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Abstract

In this work we describe and compare the classic inner product and Pearson correlation coefficient as well as the

recently introduced real-valued Jaccard and coincidence indices. Special attention is given to diverse schemes for taking

into account the signs of the operands, as well as on the study of the geometry of the scalar field surface related to the

generalized multiset binary operations underling the considered similarity indices. The possibility to split the classic

inner product, cross-correlation, and Pearson correlation coefficient is also described.

‘At the horizon line, where the sea meets the sky, countless

sails.’

LdaFC

1 Introduction

Though not often realized, the correlation, as well as the

closely related convolution binary operators (in the math-

ematical sense of taking two arguments) are among the

most frequently employed operations in science and tech-

nology. Basically, the correlation between two functions

f(x) and g(x) can be understood in terms of the inner

product, which is a functional acting over the whole ex-

tent of both functions.

More specifically, the inner product can be understood

as being related to the product of one of the vectors f (or

functions) by the projection of the other onto f . Provided

the magnitudes of the two vectors are kept constant, the

inner product will also quantify the similarity between the

two vectors, as gauged from the smallest angle between

them.

Two other similarity approaches, namely the real-

valued Jaccard and coincidence indices, have been re-

cently proposed [1, 2, 3, 4], mainly based on extensions

of the multiset theory to take into account real, possibly

negative values.

In the present work, we aim at studying in some detail

the structure and geometry of these three considered in-

dices, namely the inner product as well as the real-valued

Jaccard and coincidence indices. We start by present-

ing some basic concepts related to the inner product and

data standardization, which is often applied to datasets

and which implied negative respective values. Then, we

revise and present several schemes that can be adopted

to express the sign alignment between two real values

(i.e. xy > 0 or xy < 0). The several new multiset binary

operations (in the sense of taking two arguments) are then

revised, which are involved in the considered similarity in-

dices.

The real-valued Jaccard and coincidence indices are

presented next, including an interesting result relating the

classic inner product with two generalized multiset oper-

ations. The geometry and symmetry of the considered

similarity indices is then approached from their respective

versions adapted to two real scalar values. A striking ge-

ometry is observed for the real-valued Jaccard that closely

resembles the generalized Kronecker delta function [5, 4].

The reported concepts and methods are also employed

to propose a double Pearson correlation coefficient in

which the effects of the values with same or opposite signs

can be separated and controlled as a linear combination

depending on a parameter α, in a manner similar to that

adopted for the coincidence index in [6].

2 Basic Concepts

Given two vectors ~x and ~y, both in RN , their respective

inner (or scalar, or dot) product can be expressed as:

〈~x, ~y〉 =

N∑
i=1

xi yi = |~x||~y| cos(θ) (1)
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where θ is the smallest angle between the two vectors

and:

|~x| =

√√√√ N∑
i=1

x2i ; |~y| =

√√√√ N∑
i=1

y2i (2)

Observe that the inner product is neither upper nor

lower bound and can take positive, null (orthogonal vec-

tors), or negative values.

The often adopted cosine similarity can be expressed

as:

cos(θ) =
〈~x, ~y〉
|~x||~y|

(3)

from which we see that this similarity index does not

take into account the magnitudes of the operands x and

y, but only the smallest angle between the two vectors.

We also have that −1 ≤ cos(θ) ≤ 1.

Similarly, given two real functions f(x) and g(x), their

inner product is defined as:

〈f(x), g(x)〉 =

ˆ
S

f(x)g(x)dx (4)

where S is the combined support of both functions.

When applied to real functions, the inner product al-

lows to consider the length, distance, orthogonality, and

angle between functions in a manner analogous to that of

the inner product applied to vectors. It is also interesting

to contemplate the situation in which the inner product

is applied to discretized versions of functions. Because

functions are also vectors, in the sense of vector spaces,

we will henceforth refer generically to both vectors and

functions.

It is possible to derive a distance between two operands

f and g from the inner product. First, we express the

norm of a vector f in terms of the inner product as:

|f | =
√
〈f(x), f(x)〉 (5)

so that we can now define the distance between two

vectors f and g as:

d(f, g) = |f − g| =
√
〈f(x)− g(x)〉 (6)

which corresponds to the Euclidean distance between f

and g.

A complete inner product space is called a Hilbert space

in functional analysis (e.g. [7]), which can be informally

understood as being an extension from vectors of linear

algebra to real function spaces. In addition, the concept

of proximity expressed in the inner product also relates

to topological concepts. For instance, by complete it is

meant that all Cauchy sequences in the metric space has

a limit contained in that same space, which can be infor-

mally understood as the space not having ‘gaps’ or ‘holes’.

Let X and Y be any two random variables described

by respective density probabilities p(x) and p(y).

