaks the chiral
symmetry, to focus on the states only localized on the left
end as discussed next. As we increase γ , we observe that the
band gap closes and opens again, leading to the so-called band
inversion [59]. The system also makes a topological transition
at γ = 0 that is quantified by the change in the topological
invariant calculated from the bulk dispersion properties. The
physical implications of this are reflected in the spectrum of
the finite chain when we observe a state emerging inside the
band gap for γ > 0 at the mid-gap frequency. This state is
localized at the left boundary of the chain [see Fig. 1(c)] and
emerges due to the nontrivial topology of the bulk for γ > 0.
Moreover, chiral symmetry of the dynamical matrix imparts
a special profile to the edge state. It has zero displacement at
even sites as shown in the inset.

In what follows, we will focus on this edge state and study
the effect of nonlinearity on its frequency, shape, and stability.
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FIG. 1. (a) A chain of masses that are interconnected with linear
springs and grounded with nonlinear springs. Relations between
the force (F) and deformation (dx) are specified for the springs in
different colors. (b) Spectrum of the linearized chain (� = 0) as a
function of γ . For γ > 0 we see a topological edge state emerging
at ωed = √

2 + γ0 inside the band gap. (c) Profile of the topological
state localized at the left end of the chain for γ = 0.4. Inset shows
the zoomed-in view of the edge state corresponding to the shaded
area. Due to the chiral symmetry, the state has a zero displacement at
its even sites.

We fix γ = 0.4 [marked in Fig. 1(b)] to ensure a large band
gap in the linearized spectrum. This accommodates the effect
of strong nonlinearity by which the frequency of the edge state
can vary considerably within the band gap. Also, the effects of
the right edge on its dynamics are negligible since we consider
a long chain and the linear edge state shown in Fig. 1(c) is well
localized on the left. We choose the linearized ground stiffness
γ0 = 1 for ease, but also discuss the implications when we
tune this parameter.

III. NONLINEAR CONTINUATION AND DYNAMICS

We take the linear edge state as the initial condition in
the nonlinear Newton solver to find the family of nonlinear
periodic solutions at a frequency that is varied in small steps.
We first consider softening nonlinearity (� < 0). In Fig. 2(a),
we show the decrease in the edge-state frequency as the total
energy of the system increases. Moreover, for large energy,

the state penetrates the acoustic band below and resonates
with bulk linear states as reflected by the sudden rise in
energy inside the band. This has been observed in a recent
experiment [15]. However, even before the state penetrates
into the bulk spectrum, it can develop various instabilities
giving rise to rich dynamics. To examine the linear stability
of these periodic solutions, we use the Floquet theory (see
Appendix A). Recall that FMs of modulus larger than unity
imply exponential instability, whereas those with a unit ampli-
tude imply linear stability, which guarantees a long life time of
the nonlinear state [61]. In Fig. 2(b), we show the maximum
amplitude of FMs, i.e., max(|λ|) (in total we have 2n FMs),
as a function of frequency. We know that the linear edge
state with ωed = √

2 + γ0 = 1.73 must have all its FMs with
unit amplitude. However, its nonlinear continuation reveals
that max(|λ|) deviates from unity as the frequency decreases,
indicating the presence of instabilities. At about ω = 1.6, we
notice a sudden change in the growth rate of instability, which
is linked to the onset of a different type of instability. This will
be further discussed in the following section.

Next, we examine how the aforementioned instabilities
affect the dynamics of the nonlinear edge state. In Fig. 2(c),
we show the shape of the nonlinear edge state at ω = 1.65
with max|λ| = 1.002. One can see that nonlinearity modi-
fies the shape of the edge state. In particular, the even sites
now obtain a nonzero displacement. We use this as the ini-
tial condition of our system, then add white noise with 1%
amplitude of displacement, and perform Runge-Kutta simu-
lations for a long time of 105T , where T denotes the time
period of the periodic solution. Due to instability, this non-
linear edge state soon disperses its energy into the bulk as
shown in Fig. 2(d). Consequently, the edge state lowers its
energy and tends toward the shape and frequency of the linear
edge state. This fact is demonstrated more clearly by per-
forming the short-time Fourier transformation (STFT) on the
displacement of the first particle (with the time window of
500T ). We see the upshift of frequency to the linear edge-state
frequency over a long time in Fig. 2(e). The inset, which
represents the dynamics for the time of 104T , shows that
the instability takes about 5000T to manifest and shift the
frequency.

To study the case of stronger instabilities, we now take a
nonlinear edge state (at ω = 1.54) with larger FM [max(|λ| =
1.062)], shown in Fig. 2(f). Again, looking at the profile of
this nonlinear edge state, we note nonzero displacements at
even sites. We use this state as an initial condition by adding
white noise with 1% amplitude of the displacement. Similarly
to the previous case but more rapidly, this state disperses its
energy into the bulk [Fig. 2(g)]. Its frequency again springs
back to the initial linear edge-state frequency, which is shown
in Fig. 2(h); however, this transition is faster compared to
the one shown in Figs. 2(d) and 2(e) because of the stronger
instability. We roughly estimate that it takes 160T to manifest
the same relative growth in the initial state [see Eq. (A7) in
Appendix A] as in the previous case at ω = 1.65. This makes
sense as the inset of Fig. 2(h) shows the upshift of frequency
right from the first window of STFT, which is 500T long.

