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A mathematical framework for the optimal coupling
of interdependent critical infrastructures

Andrea Bellè, Adam F. Abdin, Zhiguo Zeng, Yi-Ping Fang, and Anne Barros

Abstract—Critical infrastructures, such as energy systems,
transportation and telecommunications networks, are essential
for the safety and socio-economic stability of a society. Critical
infrastructures are often tightly coupled and interdependent on
each other, and the topology of the interdependencies between
different systems, also referred to as the coupling interface, plays
a key role in terms of their performance and resilience against
failures. In case of failures due natural events or deliberate
attacks, the design of the coupling interface can strongly impact
the systems performance. However, in the existing literature,
the issue of the coupling interface design is often addressed
approximately. In this work, we propose an optimization-based
mathematical approach for designing coupling interfaces between
interdependent critical infrastructures under external attacks.
Given a set of possible attack scenarios, the proposed approach
allows designing a coupling interface such that the interdependent
infrastructures are robust against the worst-case realization
of performance losses. Using as a case-study interdependent
power and gas networks, we show that the proposed method
outperforms existing solutions based on network metrics.

Index Terms—defender-attacker-defender, interdependent crit-
ical infrastructures, coupling interface, external attacks, power
network, gas network

This work has been submitted to the IEEE for possible
publication. Copyright may be transferred without notice, after
which this version may no longer be accessible.

I. INTRODUCTION

A. Motivation

CRITICAL INFRASTRUCTURES (CIs), such as en-
ergy systems, transportation and telecommunications net-

works, are large and complex man-made systems which sup-
port vital societal functions and represent a driving force in
the socioeconomic development [1]. In fact, many essential
services and commodities, such as electricity, public trans-
portation, water and gas supply or telecommunications, are
provided by CIs [2]. At the same time, attacks and disruptive
events within CIs, such as intentional sabotages, extreme
natural hazards or random failures, can cause disruption and
considerable negative consequences within a society. For ex-
ample, the blackout which affected Italy on 28 September
2003 caused over 10 hours of power outages for more than
50 millions people [3].

CIs are not stand-alone isolated systems, but interconnected
systems which are interdependent on each other, in terms
of functionality, reliability and performance [4]. While these
interdependencies increase the operational performance and
efficiency of CIs, they often lead to an increased vulnerability
[5]. Interdependent networks and systems are intrinsically
more fragile than isolated systems [5], as a failure within

one infrastructure can spread within other infrastructures and
cause multi-sectoral disruption [5], [6], [7]. In addition, it
is also known (from network science, see for example [8]
or [9]) that the topology of the interdependencies (or, in
other words, how interdependent systems are coupled together)
can heavily affect the behaviour of interdependent CIs under
attacks and disruptive events. In a practical scenario, the way
specific components of an infrastructure depend on specific
components of another one is a key factor that affects the
resilience of the interdependent systems.

It is thus clear that the way we design the topology of the
interdependencies, in this work referred to as the coupling
interface [10], [11], is a key feature for the resilience of CIs.
However, in the existing literature, this issue is addressed
seldomly. In fact, the coupling interface is usually considered
as a given parameter, and the impact of different interdepen-
dency topologies on the systems resilience is not analyzed.
Only a few works consider different coupling interfaces in
their analysis, relying on topologies based on network metrics.
The aim of this article is to bridge this gap by proposing a
mathematical programming approach, based on the defender-
attacker-defender (DAD) optimization framework [12].

B. Related work

In most of the existing literature, it is common practice
to treat the coupling interface between interdependent infras-
tructures as a known parameter. Many scholars have adopted
this strategy, adapting it for different kind of analysis and
interdependent infrastructures scenarios. For example, in [13]
and [14], the authors optimize defense strategies and post-
disaster restoration in interdependent power-gas networks and
power-water networks, respectively; in [15] and [16], the
authors assess the vulnerability and the resilience, respectively,
of interdependent power-gas network under attacks; in [17]
and [18], the authors evaluate the vulnerability of railway
networks and their interdependent subsystems under disruption
scenarios; in [19], disruption and recovery of interdependent
power, water and telecommunications networks are modeled.
In all of the above works, the coupling interface is a given
parameter. In fact, only a limited number of existing works
discuss the optimal design of the coupling interface. In [11],
the authors propose a heuristic optimization model for de-
signing optimal coupling interfaces between complex urban
infrastructure systems against external attacks. The coupling
interface is based on traditional network metrics, such as
node degree, betweenness, clustering coefficient and Euclidean
distance. Interface design between power, gas and water



MANUSCRIPT 2

networks is given as an illustrative case-study. A similar
approach is presented in [10], where the authors propose a
network metrics-based heuristic method to optimize coupling
interfaces against cascading failures and different external
attacks scenarios. However, frameworks based on heuristics
can not ensure the convergence to a global optimal solution
and the final results are highly dependent on the heuristics
used .

Other scholars considered the impact of different network
metrics-based coupling interfaces on the analysis of inter-
dependent critical infrastructures, mainly for interdependent
power and telecommunications networks [20], [21], [22], [23].

To the best of our knowledge, a mathematical framework for
designing robust coupling interfaces between interdependent
critical infrastructures is missing.

C. Contribution

We propose a novel optimization-based mathematical model
for the optimal design of coupling interface between in-
terdependent critical infrastructures. The proposed approach
ensures the robustness of the coupling interface in terms of
worst-case realization of combined performed of the interde-
pendent infrastructures. The proposed approach is based on
the DAD model, a three-stage sequential game which allows
to identify robust defense strategies and/or resource allocation
against a defined set of feasible attack scenarios. Using as an
illustrative case-study interdependent power and gas networks
(IPGNs), our model ensures a coupling interface design which
minimizes the negative consequences, in terms of loss of
combined performance within the interdependent CIs, of the
worst-case feasible attack scenario.