Their average and variance can be defined as:

µX =

ˆ
S

xp(x)dx (7)

µY =

ˆ
S

yp(y)dy (8)

σ2
X =

ˆ
S

(x− µX)2p(x)dx (9)

σ2
Y =

ˆ
S

(y − µY )2p(y)dx (10)

The respective standard deviations are:

σX = +
√
σ2
X (11)

σY = +
√
σ2
Y (12)

In case the joint density probability p(x, y) is known,

we can define the covariance between X and Y as:

Given a random variable X, it can be standardized as:

X̃ =
X − µX

σX
(13)

The standardization procedure is often employed, es-

pecially to make a set of random variables more com-

mensurate, therefore avoiding those variable with larger

magnitudes to dominate. However, the decision to stan-

dardize or not depends on each specific data and problem.

After standardization, each of the random variables will

have zero means and unit standard deviation. In addition,

most of the values will result inside the interval [−2, 2].

The unbiased covariance between two random variables

X and Y represented in terms of respective samples ~x =

x1, x2, . . . , xN and ~y = y1, y2, . . . , yN can be estimated as:

cov(X,Y ) =
1

N − 1

N∑
i=1

[xi − µX ] [yi − µY ] (14)

which can be understood as a normalized inner product,

in the sense that:

cov(X,Y ) =
1

N − 1
〈X − µX , Y − µY 〉 (15)

Interestingly, when the cross-correlation is taken on

standardized vectors ~x and ~y, it becomes identical to the

Pearson correlation coefficient −1 ≤ P (x, y) ≤ 1.

In summary, we have seen that the classic inner prod-

uct, the L2 norm, the cosine similarity, the Euclidean dis-

tance, the cross-correlation, the covariance, and the Pear-

son correlation coefficient are all directly related to the

inner product between two vector or function operands.
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3 Conjoint Sign Functions

Given two signals x(t) and y(t), their respective sign func-

tions can be expressed as:

sx = sx(t) = sign(x(t)) (16)

sy = sy(t) = sign(y(t)) (17)

We can now define the following conjoint sign func-

tions:

sp = |sx + sy| (18)

sm = |sx − sy| (19)

shp = |sx + sy|/2 (20)

shm = |sx − sy|/2 (21)

sxy = sxsy (22)

Figure 1 illustrates the functions xh+, xh−, and xxy
respectively to x = sin(x) and y = cos(x).

Figure 1: Functions f(x) and g(x) corresponding to a whole period

of sine and cosine, and the respective conjoint sign functions sfg ,

shp and shm. Observe that sfg = shp − shm and also that the

y−axis in (b-d) have different limits.

The function in Equation 20 has been used in [8], and

that in Equation 22 has been employed in [9, 10], both

related to the L1 norm. The latter function has also ap-

pears in the minmod slope limiting function adopted in

partial differential equations (e.g. [11]). The function in

Equation 21 has been used in [6, 3].

We also have that:

shp = 1− shm (23)

shm = 1− shp (24)

sxy = sp − 1 (25)

sxy = 1− sm (26)

sxy = shp − ssm (27)

(28)

The generalized Kronecker delta function has been sug-

gested [3, 4] as a means to express not only same sign

similarity as in the traditional Kronecker delta, but also

opposite sign relationships. It can be expressed as:

δ±x,y =


1 ⇐⇒ x = y, x, y 6= 0

0 ⇐⇒ x = y = 0

−1 ⇐⇒ x = −y, x, y 6= 0

(29)

Figure 2 illustrates the generalized Kronecker delta

function.

(a)

Figure 2: The generalized Kronecker delta function allows the

strictest quantification of similarities between values with the same

or opposite signs, providing a reference for other similarity indices.

As developed in [3], the generalized Kronecker delta

function plays a critically important role in defining the

most strict similarity test, from which other more tolerant

similarity indices including the inner product and real-

valued Jaccard index can be directly related.

4 Generalized Multisets

Multisets (e.g. [12, 13, 14, 15, 16, 17]) provide an intuitive

and interesting extension of the classic set theory so as to

allow the repetition of elements. Generalized versions of

multisets [1, 2, 3, 4] have been developed to allow real,

possibly negative multiplicities. Basically, the multiset

subtraction is allowed to take negative values, so that the

complement of a multiset A can be performed as Φ − A,

where the null multiset takes the place of the universe set
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in set theory. The generalization of multiplicities to take

real, possibly negative values [1, 2, 3, 4] allow new binary

operations to be defined between two multifunctions x(z)

and y(z), including but not being limited to:

f ∩ g =

ˆ
S

min {x, y} dz (30)

f ∪ g =

ˆ
S

max {x, y} dz (31)

f u g =

ˆ
S

sfg min {sxx, syy} dz (32)

f t g =

ˆ
S

sfg max {sxx, syy} dz (33)

f u− g =

ˆ
S

|sx − sy|/2 min {sxx, syy} dz (34)

f u+ g =

ˆ
S

|sx + sy|/2 min {sxx, syy} dz (35)

f t− g =

ˆ
S

|sx − sy|/2 max {sxx, syy} dz (36)

f t+ g =

ˆ
S

|sx + sy|/2 max {sxx, syy} dz (37)

f ũg =

ˆ
S

min {sxx, syy} dz (38)

f t̃g =

ˆ
S

max {sxx, syy} dz (39)