It is worth highlighting that when the nonlinear edge state
delocalizes by shedding its energy and tends to the linear edge
state in a long time, a part of its energy transfers to all the bulk
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FIG. 2. Effect of softening nonlinearity (with γ0 = 1, γ = 0.4 and � = −0.8). (a) Nonlinear continuation of the topological edge state.
(b) Maximum amplitude of FMs of the periodic solutions deviating from unity (vertical dashed line) with the decrease in frequency. The
horizontal dashed line in red marks the onset of high growth rate of instability. (c) Profile of the nonlinear state at ω = 1.65 as indicated by the
circular marker in (a). Its even sites have a nonzero displacement. (d) Transient simulation with the nonlinear state as the initial condition. (e)
STFT of the first particle to indicate the change in frequency over a long time. The inset shows the zoomed-in view corresponding to the box.
[(f)–(h)] Same for the nonlinear state at ω = 1.54, which has a stronger instability.

modes in the system. It remains to be studied in the future if
such a scenario leads to a thermal equilibrium and whether
the effect of strong nonlinear interactions leads to an effective
renormalization of the linear dispersion relation [63,64].

Now we study the case of stiffening nonlinearity, i.e., with
� > 0. In Fig. 3, we show the nonlinear continuation and
dynamics of the linear edge state for this case. With the

increase in energy, the frequency of the nonlinear edge state
now increases [Fig. 3(a)]. However, upon examining its sta-
bility in Fig. 3(b), we observe that the maximum amplitude of
FMs follows a remarkably different trend from the softening
case shown in Fig. 2(b). We find that not only is the insta-
bility smaller by one order of magnitude in the associated
FMs (when the instability is present), but also there exists
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FIG. 3. Effect of stiffening nonlinearity (with γ0 = 1, γ = 0.4, and � = 0.8). (a) Nonlinear continuation of the topological edge state.
(b) Maximum amplitude of FMs of the time-periodic solutions. Note the region above the horizontal dashed line in red supports large-amplitude
nonlinear states that are linearly stable. (c) Profile of the nonlinear state at ω = 1.92 as indicated by the circular marker in (a). (d) Transient
simulation with the nonlinear state as the initial condition. Due to linear stability, the state remains localized for a long time without shedding
its energy into the bulk. (e) STFT of the first particle verifies that there is no energy transfer across different frequencies. [(f)–(h)] Same for
the nonlinear state at ω = 1.85; however, in this case the instability of the state causes the delocalization and change in frequency of the edge
state over a long time.
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an interval of no instability (i.e., |λ| = 1) for frequencies
more than about ω = 1.86. Therefore we discover a region
where high-amplitude edge states can be linearly stable for
stiffening nonlinearity within our dimer chain. We show one
such nonlinear state at ω = 1.92 in Fig. 3(c). Once again, we
observe that the even sites develop a nonzero displacement.
We demonstrate its linear stability by performing a long-time
simulation shown in Figs. 3(d) and 3(e). Evidently, this non-
linear edge state remains localized on the boundary without
shedding any energy into the bulk. On the other hand, a low-
amplitude edge state [Fig. 3(f)] at ω = 1.85 lacks this stability
and disperses its energy into the bulk [Fig. 3(g)] with its
frequency springing back to the initial linear-state frequency
[Fig. 3(h)].

To sum up, in general, nonlinearity leads to deformation
in the shape of topological edge states, e.g., emergence of
nonzero displacements at its even sites in this case, and shifts
its frequency. Most importantly, nonlinearity also leads to
instabilities. Here, we showed that the presence of onsite
nonlinearity of a cubic form leads to instabilities, which dis-
perse the energy from the edge to the bulk of the lattice
over long times. However, we also found a frequency regime,
with strongly nonlinear dynamics, where nonlinear edge states
are linearly (and dynamically in our direct numerical simula-
tions) stable. This provides the opportunity to trap significant
amounts of energy at the boundary for long time intervals.
We also observed that stability trends are drastically different
when we use different types of nonlinearity, i.e., softening or
stiffening, even though we consider a simple cubic functional
form. This suggests that the effect of nonlinearity on topo-
logically nontrivial systems strongly depends on the details
(type, form, and location) of the nonlinearity. In the following
section, this will be more evident when we explore several
different types of instabilities emanating from the complex
interaction between extended and local modes in the phase
diagram of FMs.