The contributions of this papers can be summarized as
follows:
• We developed a novel and original application of

optimization-based design, which can be directly applied
in real-world situations such as: (i) design of the coupling
interface between new CIs, (ii) design of the coupling
interface between new and existing CIs, (iii) analysis and
evaluation of existing coupling interfaces.

• We developed a reliable and efficient solution approach,
by adapting the Nested Column&Constraint Generation
algorithm to our model.

• Using IPGNs as a case-study, we showed that our ap-
proach outperform network metrics-based coupling inter-
faces available in the existing literature.

The rest of this work is organized as follows: in Section
II, the problem is formulated; in Section III, the solution pro-
cedure is detailed; in Section IV, the case-study is presented
in details; in Section V, the main results are reported and
discussed; in Section VI, some final remarks and possible
future developments are given.

II. OPTIMIZATION PROBLEM FORMULATION

A. Modeling framework

Critical infrastructures are interdependent if the functional-
ity of one system affects the functionality of other connected

systems. Relationships of various nature can exist between
elements of different infrastructures, and the interdependencies
can be divided into four categories: physical, when the state of
one system is dependent on the material output of another sys-
tem; cyber, when the state of one system is dependent on the
information transmitted through another system; geographic,
when different systems share the same location and their state
can be modified by an environmental event; and logical, if the
interdependency is not physical, cyber, or geographic [4].

We model each infrastructure using a network flow-based
approach [2]. A network is a mathematical construct described
by a graph G = (V,E), where V is the set of N nodes and
E is the set of M edges. Each edge k is defined by a tuple
(i, j), where i and j represent, respectively, the origin node
O(k) and destination node D(k) of the corresponding edge.
We assume that each node i is characterized by a production
capacity pi (e.g. power or gas flow production) and a requested
demand di (e.g. power or gas flow demand). Similarly, each
edge k is defined by a maximum flow capacity fk.

In the context of K interdependent infrastructures, the focus
of our analysis is the combined performance PC [13], as
generally defined in (1):

PC =
∑
k∈K

wk

∑
i∈Vk

di∑
i∈Vk

di
(1)

where wk represents the weight of infrastructure k, Vk rep-
resents the set of nodes in infrastructure k and di represents
the demand supplied at node i. This equation represents the
fraction of requested demand that is possible to satisfy within
the system of interdependent infrastructures.

In this work, we consider interdependent power and gas
networks, which are mutually interdependent from each other
with physical interdependencies: equipment in the gas network
needs to receive electricity, while gas-fired power plants needs
a gas flow supply. The power network operations are simulated
with a DC power flow model, while the gas network operations
are simulated with a maximum flow model, which is a suitable
approximation of flow-based infrastructures [24], [13], [25],
[26].

Several works analyze critical infrastructures in the context
of specific types of hazards, like intentional attacks [25],
spatially-localized attacks [14] and extreme natural events
[13], [27]. In this work, we adopt an approach based on the
maximum number of contingencies [28], [29]. For simplicity,
but without loss of generality, we assume that only trans-
mission lines (edges) in the power network can be attacked
and failed. We thus adopt the traditional N − k contingencies
approach, applied to a interdependent CIs scenario.

B. Tri-level optimization

The problem takes the form of a tri-level defender-attacker-
defender (DAD) optimization model, a formulation often used
in the framework of optimization of defense strategies and
resources in CIs (see e.g. [12], [13], [28]). It is useful
to imagine the problem as a three-players game: the inner
defender aims at maximizing the combined performance of the
IPGN through the operational variables of the two systems; the
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middle attacker aims at minimizing the combined performance
choosing the most disruptive attack plan; the outer defender
aims at maximizing the combined performance of the IPGN
by designing a robust coupling interface that also ensures
satisfactory performance in nominal conditions. For clarity,
with the exception of the most relevant constraints, we report
the problem in its compact matrix formulation. The full
formulation of the problem is available in Appendix B, with
the nomenclature in Appendix A. The problem takes the tri-
level formulation shown in (2)-(9).

max
{h0,δ0}

y∈{0,1}Mc

min
u∈{0,1}MA

max
{h,δ}

bTh (2)

subject to: ∑
j∈VPN

y1ij ≤ 1, ∀i ∈ VGN (3)

∑
j∈VGN

y2ij ≤ 1, ∀i ∈ VPN (4)

∑
i∈VGN
j∈VPN

y1ij d
km
ij c1km +

∑
i∈VPN
j∈VGN

y2ij d
km
ij c2km ≤ Bci (5)

R0h0 ≤ q0 −H0y −W0δ0 −D0yδ0 (6)

bTh0 ≥ 1 (7)∑
k∈EPN

(1− uk) ≤ Katt (8)

Rh ≤ q−Tu−Hy −Wδ −Dyδ (9)

The variables h0={p0,d0, f0,θ0} and δ0 are the con-
tinuous and binary operational variables of the first stage,
and they represent production levels, supplied demands, net-
work flows, voltage angles (in power network nodes) and
interdependencies status, respectively; the variables y are the
coupling interface binary variables, and they define how the
two infrastructures are coupled to and interdependent on each
other. The term Mc denotes the dimension of the vector
containing all the feasible combinations of the binary variables
y.

The variables u represents the binary attack variables, and
they indicate which power lines are targeted and destroyed
by the attacker. The term MA denotes the dimension of the
vector containing all the feasible combinations of the binary
variables u.

The variables h={p,d, f ,θ} and δ denote the continuous
and binary operational variables, respectively, of the third
stage.

The objective function in (2) represents the fraction of
requested demand of gas and electricity which is possible to
supply, and its full formulation is shown in (38) in Appendix
B.