Equations 30 and 31 correspond to the multiset coun-

terparts of the set theory operations of intersection and

union. However, we do not have, as could expected, that

the intersection of a generic multiset x and the null mul-

tiset Φ corresponds to the null multiset. On the contrary,

we typically have that:

x ∩ Φ 6= Φ (40)

The binary operations in Equations 32 and 33 can be

understood as the intersection and union considering neg-

ative multiplicities. Now, we do have that:

x u Φ = Φ (41)

Equations 35 and 34 can be understood as the intersec-

tion operation acting only when x and y have the same

or opposite signs. Equations 37 and 36 are have the anal-

ogous effect regarding union.

Equations 38 and 39 can be understood as the intersec-

tion and union acting on the absolute values of multiplic-

ities.

These several operations, which allow great flexibility

for taking into account diverse combinations of operands

signs, provide the basis for obtaining the similarity indices

considered in the present work.

5 The Real-Valued Jaccard and

Coincidence Indices

It has been described [1, 2, 3, 4] that, when generalized

to real, possibly negative multiplicities, the Jaccard index

becomes:

JR(f, g) =

´
S
sfg min {sxx, syy} dx´
S

max {sff , sgg} dx
=
f u g
f t̃g

(42)

which has been called the real-valued Jaccard similarity

index.

Interestingly, it can be verified that the following equa-

tion is identical to the previous one, therefore providing

an alternative definition for the real-valued Jaccard index:

JR(f, g) =

´
S

[f(x) g(x)] dx[´
S

max {sff , sgg} dx
]2 =

〈f, g〉
[f t̃g]

2 (43)

Thus, we have that:

JR(f, g) =
f u g
f t̃g

=
〈f, g〉
[f t̃g]

2 (44)

which then implies:

〈f, g〉 = [f u g] [f t̃g] (45)

This result illustrates the flexibility of the generalized

multiset operations described in Section 4. In addition,

it establishes an important link between the real-valued

Jaccard, as well as the coincidence indices, with the clas-

sic inner product. As a matter of fact, this result shows

that the cross correlation, which consists in the successive

sliding application of the inner product, can actually be

used for calculation of the real-valued Jaccard index, and

vice versa, provided the proper normalization is taken into

account. This important link will be further considered

in Section 6 in order to better understand the properties

of the similarity indices considered in this work.

Given that the Jaccard index is not capable of tak-

ing into account the relative interiority between the two

compared sets, vectors or functions [1], it has been com-

plemented by considering the interiority index (also over-

lap [18]) which, when adapted to real, possibly negative

values yields:

IR(f, g) =

´
S

min {sxx, syy} dx
min {Sf , Sg}

=
f u g

min {Sf , Sg}
(46)

where:

Sf =

ˆ
S

sff(x)dx (47)

Sg =

ˆ
S

sgg(x)dx (48)
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The coincidence index can now be expressed [1, 2, 3, 4]

as corresponding to the product between the real-valued

Jaccard and interiority indices:

CR(f, g) =
[f u g] [f ũg]

[f t̃g] min {Sf , Sg}
(49)

or, in expanded notation:

CR(f, g) =

=

[´
S
sfg min {sxx, syy} dx

] [´
S

min {sxx, syy} dx
][´

S
max {sff , sgg} dx

]
[min {Sf , Sg}]

(50)

6 The Geometry of Similarity

In this section we study in some detail the geometry and

symmetries of the above presented similarity indices in

order to better understand the properties and effects of

each index.

We start by considering the real-valued Jaccard simi-

larity index rewritten for two real scalar values f = x and

g = y:

JR(x, y) =
sxy min {|x|, |y|}
max {sxx, syy}

(51)

We can then separate the numerator and denominator

as:

A1(x, y) = sxy min {sxx, syy} = x u y (52)

A2(x, y) = max {sxx, syy} = xt̃y (53)

which, as two scalar fields on the (x, y) domain, can be

visualized.