IV. LINEAR STABILITY

In this section, we investigate the linear stability of the
nonlinear edge state in more detail especially to answer
the following questions: What type of instabilities exist in the
system and do they differ in case of softening and stiffening
nonlinearities? Since there are 2n complex FMs for each peri-
odic solution, we plot them all in Fig. 4. First, for the softening
case, we plot all FMs in the complex plane in Fig. 4(a) for
ω = 1.54 and 1.65, the two cases with instability previously
discussed in Fig. 2. We also plot a unit circle to guide the eye.
In a linearly stable system, all the FMs must lie on the unit
circle for a Hamiltonian system as ours. Since FMs are the
eigenvalues of the monodromy matrix (Appendix A), which
is real, these come in complex conjugate pairs. Note that there
is a pair of FMs always located at the point (+1, 0) of the unit
circle. These correspond to the phase mode [61]. Instability is
caused as some FMs leave the circle. There are two distinct
ways for that to happen. The first way is when two complex
conjugate FMs collide on the real axis, i.e., either at (+1, 0)
or (−1, 0), and leave the unit circle to remain on the real axis.
These are often termed as “real” instabilities and are typically
independent of the size of the system. The second way is when
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FIG. 4. Variation of FMs with frequency. (a) FMs in the complex
plane for the two cases discussed in Fig. 2 for softening nonlinearity.
Color denotes the Krein signature of each FM. (b) Variation in the
amplitude of FMs with frequency. Values away from |λ| = 1 indicate
the presence of instability. (c) Variation in the phase of FMs with
frequency. Blue dots denote the unstable FMs with zero Krein signa-
ture. The circled region represents the onset of a different instability.
[(d)–(f)] The same for stiffening nonlinearity.

FMs collide elsewhere on the unit circle. In this case, two
pairs of complex conjugate FMs collide in such a way that
a quadruplet of FMs leaves the circle. Due to the symplectic
property of our Hamiltonian system, these four FMs come
in conjugate and reciprocal pairs, i.e., λ, 1/λ, λ∗, and 1/λ∗,
where ∗ denotes complex conjugation. This scenario causes
“oscillatory” or Krein instabilities.

A necessary condition for an instability to occur is that the
colliding FMs must have opposite Krein signatures [60–62].
Krein signature corresponding to a FM (λ) can be calculated
from its eigenvector (v) as

K (λ) = sgn[v†(−iJ )v], (5)

where i and † denote imaginary unity and complex transpose,
respectively; and J = [ 0 In

−In 0 ] with In being the unit matrix
of dimension n. Physically, the Krein signature represents the
sign of action associated with the eigenvector [65]. It is either
+1 or −1 for the FMs lying on the unit circle, except those on
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the real axis, for which it is 0 by definition. Moreover, the FMs
not on the unit circle also have vanishing Krein signature and
we will use this fact to identify instabilities in the discussion
below.

Going back to Fig. 4(a), we color each FM as per its Krein
signature. The FMs with opposite Krein signatures (orange
and green arcs) collide and leave the unit circle to cause
instabilities. The unstable FMs are shown in blue except for
the phase mode at (+1, 0). We clearly observe that in both
cases, for ω = 1.54 and 1.65, the system displays oscillatory
instabilities. For ω = 1.54, the instability is larger, as also ob-
served in the previous section, and therefore, the FMs leaving
the unit circle are more clearly discernible.

To investigate if these cases differ in any other way, we
keep track of all FMs by sweeping the frequency of the non-
linear edge state. In Figs. 4(b) and 4(c), we plot the amplitude
and phase of FMs at various frequencies of the nonlinear
edge state. As the frequency decreases from ωed = 1.73 of
the linear edge state, we observe |λ| deviating from unity (or
λ moving away from the unit circle in the complex plane)
and manifesting as instabilities of different types. We fur-
ther verify this by looking at arg(λ) variation, in which, for
ω � 1.6, the spectral bands of opposite Krein signatures (in
green and orange) collide and cause instabilities (in blue). We
call them “bulk-bulk” instabilities since these emerge due to
the collision between two extended (bulk) states. Since the
number of extended states depends on the size of the system,
this instability occurs more often in frequency as the length of
chain increases but decreases in its strength (not shown here).
Indeed, we expect these instabilities to disappear in the infinite
lattice limit. Therefore these are often termed as finite-size
instabilities [60]. Note that the spectral bands manifest as the
arcs on the unit circle shown in Fig. 4(a) at a given frequency.
These are also related to acoustic and optical branches of
dispersion of the linearized system (see Appendix B for more
details).

However, for ω � 1.6, the dominant instability stems from
the collision of an isolated FM, which bifurcates from one
spectral band [circled area in Fig. 4(c)], with the other band of
opposite Krein signature, and both escaping the unit circle.
The eigenvectors of the bifurcated FMs are spatially local-
ized, and these are often referred to as “internal modes” of
the system [61]. We call the resulting instability as “bulk-
edge” instability since it is caused by the collision between
an extended (bulk) and a localized (edge) state. Onset of
this instability thus explains the sudden rise in instability
growth observed in Fig. 2(b) earlier and the distinct instability
strengths for the two cases at ω = 1.54 and 1.65.