In the first stage, a defender aims at maximizing the
objective function by setting the coupling interface between

the power and gas network through the binary variables
y={y1ij , y2ij}, knowing that the following player, the attacker,
will aim at minimizing the objective function. The variable y1ij
equals to 1 if the node i ∈ VGN is coupled to and dependent
on the node j ∈ VPN , and 0 otherwise; similarly, the binary
variable y2ij equals to 1 if the node i ∈ VPN is coupled to and
dependent on the node j ∈ VGN , and 0 otherwise. We assume
that each node in the gas network that needs electricity is
dependent on one and only one node in the power network,
as shown in constraint (3); similarly, each node in the power
network that requires gas flow supply is dependent on one
and only one node in the gas network, as shown in constraint
(4). Coupling two nodes has a cost per kilometer, and the
total cost of the allocated interdependencies is bounded by the
available monetary budget Bci. This is expressed in constraint
(5), where dkmij is the distance in km between nodes i and j
and the terms c1km and c2km are, respectively, the cost per km
of placing a coupling link from the power to the gas network
and from the gas to the power network.

The coupling interface must be allocated in a way such that,
in nominal conditions (no component attacked nor failed), the
requested demands of electricity and gas are fully satisfied.
This condition is enforced by constraint (7), corresponding
to constraint (57) in Appendix B, which depends on the
operational constraints of the IPGNs, expressed in constraint
(6) and corresponding to constraints (44)-(56) in Appendix B.

In the second stage, an attacker aims at minimizing the
combined performance of the IPGNs by failing transmission
lines in the power network through the variables u. The
variable uk takes the value 0 if the power line k fails; otherwise
it takes the value 1. We assume that the attacker can target a
maximum number of lines, as expressed in constraint (8).

In the third stage, a defender aims at maximizing the
combined performance of the disrupted IPGNs through the
operational variables h and δ, as expressed in constraint (9),
which corresponds to constraints (61)-(76) in Appendix B.

The constraint sets in (6) and (9) represents the opera-
tional model of the IPGNs, in nominal conditions and in the
contingency scenario u, respectively. The power network is
modeled with a DC power flow model, while the gas network
is modeled with a maximum flow model, which represents
a suitable approximation for flow-based infrastructures [13],
[24]. The constraints of these models are shown in Appendix
B. Here, it is of particular relevance to illustrate in details the
constraints related to the interdependencies and the coupling
interface between power and gas network, shown in (10)-(18).

0 ≤ di ≤ d
b

i +
∑

j∈VGN

y1ji d
MW

j , ∀i ∈ VPN (10)

0 ≤ di ≤ d
b

i +
∑

j∈VPN

y2ji d
m3

j , ∀i ∈ VGN (11)

di − δPNi
(
d
b

i +
∑

j∈VGN

y1ji d
MW

j

)
≥ 0, ∀i ∈ VPN (12)

di − δGNi
(
d
b

i +
∑

j∈VPN

y2ji d
m3

j

)
≥ 0, ∀i ∈ VGN (13)
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pi − pi
∑

j∈VGN

y2ij δ
GN
j ≤ 0, ∀i ∈ VPN (14)

pi − pi
∑

j∈VPN

y1ij δ
PN
j ≤ 0, ∀i ∈ VGN (15)

di − d
b

i

∑
j∈VPN

y1ij δ
PN
j

−
∑

j∈VPN

y2ji d
m3

j

∑
j∈VPN

y1ij δ
PN
j ≤ 0, ∀i ∈ VGN (16)

−
∑

i=O(k)
j∈VPN

y1ij δ
PN
i fk ≤ fk ≤

∑
i=O(k)
j∈VPN

y1ij δ
PN
i fk, ∀k ∈ EGN (17)

−
∑

i=D(k)
j∈VPN

y1ij δ
PN
i fk ≤ fk ≤

∑
i=D(k)
j∈VPN

y1ij δ
PN
i fk, ∀k ∈ EGN (18)

The supplied demand di is bounded between 0 and the
requested demand. Contrary to traditional approaches, the
requested demand in each node is not a fixed parameter but it
depends on the coupling interface, as shown in (10) and (11).
The requested demand in each node i, either in the power or
gas network, is composed of two terms:

• The term d
b

i is the base requested demand, which rep-
resent various consumers of electricity/gas (households,
industries, etc.).

• The second term,
∑
j∈VGN

y1ji d
MW

j in (10) and∑
j∈VPN

y2ji d
m3

j in (11), represents the electricity/gas
demand of all the nodes of the other infrastructures
dependent on the node i. The terms d

MW

j and d
m3

j

represent, respectively, the electricity demand of node
j ∈ VGN and the gas flow demand of node j ∈ VPN .

The status of each interdependency is described in (12) and
(13). Each interdependency from the node i ∈ VPN to the
node j ∈ VGN is functional if the variable δPNi is equal to 1;
otherwise, δPNi =0 and the interdependency is not functional.
We assume, as shown in (12), that each variable δPNi can take
the value 1 only when the requested demand in the node i is
fully supplied. The same assumption is applied for the gas
network and the corresponding variables δGNi , as shown in
(13).

The production level pi in each node depends on the
coupling interface. We assume that the production pi in each
node ranges between 0 and the production capacity pi if
there is one functional interdependency, and 0 otherwise. For
example, as shown in (14), the production pi in the node
i ∈ VPN ranges between 0 and pi if there is one interde-
pendency from a node j ∈ VGN in the gas network (y2ij=1)
properly functional (δGNj =1); otherwise, pi takes the value

0. The same assumption is applied for the gas network and
the corresponding interdependency from the power network,
as shown in (15). In addition, we assume that, in the gas
network, supplied demands and flows in the pipes are also
dependent on the interdependency from the power network. As
shown in (16), the supplied demand di in the node i ∈ VGN
ranges between 0 and the requested demand if there is one
interdependency from a node j ∈ VPN in the power network
(y1ij=1) properly functional (δPNj =1); otherwise, di takes the
value 0. Lastly, we assume that the absolute value of the flow
fk in each pipe k ∈ EGN ranges between 0 and the maximum
flow capacity fk only if both the origin and destination
node of k, respectively O(k) and D(k), have a functional
interdependency from the power network, as expressed in (17)
and (18); otherwise, fk takes the value 0.

The constraints in (10)-(18) are nonlinear due to the multi-
plication of variables δ and y. These terms can be linearized
by introducing new binary variables z and r. The full lineariza-
tion is reported in Appendix C. The problem can, thus, be
expressed as a tri-level mixed-integer linear program (MILP),
as shown in the compact formulation (19)-(21).

max
{h0,δ0}

y∈{0,1}Mc

min
u∈{0,1}MA

max
{h,δ}

bTh (19)

subject to (3)-(5), (7)-(8) and (20)-(21):

R0h0 ≤ q0 −H0y −W0δ0 − S0z0 −V0r0 (20)

Rh ≤ q−Tu−Hy −Wδ − Sz−Vr (21)

III. SOLUTION PROCEDURE

The presence of the binary variables δ in the third stage
makes it impossible to merge the second and third stage
into a single min problem relying on the strong duality (or
Karush-Kuhn-Tucker) reformulation. We thus adopt a cutting
plane strategy, called Nested Column&Constraint Generation
(NC&CG) algorithm, originally developed for solving robust
optimization problems. It represents an exact method, with
proven convergence to the global optimum, for solving multi-
level mixed-integer linear programming with recourse prob-
lems [30], [31].

The flowchart of the algorithm is shown in Figure 1. In
order to adopt this strategy, the original tri-level max-min-max
problem must be expanded into a max-min-max-max problem,
separating binary and continuous variables in the original
third stage. The new fourth stage contains only continuous
variables, and it is then a pure LP problem. The formulation
is then transformed into a max-min-max-min through a dual
reformulation of the last stage. In this form, the problem can
be solved using a NC&CG algorithm, identifying an outer
and inner layer which exchange primal variables in form of
parameters until the convergence to the global optimum is
reached.

To simplify the following explanation we rely on a compact
formulation. For a more detailed explanation of the C&CG
algorithm, the reader is referred to [30], [31] for a theoretical
framework and [13], [28], [29] for applications.
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Fig. 1: Flowchart of the NC&CG algorithm.

A. Inner layer

The inner layer consists in the solution of the second and
third stage (min-max) in (19) for a fixed coupling interface y∗.
The output of the model is the worst-case realization of the
combined performance and the associated optimal attack plan
û. For a fixed coupling interface y∗, fixed interdependency
variables δ∗ and fixed attack plan u∗, the compact form of the
inner-most maximization in (19) and the relative constraints
are shown in (22)-(23):

max
h

bTh (22)

subject to :

Rh ≤ q−Tu∗ −Hy∗ −Wδ∗ −Dy∗δ∗ (23)

The problem in (22)-(23) is a pure LP, and thus the introduc-
tion of variables z and r is not necessary. Its dual form is
expressed in (24)-(25):

min
λ

(q−Tu∗ −Hy∗ −Wδ∗ −Dy∗δ∗)Tλ (24)

subject to:

RTλ = b (25)

From the above formulation, we can proceed to solve
the inner layer problem using the C&CG algorithm. This is

achieved by employing a partial set of feasible interdepen-
dency variables combinations Dpart ⊆ D, and proceeding as
expressed in the following steps:

1) Set h = 0, upper bound UBin = ∞, lower bound
LBin = 0 and Dpart = ∅

2) Solve the inner master problem in Equations (26)-
(29). Obtain an optimal solution ρ̂(h) and û(h). Update
LBin=ρ̂(h).

min
{ρ,u,λ}

ρ (26)

subject to:

ρ ≥ (q−Tu−Hy∗ −Wδ∗(h)

−Dy∗δ∗(h))Tλ(h), ∀δ∗(h) ∈ Dpart (27)

RTλ(h) = b, ∀δ∗(h) ∈ Dpart (28)∑
k∈EPN

(1− uk) ≤ Katt (29)

3) Solve the inner subproblem in Equations (30)-(31) with
û(h)=u∗. Obtain an optimal solution bT ĥ(h) and δ̂

(h)
.

Set UBin = min(UBin,b
T ĥ(h)).

max
{h,δ}

bTh (30)

subject to :

Rh ≤ q−Tu∗ −Hy∗ −Wδ −Dy∗δ (31)

4) If (UBin − LBin)/UBin < 10−5, the current solution
û(h) corresponds to the optimal attack and the algorithm
can be terminated. Otherwise, Dpart = Dpart∪ δ̂

(h)
. Set

h← h+ 1 and return to step 2.
This algorithm corresponds to the inner layer in Figure 1.
Its output is the optimal attack plan, or, in other words,
the feasible combination of variables u which minimizes the
combined performance for a fixed coupling interface y∗.

B. Outer layer

The outer layer can be solved in a similar way, by employing
a partial set of feasible attack scenarios Apart ⊆ A. While the
inner layer solves a bi-level min-max problem, the outer layer
solves a bi-level max-min problem, where the minimization
represents the outer subproblem, and it is solved by the inner
layer in the previous section.

Similar to the inner layer, the outer layer is solved with a
C&CG algorithm with the following steps:

1) Set h = 0, upper bound UBout = ∞, lower bound
LBout = 0 and Apart = ∅

2) Solve the outer master problem in Equations (32)-
(37). Obtain an optimal solution η̂(h) and ŷ(h). Update
UBout=min(UBout, η̂

(h))

max
{η,h(h)}
{h0,δ0}

y∈{0,1}Mc

η (32)
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Fig. 2: Geographical allocation of the interdependent power
and gas network.