Now we follow a similar line of investigation for the
system with stiffening nonlinearity and show the results in
Figs. 4(d)–4(f). Clearly, the case with frequency ω = 1.85,
which showed instability in Fig. 3, possesses an oscillatory
type of instability because collisions of FMs do not occur
on the real axis in Fig. 4(d). However, the case with fre-
quency ω = 1.92 is linearly stable since FMs do not collide
on the unit circle. To further explain these scenarios, we look
at the variation of FMs with frequency. In Figs. 4(e)–4(f), as
the frequency increases from ωed = 1.73 of the linear edge
state, we first notice the “bulk-bulk” instability that is caused
by the collision of extended bulk states of two spectral bands.

At ω ≈ 1.85, we notice an onset of a different instability.
In the circled area of Fig. 4(f), a state bifurcates from the
upper limit of the spectral band (green) and collides with
the extended states of the other band (orange). We thus call
this as “bulk-edge” instability. For frequencies beyond about
ω = 1.86, we clearly notice that there are no instabilities in
the system. Neither the spectral bands intersect to cause the
“bulk-bulk” instability nor the bifurcated modes collide with
the bands to cause any “bulk-edge” instability. We have veri-
fied that this range remains intact even in the presence of large
chain of 500 particles. This, therefore, explains our earlier
observations in Fig. 3(b) that the nonlinear state at ω = 1.85
is unstable whereas the state at ω = 1.92 is linearly stable.

In this section, we have thus seen different types of insta-
bilities that manifest with the change of nonlinearity. Those
can be systematically analyzed with the phase and Krein
signature of the FMs, as these offer insight on the nature
(and thresholds) of the instabilities. With these tools at hand,
one can further change system parameters, such as γ , γ0,
and the functional form of nonlinearity, to achieve a desired
property of the nonlinear edge state. For example, one could,
in principle, tailor the parametric stability intervals by shifting
them to different frequency ranges. Moreover, the functional
form of the nonlinearity can be changed to control the bifur-
cation of isolated FMs that cause instabilities. Though most of
these tasks primarily rely on numerical techniques due to the
strongly nonlinear nature of the system, one can still employ
analytics to gain insights into some of these phenomena. For
example, as stated earlier, the spectral bands in the phase
diagram of FMs [Figs. 4(c) and 4(f)] are related to the disper-
sion properties of the linearized system (around the uniform
vanishing displacement state). Therefore one can get an ana-
lytical estimate of their variation with frequency and predict
the regions where those do not overlap to cause “bulk-bulk”
instabilities. For the stiffening case, our analytical calculation
predicts the region of stability for ω > (ω1 + ωc)/2 = 1.86,
where ω1 and ωc represent the upper cutoff frequencies of
acoustic and optical bands, respectively (see Appendix B for
details). This closely matches with our numerical results dis-
cussed in Fig. 4(f).

V. EFFECT OF DISORDER

In the previous sections, we have discussed the effect of
nonlinearity on the edge-state frequency and stability. In this
section, we ask how these trends vary if we introduce a
weak disorder into the chain. This question is relevant since
topological edge states are known to be robust against certain
types of disorder in linear regimes. However, it is not clear if
such arguments could be generalized in nonlinear regimes as
we discuss here. Generally speaking, the presence of disorder
would alter the linear spectrum of the system. This includes
the change in cutoff frequencies and spatial localization of
eigenvectors known as Anderson localization. We, therefore,
expect that the presence of disorder will be reflected in the
variation of linear stability of the nonlinear edge state [we
saw how spectral bands and the bifurcations of localized FMs
from them dictate stability in Figs. 4(c) and 4(f)]. As we show
below, introducing different types of disorder into the chain
will help us understand the problem in more detail.
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FIG. 5. Effect of disorder on the spectrum of the linearized sys-
tem. (a) Chiral disorder preserves the frequency of the edge state
(ω2

ed = 3) inside the band gap. Also, the bands above and below
remain symmetric about the edge-state frequency. Color map indi-
cates the localization (IPR) of states. Below is a typical shape of
the edge state where even sites have zero displacements at δ = 0.4.
(b) Nonchiral disorder does not impose any such symmetry con-
straints on the spectrum and the frequency of the edge state changes
with disorder. Moreover, the edge state develops a nonzero displace-
ment at even sites in the presence of disorder (δ = 0.4).