η ≤ bTh(h), ∀u∗(h) ∈ Apart (33)

Pouty ≤ gout (34)

R0h0 ≤ q0 −H0y −W0δ0 − S0z0 −V0r0 (35)

bTh0 ≥ 1 (36)

Rh(h) ≤ q−Tu∗(h) −Hy −Wδ(h)

−Sz(h) −Vr(h), ∀u∗(h) ∈ Apart (37)

where Pout and gout are the coefficient matrix and the
parameter vector of constraints in (3)-(5).

3) Solve the outer subproblem using the inner C&CG
algorithm explained in the previous subsection with
ŷ(h)=y∗. Obtain an optimal solution bT ĥ(h) and an
optimal attack plan û(h). Set LBout = bT ĥ(h).

4) If (UBout − LBout)/UBout < 10−5, the current so-
lution ŷ(h) corresponds to the optimal coupling inter-
face and the algorithm can be terminated. Otherwise,
Apart = Apart ∪ û(h). Set h← h+1 and return to step
2.

The output represents the optimal coupling interface which
maximizes the worst realization of the IPGNs combined
performance under external attacks.

IV. CASE-STUDY

As an illustrative example, we consider a power network
with a topology based on the IEEE 14-bus system, and a gas
network with a topology based on the IEEE 9-bus system.
We assume that the two infrastructures are placed within a
300×300 km2 geographical area, as shown in Figure 2. Each
infrastructure is assumed to have a weight, respectively wPN

TABLE I: Cost of network metrics-based coupling interfaces.

Interface Cost

DDast 1953$

DDdst 2201$

BBast 1757$

BBdst 2080$

Euclidean 823$

and wGN , equal to 0.5. This value represents the importance
of each infrastructure when computing the combined perfor-
mance. Other parameters are available in Appendix D.

We test our model for values of Katt ranging from 1
to 5. We choose a representative interdependency cost-per-
kilometer of 1 $/km, for both c1km and c2km. We assume budget
values Bci ranging from 900$ to 1500$ for the installment of
coupling interfaces. We compare the results obtained by our
model with the results obtained with network metrics-based
coupling interfaces, which are identified based on different
combinations of node degree (D) and betweenness (B). We
distinguish four coupling interfaces using the different network
metrics and the terms assortative (subscript ast) and disas-
sortative (subscript dst). In network science, the assortativity
(disassortativity) is a property that describes the tendency of
the nodes of a network to be connected to nodes which are
similar (different) regarding some specific properties [32]. For
example, it can refer to the tendency of high degree nodes to be
attached to other high degree nodes. Additionally, we identify
a geographical location-based coupling interface, referred to as
Euclidean. The five different network metrics-based interfaces
used in this work are characterized by the following features:

• DDast: the node with the kth highest degree in the power
network (or gas network) is dependent on the node with
the kth highest degree in the gas network (or power
network).

• DDdst: the node with the kth highest degree in the
power network (or gas network) is dependent on the node
with the kth lowest degree in the gas network (or power
network).

• BBast:the node with the kth highest betweenness in the
power network (or gas network) is dependent on the node
with the kth highest betweenness in the gas network (or
power network).

• BBdst: the node with the kth highest betweenness in the
power network (or gas network) is dependent on the node
with the kth lowest betweenness in the gas network (or
power network).

• Euclidean: each node in the power network (or gas
network) is dependent on the geographically closest node
in the gas network (or power network).

The cost associated with each network metrics-based cou-
pling interface is reported in Table I.

Finally, all the computations are implemented in the Python
API of Gurobi 9.1 [33] and performed on a laptop with a 2.60
GHz CPU and 16 GB RAM.
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V. RESULTS

A. Combined performance

The results for the network metrics-based coupling inter-
faces are shown in Figure 3a, while the results for the optimal
coupling interfaces obtained by our approach with different
budget Bci are shown in Figure 3b. The x-axis shows the
maximum number of lines in the power network which can
be attacked and failed; the y-axis shows the correspondent
worst-case realization of the combined performance. The con-
servativeness of the model can be tuned using the maximum
number of failed lines Katt.

The two sets of coupling interfaces are designed, by default,
with different assumptions:

• The network metrics-based coupling interfaces are de-
signed using network properties as guidelines for cou-
pling nodes of different infrastructures. This approach is
already described in the existing literature. The associated
costs in Table I are shown merely for comparison with
our approach, and they do not affect the design of the
network metrics-based coupling interfaces.

• The proposed approach provides the most robust coupling
interface for a given monetary budget. In this case, the
cost of the coupling interface allocation is key parameter
of the model.

The main comparison metric is the worst-case combined
performance within the different cases. The purpose of our
analysis is to show that the proposed approach outperforms the
network metrics-based coupling interfaces, leading, de facto,
to the most robust coupling interface for a given monetary
budget.

As it can be clearly seen in Figure 3a, the disassortative in-
terfaces (DDdst and BBdst) perform poorly, as the worst-case
combined performance decreases rapidly with the increasing
of the attack budget Katt, reaching the value 0 for Katt=4. The
assortative interfaces, especially BBast, perform better, as the
related worst-case combined performance is higher than the
disassortative interfaces with the increasing Katt. Particularly,
for BBast, with Katt=4 and Katt=5, the worst-case combined
performance are 0.49 and 0.29, respectively, while for the
disassortative interfaces the performance in both cases is 0.

The Euclidean coupling interface leads to even better per-
formance than BBast: for Katt=3, Katt=4 and Katt=5, the
BBast interface leads to worst-case combined performance
respectively of 0.60, 0.49 and 0.29, while the Euclidean
interface leads respectively to 0.70, 0.52 and 0.31.