We discussed earlier in this manuscript, that the dynamical
matrix D of the linearized system obeys chiral symmetry after
we remove its diagonal. Consequently, a disorder that respects
chiral symmetry, namely, “chiral disorder,” will alter the spec-
trum in such a way that the edge state remains fixed to the
mid-gap frequency ωed and localized at the edge, and hence
will be robust. Moreover, the entire spectrum (ω2) will remain
symmetric about this frequency. To introduce chiral disorder,
we need to perturb the stiffnesses of springs in a manner such
that the diagonal elements of the resulting dynamical matrix
Dδ remain independent of the perturbation, and again satisfy
Eq. (4). This is where we appreciate the need of having ground
springs in the system so that chiral disorder can be introduced
and systematically studied. More precisely, in Fig. 1(a), if the
stiffness of red and blue springs are perturbed as (1 + γ ) →
(1 + γ + δ1) and (1 − γ ) → (1 − γ + δ2), we change the
stiffness of ground spring (green) as γ0 → (γ0 − δ1 − δ2). We
use the disorder magnitude δ to randomize δ1 and δ2, such
that δ1,2 = δ × rand(−1, 1). As a result, the diagonal of the
resulting dynamical matrix Dδ does not change. It is evident
that this type of disorder is specialized and hard to achieve
experimentally, yet still interesting theoretically.

We demonstrate the effect of this disorder in Fig. 5(a) by
plotting eigenfrequencies and localization of corresponding
eigenvectors as the disorder magnitude δ is increased. For an
eigenvector with n masses, we use the localization index (i.e.,
inverse participation ratio) defined as

IPR =
∑n

j=1 u4
j(∑n

j=1 u2
j

)2 , (6)

where u j denotes the displacement of the jth mass. Evidently,
the edge state inside the band gap stays at ω2

ed = 3 for any

amount of disorder δ, hence it is robust. It is localized on
the edge of the system and maintains its typical shape (zero
displacement at even sites) governed by the chiral symmetry.
Also, the band spectrum (ω2), i.e., acoustic and optical bands,
remains symmetric about ω2

ed, irrespective of the magnitude
of disorder (a slight breaking of symmetry is due to the free
boundary condition on the right end of the chain). In Fig. 5(b),
we show variation of the spectrum when disorder is intro-
duced in all the springs randomly. We call this a “nonchiral”
disorder. We observe that the edge state inside the band gap
no longer remains fixed at one frequency and exhibits nonzero
displacements at its even sites. Moreover, the bands lose the
symmetry as we increase disorder strength.

In both of the cases above, we notice a change in frequency
cutoffs and an increase in spatial localization of eigenvectors.
These factors will be important in explaining the nonlinear
continuation of the edge state discussed below. In particular,
we monitor how ω1 and ωc, the upper cutoff frequencies of
acoustic and optical bands, respectively, vary with the increase
in disorder strength to estimate the region with no “bulk-bulk”
instability in the stiffening case. We perform 50 disorder re-
alizations for every strength of disorder δ ∈ [0, 0.1] to get a
second-degree polynomial fit for the maximum of functions
ω1 and ωc. We choose the maximum since we want to get
the most conservative estimate of the stability region, i.e.,
ω > (ω1 + ωc)/2. For chiral disorder, we get

ω1(δ) = 0.87δ2 + 0.17δ + 1.48, (7)

ωc(δ) = 0.68δ2 + 0.14δ + 2.23, (8)

and for nonchiral disorder:

ω1(δ) = 0.46δ2 + 0.34δ + 1.48, (9)

ωc(δ) = 1.61δ2 + 0.37δ + 2.23. (10)

We now introduce the aforementioned types of disorder
into the chain and perform the nonlinear continuation of the
edge state at three different disorder magnitudes: δ = 0, 0.05,
and 0.1. These are normalized to unity—the mean stiffness of
our dimer system. In Fig. 6(a), we plot the mean and standard
deviation of the total energy of nonlinear edge states in the
case of softening nonlinearity and chiral disorder. Due to the
softening effect, and as we showed before for the defect-free
case in Fig. 2(a), the frequency of the nonlinear state decreases
as the total energy increases. When disorder is increased, we
notice that the mean of total energy remains relatively close
but standard deviation widens as we come down on the y
axis. In Fig. 6(b), we observe similar trends for the mean
and standard deviation of maximum FMs against frequency.
Note that the standard deviation approaches to zero for the
linear edge-state frequency ωed in these plots. This is the
direct consequence of having a chiral disorder, which does
not change the linear edge-state frequency for any amount of
disorder strength.

In Figs. 6(c) and 6(d), we show the trends for nonchiral
disorder. Here we have relied on the interpolation of the non-
linear continuation curves in the frequency steps that exactly
match with the earlier case in Figs. 6(a) and 6(b). This is
because a nonchiral disorder does not impose any symmetry
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FIG. 6. Effect of disorder on the nonlinear continuation and instabilities of the edge state. [(a)–(d)] For the softening case when the system
has chiral [(a) and (b)] and nonchiral [(c) and (d)] disorder. Colors indicate disorder strengths of 0 (pristine), 0.05, and 0.1. Standard deviations
in x-axes are shown by the shaded areas. [(e)–(h)] The same for the stiffening case. Notice the region of stability for 5% disorder. A slight
reduction in its frequency span compared to the pristine case is marked with horizontal dashed lines.

restrictions on the linear spectrum; it changes the linear edge-
state frequency, which is the starting point for the nonlinear
continuation. We observe that the deviations are generally
larger than those seen for the case of chiral disorder, implying
that the nonlinear continuation is less robust for nonchiral
disorder than it is for chiral disorder.

We perform similar calculations for the stiffening case and
plot those in Figs. 6(e)–6(h). We reach the same conclusion
that the nonlinear continuation and stability are more robust
(with lesser fluctuations) in the presence of chiral disorder.
However, the upper region where high-amplitude edge states
were found to be linearly stable earlier shows an interesting
trend. The region of stability remains almost intact (i.e., the
mean remains unity with a zero standard deviation) even in
the presence of 5% disorder of both types. Yet, there is a slight
reduction in its frequency span, which is more for nonchiral
disorder (	ω = 0.015) than chiral disorder (	ω = 0.008).
These are the upshifts of dashed lines shown in Figs. 6(f) and
6(h).

To understand what types of instabilities manifest in this
region, we look back at Fig. 4(f). For ω > 1.86, the spectral
bands do not overlap. Also, the bifurcated modes do not in-
teract among themselves or collide with any of the spectral
bands. We know that the presence of disorder is reflected in
two ways. The linearized spectrum shows a deviation in its
cutoff frequencies and the eigenvectors tend to be more local-
ized. The former leads to a gradual decrease in the stability
region by enhancing “bulk-bulk” instability. In other words,

the intersection of bands in the circled area occurs due to
the spreading of band spectrum. Moreover, the latter affects
the bifurcation and collision associated with the localized
FM. For 5% disorder, we observe that the former scenario
is responsible for enhancement in the range of “bulk-bulk”
instabilities. Since we have already calculated the shifts in
cutoff frequencies in Eqs. (7)–(10), we provide a conservative
estimate of reduction in stability region as

	ω(δ) = ω(δ) − ω(0)

=
[
ω1(δ) + ωc(δ)

2

]
−

[
ω1(0) + ωc(0)

2

]
, (11)

which is 0.01 and 0.02 for chiral and nonchiral types of dis-
order, respectively, at δ = 0.05. This explains our observation
of a larger reduction in the stability range in the presence of
nonchiral disorder.

For 10% disorder, the region in Figs. 6(f) and 6(h) displays
instability. We have verified that all the instabilities are related
to the bifurcation and collision of the localized FM. This,
therefore, indicates the dominant role of localized eigenvec-
tors in the presence of disorder. In this regime of disorder, we
do not observe any specific difference between the cases with
chiral or nonchiral disorder.

We, therefore, conjecture that with an increase in the dis-
order strength the range of linear stability of the nonlinear
edge state gradually reduces (see Appendix C for further
support). This reduction is due to the gradual shift in cutoff
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frequencies in the presence of disorder. This enhances the
frequency range of “bulk-bulk” instabilities. However, there is
a threshold of disorder after which the localization of eigen-
vectors plays an important role and instabilities are caused
by the change in the bifurcation and collision patterns of the
localized FMs, which need not be monotonous with disorder
strength.

VI. CONCLUSIONS

We consider a one-dimensional SSH-like chain that hosts
a topological edge state at finite-frequency and study the ef-
fect of strong nonlinearity on its frequency and stability. We
take an onsite-nonlinearity with a simple cubic form, but find
that the nature of nonlinearity, e.g., softening or stiffening,
greatly affects the linear stability of the nonlinear edge state.
To identify the type of the instabilities, we investigate the
amplitude and phase of Floquet multipliers (FMs) in detail and
employ a Krein signature analysis. Consequently, we observe
that high-amplitude edge states can be unstable due to various
types of instabilities caused by the collisions among isolated
(localized) and band (extended) FMs. Therefore an initially
excited nonlinear-edge state loses its energy and moves to the
stable linear edge state over a long time.

However, for stiffening nonlinearity, we find a frequency-
regime where high-amplitude edge states do not show any
instability. This happens when spectral bands of FMs are
well separated enough to avoid any intersection and do not
interact with any localized bifurcating state. This therefore
opens the possibility of localizing a large amount of energy
on the boundaries of the system for a long time.

By adding disorder to our nonlinear system, we find that
the frequency and stability of the nonlinear edge state show
lesser deviation, in general, under a chiral disorder compared
to a nonchiral disorder. Interestingly, we also find that in
the presence of weak disorder (5%) of both types, in the
stiffening case, there is still a large frequency regime where
high-amplitude edge states can be linearly stable. This stabil-
ity region is larger for the case with chiral disorder compared
to nonchiral disorder, which we explain by estimating the
shifts in cutoff frequencies due to disorder.