These results clearly show how different coupling interfaces
lead to different worst-case combined performance. In this
case, the Euclidean coupling interface performs better than
the other network metrics-based coupling interfaces. However,
these results should not be generalized, as the performance
of each network metrics-based coupling interface is strongly
case-dependent. For example, if we change the geographical
disposition of the nodes of the IPGN, the Euclidean coupling
interface would be different and, thus, the results would differ.
Similar considerations are valid for the other network metrics-
based coupling interfaces.

The optimal coupling interfaces, identified with the pro-
posed optimization model, outperform the network metrics-
based coupling patterns in terms of worst-case combined
performance, as it can be clearly seen in Figure 3b. The
minimum budget which ensures the feasibility of the model
is 823$, which corresponds to the cost of the Euclidean cou-
pling interface, which is based on the minimum geographical
distance. For a budget lower than 823$ it is not possible to
allocate all the necessary interdependencies and thus ensure
satisfactory performance in nominal conditions. The results for
Bci=823$ (blue triangles in Figure 3b) are thus equivalent to
the results of the Euclidean coupling interface (blue triangles
in Figure 3a).

As it can be clearly seen, for values of Bci greater than
823$, the traditional interfaces are outperformed by the opti-
mal coupling interfaces identified by the proposed approach.
For example, with Bci=900$ and Katt=3, Katt=4 and Katt=5,
the worst-case combined performance are respectively 0.77,
0.64 and 0.51. These results are considerably higher than the
previously explained Euclidean interface.

The worst-case combined performance improves with the
increasing of the budget Bci. For example, with Bci=1500$
and Katt=3, Katt=4 and Katt=5, the worst-case combined
performance are respectively 0.93, 0.91 and 0.86. For values
of Bci greater than 1500$, the results do not improve. The
case Bci=1500$ (pink triangles in Figure 3b) leads to the best
possible results for this case-study.

B. Computational cost

The computational time in seconds of the NC&CG algo-
rithm is shown in Table II. In this study, the computational cost
is acceptable, as the longest instance of the NC&CG algorithm
occurs for Bci=900$ and Katt=4, and it takes 525 seconds.

For larger case-studies, the computational time might in-
crease considerably, due to the large number of binary vari-
ables involved. However, an increased computational cost does
not represent an insurmountable issue: firstly, this model is
tailored to be utilized during design phases, and long compu-
tational times do not pose particular problems; secondly, the
complexity of the model can be reduced limiting the feasible
number of coupling interfaces according to geographical and
physical constraints. For example, one can assume that only
nodes within a specific distance range can be coupled together
(e.g. only nodes within 100 km from each other); this would
limit the number of y variables involved, thus reducing the
complexity and computational cost of the model.

VI. CONCLUSION

In this paper, we have proposed a novel mathematical pro-
gramming framework for the identification of the optimal cou-
pling interface between interdependent critical infrastructures,
using as an illustrative case-study interdependent power and
gas networks. The proposed approach outperformed network
metrics-based approaches utilized in the existing literature,
and the identified solutions represent the most robust coupling
interfaces under different feasible attacks sets and monetary
budget.
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Fig. 3: Simulation results for the network.

TABLE II: Computational time in seconds of the NC&CG
algorithm.

Bci Katt=1 Katt=2 Katt=3 Katt=4 Katt=5

823 2.54 9.40 18.76 70.68 109.03

900 6.33 14.69 35.56 525.34 287.17

1000 3.60 18.24 24.72 168.52 353.26

1100 2.19 11.54 85.51 128.61 407.48

1200 8.12 27.88 28.61 204.97 77.39

1300 9.44 22.08 34.94 71.06 74.89

1400 6.02 25.02 74.17 49.97 74.89

1500 2.04 19.21 46.07 27.62 53.79

In summary, the contributions of this paper are:

• The development of a novel approach for the robust
design of coupling interfaces.

• The development of a reliable and efficient solution
procedure based on the Nested Column&Constraint Gen-
eration algorithm.

• The development of a case-study to show that the
proposed approach outperforms network metrics-based
coupling interface designs and lead to the most robust
solution.

The proposed case-study is based on interdependent power
and gas networks, modeled using a DC power flow model and
a maximum flow model, respectively. However, the proposed
approach can be applied to any combination of interdependent
critical infrastructures.

The proposed approach outperforms other coupling strate-
gies in terms of robustness against external attacks, as it
allows identifying the most robust coupling interface. The
conservativeness of the model can be tuned adjusting the size
of the feasible attacks set, with variations of maximum number
of lines attacked and failed. The model can be easily adapted
to different disruption scenarios, for example including failure
of nodes.

Our solution strategy leads to acceptable computational
times in this work. However, the computational cost might

increase considerably for larger case-studies. Nevertheless, it
does not represent a particular issue, since this approach aims
at being used during design phases.

Further improvements of this work will consist in the
inclusion of failure probabilities within the proposed approach,
such to identify robust coupling interfaces under uncertain
disruption scenarios.

APPENDIX A
NOMENCLATURE

Sets

VPN Set of nodes in the power network.
EPN Set of edges in the power network.
VGN Set of nodes in the gas network.
EGN Set of edges in the gas network.
VTOT Set of nodes VPN ∪ VGN .
ETOT Set of edges EPN ∪ EGN .

Variables first stage

y Vector of coupling interface variables y1ij and y2ij .
p0 Vector of production variables p0i .
d0 Vector of demand variables d0i .
f0 Vector of flow variables f0k .
θ0 Vector of phase angle variables θ0k.
δ0 Vector of interdependency variables δPN,0i and

δGN,0i .
y1ij Binary coupling variable between nodes i ∈ VGN

and j ∈ VPN .
y2ij Binary coupling variable between nodes i ∈ VPN

and j ∈ VGN .
p0i Production variable at node i.
d0i Demand variable at node i.
f0k Flow variable at edge k.
θ0k Phase angle variable at node i ∈ VPN .
δPN,0i Binary interdependency state variable at node i ∈

VPN .
δGN,0i Binary interdependency state variable at node i ∈

VGN .
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Variables second stage
u Vector of attack variables uk.
uk Binary attack variable at edge k ∈ EPN .