A main finding of the work is that it is possible, under
suitable nonlinear conditions, for topological linear states to
remain robust. While onsite nonlinearity may introduce in-
stabilities, the parametric range of instability and its type
depends on the details of nonlinearity and system parame-
ters. This suggests that it will be interesting to investigate
the role of inter-site nonlinearity on the stability. In addition,
functional forms of nonlinearity other than cubic could be
investigated. Given that mechanical systems offer extreme
tunability of nonlinear responses, it will be interesting to
come up with the required nature of nonlinearity, for exam-
ple, by topological optimization techniques, that maximizes
the range of frequencies where high-amplitude topologi-
cal edge states are stable. Finally, this study can inspire
a systematic exploration of stability of topological corner,
edge, and surface states in higher-dimensional nonlinear sys-
tems. There, the topological nature of the states manifests
itself in a variety of ways, such as their ability to poten-
tially bypass impurities and transmit over domain boundaries

without losing energy to the bulk of the domain. In that
setting, another aspect related to the mobility of nonlinear
states comes into play, a topic that has been extensively
studied [66].
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APPENDIX A: FLOQUET THEORY FOR
LINEAR STABILITY

For the sake of completeness, in this Appendix we re-
view Floquet theory for the linear stability of a nonlinear
time-periodic state. Since we consider a 1D lattice with
n masses connected with springs, its Newtonian dynam-
ics can be analyzed by taking a state vector q = (x, ẋ) =
(x1, x2, . . . xn, ẋ1, ẋ2, . . . ẋn), where x j and ẋ j denote the dis-
placement and velocity of the jth mass. We thus write a set of
2n first-order ODEs as a function of q

q̇ = F (q). (A1)

We then use Newton’s method to find a periodic solution
q0 = (x0, ẋ0) for a given time period T . These are the nonlin-
ear solutions we are looking for in this study.

Linear stability of such nonlinear solutions is determined
by tracking the evolution of a small perturbation dq on the
periodic orbit q0. Therefore, by substituting q = q0 + dq, we
obtained the system of variational equations:

ḋq =
(

∂F

∂q

)
q=q0

dq. (A2)

These are linear differential equations with time-periodic co-
efficients. Therefore the general solution, i.e., the perturbation
at time t , is given by Floquet theory as

dq(t ) = 	(t )dq(0), (A3)

where 	(t ) and dq(0) are the fundamental matrix of solutions
and initial perturbation, respectively.

Next, the perturbation after t = T can be easily written as

dq(T ) = 	(T )dq(0), (A4)

where 	(T ) is called the monodromy matrix. We can further
generalize this to calculate the perturbation after m time peri-
ods as

dq(mT ) = [	(T )]mdq(0). (A5)

Clearly, for linear stability of the periodic solution q0,
we are interested in knowing how the small perturbation
dq(0) grows over time. Therefore Eq. (A5) is the key map-
ping, and the eigenvalues of the monodromy matrix 	(T ),
known as Floquet multipliers (FMs), determine the linear
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stability of the periodic orbit. Since the monodromy ma-
trix is real, the eigenvalues come in complex conjugate
pairs.

Let λ be a FM, then the perturbation evolves as

dq(t ) = g(t )λt/T , (A6)

where g(t ) is T -periodic and the initial value g(0) is the
eigenvector v corresponding to the eigenvalue λ. Clearly, the
perturbation grows exponentially over time when |λ| > 1,
while for |λ| � 1 the dynamics is linearly stable. Since our
system is a Hamiltonian system, its FMs multipliers comes in
complex conjugate and reciprocal pairs. This means that for
a complex FM λ, we also have 1/λ, λ∗, and 1/λ∗ as other
FMs, where ∗ denotes complex conjugation. We, therefore,
conclude that the FMs must lie on the unit circle (|λ| = 1)
for linear stability in our system and any deviation from unity
represents the existence of instability. When |λ| deviates from
unity, the relative growth of the initial state after m time
periods can be estimated as

|dq(mT )| − |dq(0)|
|dq(0)| = |λ|m − 1,

≈ m(|λ| − 1) if |λ| ≈ 1. (A7)

APPENDIX B: SPECTRAL BANDS IN FM PHASE PLOTS

We observed spectral bands in Figs. 4(c) and 4(f) of the
main text. In this Appendix, we elaborate on their connec-
tion with the dispersion bands (acoustic and optical) of the
linearized system. In the process to obtain FMs, we perform
linearization over the shape of the nonlinear edge state, in the
far-field limit (away from the localized edge) where the solu-
tion decays to zero. This vanishing background supports linear
dynamics since the system is linearizable at zero amplitude.
Let the infinite length of such background follow the disper-
sion ω(β ), where β is the normalized wave vector. Therefore
a perturbation dq(t ) along the eigenvector g(0) evolves in
time as

dq(t ) = g(0)e±iω(β )t , (B1)

which can be recast as

dq(t ) = g(0)[e±iω(β )T ]t/T . (B2)

By comparing this equation to the more general Eq. (A6), we
deduce

λ = e±iω(β )T . (B3)

Therefore we conclude that the FMs obtained from the
vanishing background (far away from the edge) lie on the
unit circle in the complex plane. Their phase is dependent
on the dispersion ω(β ) of the linearized system and the
time period T of the background oscillation of the edge
state.

In Fig. 7(a), we show the dispersion ω(β ) for our system
with γ = 0.4 and γ0 = 1. The lower band (acoustic) starts at
frequency ω0 = √

γ0 and ends at ω1 = √
2(1 − γ ) + γ0. The

upper band (optical) starts at ω2 = √
2(1 + γ ) + γ0 and ends

at ωc = √
4 + γ0. Using Eq. (B3) we map these bands to the

FMs on the complex plane for T = 2π/ωed and show them
in Figs. 7(b) and 7(c). The dispersion bands are mapped as

0 1 0 1
1

0

1

1 0 1

(a) (b) (c)

FIG. 7. Mapping between the dispersion and the corresponding
FMs. (a) Dispersion for our linearized system with γ = 0.4 and
γ0 = 1. The cutoff frequencies are marked for the acoustic (below)
and optical (above) bands. (b) Corresponding FMs λ = eiω(β )T on the
complex plane for T = 2π/ωed. Edges of the arcs are marked with
the associated cutoff frequency of dispersion band. (c) Correspond-
ing FM λ = e−iω(β )T for the same T .

arcs on the complex plane. We get two complex conjugate
pairs of these, shown separately in Figs. 7(b) and 7(c) when
we take different signs in Eq. (B3). The actual mapping is
the superposition of these two. This, therefore, explains the
origin of spectral bands when FM phase is plotted in Figs. 4(c)
and 4(f).

Now we can easily write a general expression for the span
of these arcs on the unit circle for the nonlinear edge state at
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FIG. 8. Effect of disorder on the nonlinear continuation and in-
stabilities of the edge state for stiffening nonlinearity. The conditions
are similar to the ones in Figs. 6(e)–6(h) but for more steps in
disorder strength and 100 realizations of each. A short chain of 10
particles in considered.
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frequency ω. FM phase thus vary in the interval:

arg(λ)|acoustic ∈
[

2πω0

ω
− 2π p,

2πω1

ω
− 2π p

]
, (B4)

arg(λ)|optical ∈
[

2πω2

ω
− 2π p,

2πωc

ω
− 2π p

]
, (B5)

where p is an integer to bring the phases in the range of
[−π, π ]. In the upper half of Figs. 4(c) and 4(f), the band
with negative Krein signature (orange) thus corresponds to the
acoustic branch of the dispersion, whereas the band with posi-
tive Krein signature (green) corresponds to the optical branch.

We can use the aforementioned expression to analytically
estimate the region of linear stability shown in Fig. 4(f).
It is important to note that we establish only a necessary
condition to have no “bulk-bulk” instability. This is not a
sufficient condition since our analytics do not predict the onset
of bifurcations, and thus, can not predict the “bulk-edge” in-
stabilities. For the set of parameters (γ = 0.4 and γ0 = 1), the
“bulk-bulk” instabilities do not exist after the point where the
cutoff phases of acoustic and optical bands intersect [circle in
Fig. 4(f)]. The FM phases are 2π (1 − ω1/ω) and 2π (ωc/ω −
1), respectively, for the acoustic and optical band cutoffs. For
the region without the“bulk-bulk” instabilities, we must have

2π (1 − ω1/ω) > 2π (ωc/ω − 1),

⇒ ω >
ω1 + ωc

2
= 1.86, (B6)

which is consistent with our observation in Fig. 4(f). A
similar procedure can be followed to estimate the range of no
“bulk-bulk” instabilities for the softening case shown in Fig.
4(c). We obtain

ω <
ω0 + ω2

2
= 1.47, (B7)

which falls below the lower edge of the bandgap (i.e., at
ω1 = 1.48) for our system parameters. In addition, it would
also support various “bulk-edge” instabilities as seen in the
left corner of Fig. 4(c).

APPENDIX C: EFFECT OF DISORDER ON THE
STABILITY OF THE NONLINEAR EDGE STATE

In this Appendix, we further support our conjecture that the
presence of weak disorder gradually reduces the frequency
span where nonlinear edge state are linearly stable. Recall
that the calculations in Fig. 6 of the main text are carried
out for only two, 5% and 10% disorder strengths, each hav-
ing 50 realizations. Here, we take six different strengths of
disorder till 10% with 100 realizations of each. We consider a
shorter chain (10 particles) for fast computation and analyze
the case of stiffening nonlinearity as shown in Figs. 6(e)–6(h).
In Fig. 8, we show the similar trends. First, nonchiral disorder
leads to more variation in energy and instability, mainly in the
low-frequency regime. Second, the frequency range of stabil-
ity gradually reduces with the increase of disorder strength
and remains intact till about 6.6%. The reduction is large in
the case of nonchiral disorder as shown with dashed lines.
Third, for even higher disorder, i.e., 10%, we observe the onset
of instabilities in both cases, resulting in the large variation
in FMs. This is dominated by the change in bifurcation and
collision of isolated FMs as discussed in the main text. This
suggests that for weak disorder, the stability range for the
nonlinear edge state is gradually reduced up to a disorder
threshold and a quantitative estimate (conservative) of this
reduction can be made from analyzing the linear spectrum as
done in Fig. 5.
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