Variables third stage
p Vector of production variables pi.
d Vector of demand variables di.
f Vector of flow variables fk.
θ Vector of phase angle variables θk.
δ Vector of interdependency variables δPNi and δGNi .
pi Production variable at node i.
di Demand variable at node i.
fk Flow variable at edge k.
θk Phase angle variable at node i ∈ VPN .
δPNi Binary interdependency state variable at node i ∈

VPN .
δGNi Binary interdependency state variable at node i ∈

VGN .

Other variables
z Vector of variables z1ij and z2ij .
r Vector of attack variables rij .
z1ij Binary variable for linearizing quadratic terms in

the first and third stage.
z2ij Binary variable for linearizing quadratic terms in

the first and third stage.
rij Binary variable for linearizing cubic terms in the

first and third stage.

Parameters
c1km Cost per km of interdependency from power net-

work to gas network.
c2km Cost per km of interdependency from gas network

to power network.
dkmij Distance in km between nodes i and j.
Bci Budget for coupling interface allocation.
pi Production capacity in node i.
d
b

i Base requested demand in node i.
d
max

PN Total requested demand in power network.
d
max

GN Total requested demand in gas network.
d
MW

i Electricity demand of node i ∈ VGN .

d
m3

i Gas flow demand of node i ∈ VPN .
fk Flow capacity of edge k.
xk Reactance of line k in pu.
wPN Weight of the power network.
wGN Weight of the gas network.
Katt Maximum number of edges attacked and failed in

the power network.

APPENDIX B
TRI-LEVEL NONLINEAR OPTIMIZATION PROGRAM

max
{p0,d0,f0,θ0,δ0}

y∈{0,1}Mc

min
u∈{0,1}MA

max
{p,d,f ,θ,δ}

wPN

∑
i∈VPN

di

d
max

PN

+wGN

∑
i∈VGN

di

d
max

GN

(38)

where d
max

PN and d
max

GN are defined in (39) and (40):

d
max

PN =
∑
i∈VPN

d
b

i +
∑

j∈VGN

d
MW

j (39)

d
max

GN =
∑
i∈VGN

d
b

i +
∑

j∈VPN

d
m3

j (40)

subject to:

First stage ∑
j∈VPN

y1ij ≤ 1, ∀i ∈ VGN (41)

∑
j∈VGN

y2ij ≤ 1, ∀i ∈ VPN (42)

∑
i∈VGN
j∈VPN

y1ij d
km
ij C1

km +
∑
i∈VPN
j∈VGN

y2ij d
km
ij C2

km ≤ Bci (43)

0 ≤ p0i ≤ pi, ∀i ∈ VTOT (44)

0 ≤ d0i ≤ d
b

i +
∑

j∈VGN

y1ji d
MW

j , ∀i ∈ VPN (45)

0 ≤ d0i ≤ d
b

i +
∑

j∈VPN

y2ji d
m3

j , ∀i ∈ VGN (46)

−fk ≤ f0k ≤ fk, ∀k ∈ ETOT (47)

xkf
0
k − (θ0O(k) − θ

0
D(k)) = 0, ∀k ∈ EPN (48)

p0i − d0i +
∑

D(k)=i

f0k −
∑

O(k)=i

f0k = 0, ∀i ∈ VTOT (49)

di − δPN,0i

(
dbi +

∑
j∈VGN

y1ji d
MW

j

)
≥ 0, ∀i ∈ VPN (50)

d0i − δ
GN,0
i

(
dbi +

∑
j∈VPN

y2ji d
m3

j

)
≥ 0, ∀i ∈ VGN (51)

p0i − pi
∑

j∈VGN

y2ij δ
GN,0
j ≤ 0, ∀i ∈ VPN (52)

p0i − pi
∑

j∈VPN

y1ij δ
PN,0
j ≤ 0, ∀i ∈ VGN (53)

di − d
b

i

∑
j∈VPN

y1ij δ
PN
j

−
∑

j∈VPN

y2ji d
m3

j

∑
j∈VPN

y1ij δ
PN
j ≤ 0, ∀i ∈ VGN (54)
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−
∑

i=O(k)
j∈VPN

y1ij δ
PN,0
i fk ≤ f0k ≤

∑
i=O(k)
j∈VPN

y1ij δ
PN,0
i fk, ∀k ∈ EGN (55)

−
∑

i=D(k)
j∈VPN

y1ij δ
PN,0
i fk ≤ f0k ≤

∑
i=D(k)
j∈VPN

y1ij δ
PN,0
i fk, ∀k ∈ EGN (56)

wPN

∑
i∈VPN

d0i

d
max

PN

+ wGN

∑
i∈VGN

d0i

d
max

GN

≥ 1 (57)

yij ∈ {0, 1}, ∀i ∈ VGN , ∀j ∈ VPN (58)

Second stage ∑
k∈EPN

(1− uk) ≤ Katt (59)

uk ∈ {0, 1}, ∀k ∈ EPN (60)

Third stage

0 ≤ pi ≤ pi, ∀i ∈ VTOT (61)

0 ≤ di ≤ d
b

i +
∑

j∈VGN

y1ji d
MW

j , ∀i ∈ VPN (62)

0 ≤ di ≤ d
b

i +
∑

j∈VPN

y2ji d
m3

j , ∀i ∈ VGN (63)

−ukfk ≤ fk ≤ ukfk, ∀k ∈ EPN (64)

−fk ≤ fk ≤ fk, ∀k ∈ EGN (65)

xkfk −
(
θO(k) − θD(k)

)
≥ −Mk(1− uk),∀k ∈ EPN (66)

xkfk −
(
θO(k) − θD(k)

)
≤Mk(1− uk), ∀k ∈ EPN (67)

pi − di +
∑

D(k)=i

fk −
∑

O(k)=i

fk = 0, ∀i ∈ VTOT (68)

di − δPNi
(
d
b

i +
∑

j∈VGN

y1ji d
MW

j

)
≥ 0, ∀i ∈ VPN (69)

di − δGNi
(
d
b

i +
∑

j∈VPN

y2ji d
m3

j

)
≥ 0, ∀i ∈ VGN (70)

pi − pi
∑

j∈VGN

y2ij δ
GN
j ≤ 0, ∀i ∈ VPN (71)

pi − pi
∑

j∈VPN

y1ij δ
PN
j ≤ 0, ∀i ∈ VGN (72)

di − d
b

i

∑
j∈VPN

y1ij δ
PN
j

−
∑

j∈VPN

y2ji d
m3

j

∑
j∈VPN

y1ij δ
PN
j ≤ 0, ∀i ∈ VGN (73)

−
∑

i=O(k)
j∈VPN

y1ij δ
PN
i fk ≤ fk ≤

∑
i=O(k)
j∈VPN

y1ij δ
PN
i fk, ∀k ∈ EGN (74)

−
∑

i=D(k)
j∈VPN

y1ij δ
PN
i fk ≤ fk ≤

∑
i=D(k)
j∈VPN

y1ij δ
PN
i fk, ∀k ∈ EGN (75)

δPNi , δGNi ∈ {0, 1}, θj free, ∀i ∈ VTOT ,∀j ∈ VPN (76)

APPENDIX C
CONSTRAINTS LINEARIZATION

di − δPNi di +
∑

j∈VGN

z1ji d
MW

j ≥ 0, ∀i ∈ VPN (77)

di − δGNi di +
∑

j∈VPN

z2ji d
m3

j ≥ 0, ∀i ∈ VGN (78)

pi − pi
∑

j∈VGN

z2ij ≤ 0, ∀i ∈ VPN (79)

pi − pi
∑

j∈VPN

z1ij ≤ 0, ∀i ∈ VGN (80)

di − di
∑

j∈VPN

z1ij − d
m3

j

∑
i∈VPN
k∈VPN

rjik ≤ 0, ∀i ∈ VGN (81)

−
∑

i=O(k)
j∈VPN

z1ij fk ≤ fk ≤
∑

i=O(k)
j∈VPN

z1ij fk, ∀k ∈ EGN (82)

−
∑

i=D(k)
j∈VPN

z1ij fk ≤ fk ≤
∑

i=D(k)
j∈VPN

z1ij fk, ∀k ∈ EGN (83)

z1ij ≤ y1ij , ∀i ∈ VGN , ∀j ∈ VPN (84)

z1ij ≤ δPNj , ∀i ∈ VGN , ∀j ∈ VPN (85)

z1ij ≥ y1ij + δPNj − 1, ∀i ∈ VGN , ∀j ∈ VPN (86)
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z2ij ≤ y2ij , ∀i ∈ VPN , ∀j ∈ VGN (87)

z2ij ≤ δGNj , ∀i ∈ VPN , ∀j ∈ VGN (88)

z2ij ≥ y2ij + δGNj − 1, ∀i ∈ VPN , ∀j ∈ VGN (89)

rijk ≤ z1jk, ∀i ∈ VPN ,∀j ∈ VGN ,∀k ∈ VPN (90)

rijk ≤ y2ij , ∀i ∈ VPN ,∀j ∈ VGN ,∀k ∈ VPN (91)

rijk ≥ z1jk + y2ij − 1,∀i ∈ VPN ,∀j ∈ VGN ,∀k ∈ VPN(92)

z1ij , z
2
ij , rijk ∈ {0, 1},∀i ∈ VPN ,∀j ∈ VGN ,∀k ∈ VPN(93)

APPENDIX D
IPGN PARAMETERS

TABLE III: Production capacity and base requested demand
for each node in the power network.

Node index pi d
b
i

1 42 8.5
2 42 8.5
3 42 8.5
4 0 8.5
5 0 8.5
6 42 8.5
7 0 8.5
8 42 8.5
9 0 8.5
10 0 8.5
11 0 8.5
12 0 8.5
13 0 8.5
14 0 8.5

TABLE IV: Boundaries, maximum flow capacity and reac-
tance for each line in the power network.

Line index Boundaries (i, j) fk xk (p.u.)
1 (1, 2) 30 0.05917
2 (1, 5) 30 0.22304
3 (2, 3) 30 0.19797
4 (2, 4) 30 0.17632
5 (2, 5) 30 0.17388
6 (3, 4) 30 0.17103
7 (4, 5) 30 0.04211
8 (4, 7) 30 0.20912
9 (4, 9) 30 0.55618

10 (5, 6) 30 0.24202
11 (6, 11) 30 0.1989
12 (6, 12) 30 0.25581
13 (6, 13) 30 0.13027
14 (7, 8) 30 0.17615
15 (7, 9) 30 0.11001
16 (9, 10) 30 0.0845
17 (9, 14) 30 0.27038
18 (10, 11) 30 0.19207
19 (12, 13) 30 0.19988
20 (13, 14) 30 0.34802

TABLE V: Production capacity and base requested demand
for each node in the gas network.

Node index pi di

1 15 0
2 15 0
3 15 0
4 0 5
5 0 5
6 0 5
7 0 5
8 0 5
9 0 5

TABLE VI: Boundaries and maximum flow capacity for each
line in the gas network.

Line index Boundaries (i, j) fk
1 (1, 2) 15
2 (1, 5) 10
3 (2, 3) 10
4 (2, 4) 15
5 (2, 5) 10
6 (3, 4) 10
7 (4, 5) 15
8 (4, 7) 10
9 (4, 9) 10
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