We will also consider the following additional fields, di-

rectly related to the inner product:

A3(x, y) = x y (54)

A4(x, y) = [max {sxx, syy}]2 = [xt̃y]
2

(55)

as well as the multiset operation:

A5(x, y) = min {sxx, syy} = xũy (56)

When rewritten for scalar real values x and y, we have

that f ũg = min {Sx, Sy} and therefore the coincidence

index becomes:

CR(x, y) =
[x u y] [xũy]

[xt̃y] [xũy]
=
x u y
xt̃y

= JR(x, y) (57)

However, observe that this will not, in general, be the

case with higher dimensional vector operands, in which

case the real-valued Jaccard and coincidence index will

be typically distinct.

(a)

(b)

(c)

Figure 3: The scalar fields A1(x, y) in Equation 52 (a); A2(x, y)

in Equation 53 (b); and the real-valued Jaccard index JR(x, y) =

A1(x, y)/A2(x, y (c) for −2 ≤ x ≤ 2 and −2 ≤ y ≤ 2. Observe

the striking geometry of the real-valued Jaccard index shown in (c),

which is closely related to the generalized Kronecker delta function.

Figure 3 illustrates the fields A1(x, y) (a) and A2(x, y)

(b) for −2 ≤ x ≤ 2 and −2 ≤ y ≤ 2.

Observe the striking geometry of the surface in Fig-

ure 3(c). As a more detailed verification will reveal, this

function resembles closely the generalized Kronecker delta
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function [5]. Observe the gradual, linear rotation from the

identity line x = y to the anti-identity line x = −y. It

is this specific geometry of the real-valued Jaccard index

that contributes to enhanced performance for template

matching observed in [19, 5].

Figure 8 presents the multiset operations in Equa-

tions 54 and 55, the former of which being directly related

to the inner-product.

(a)

(b)

Figure 4: The scalar fields A3(x, y) in Equation 55 (a); A2(x, y)

in Equation 53 (b); for −2 ≤ x ≤ 2 and −2 ≤ y ≤ 2. Recall

that, for scalar values, CR(x, y) = JR(x, y) = A3(x, y)/A4(x, y) =

A1(x, y)/A2(x, y), which is shown in Fig. 3(c).

Figure 5 depicts the multiset absolute union operation

xũy, which plays an important role in both the interiority

and coincidence indices.

We are now in position to analyze more closely the ge-

ometry of the cross-correlation and real-valued Jaccard

index. Given the quadrant symmetries of these indices,

we henceforth focus our attention only on the first quad-

rant, x ≥ 0 and y ≥ 0.

Let’s consider the real-valued Jaccard similarity applied

Figure 5: The scalar field obtained for the multiset operation xũy,

where x and y are real scalar values, for−2 ≤ x ≤ 2 and−2 ≤ y ≤ 2.

to real scalar values. We have the following situations:
x > y ⇐⇒ JR(x, y) = y

x

x = y = 0 ⇐⇒ JR(x, y) = 0

x < y ⇐⇒ JR(x, y) = x
y

(58)

Given the involved symmetries, we can further restrict

our attention to x > y.

Figure 6: The geometrical construction adopted for studying the

geometry of the scalar field defined by the real-valued Jaccard sim-

ilarity index assuming scalar operands in the case of x > y.

If we fix our attention to the points (x, y), with x > y,

so that ρ =
√
x2 + y2 is equal to a fixed constant ρ̃, we

will find that:

JR(α, ρ = ρ̃) =
y

x
= tan (α) (59)

Therefore, we have that the real-valued Jaccard simi-

larity along the semi-circle defined by α and ρ̃ increases

with tanα as we go from α = 0 to α = π/4. At α = π/4,

we have JR(x, y) = tan(π/4) = 1, which corresponds to

the classic Kronecker delta function.

The above geometry analysis reveals that the real-

valued Jaccard similarity index corresponds to a version

of the Kronecker delta function in which the similarity

decreases with the tangent of α as one rotates from the
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maximum crest corresponding to the classic Kronecker

delta function. As such, the real-valued Jaccard indeed

implements a more strict quantification of the similarities,

as described in [1, 3, 4].

It is also interesting to consider the possibility of hav-

ing:

JR(f, g) =
[f u g]

D

f t̃g
(60)

Figure 7 illustrates the scalar versions of the real-valued

Jaccard index with the numerator taken to the power of

D for D = 2, 3, 5 and 21. Two particularly interesting

properties can be observed. First, we have that even

values of D will imply the real-valued Jaccard index to

become related to the absolute value of the generalized

Kronecker delta function, which can be of interest for cer-

tain applications. Second, it is interesting to observe that

the real-valued Jaccard index converges to the generalized

Kronecker delta function as D →∞, for D odd.

The above results indicate that the poser D controls

how much the real-valued Jaccard index is strict regard-

ing the quantification of similarity. More strict similarity

quantifications will be characterized by steeper crests in

the respectively obtained geometries. A similar result is

obsered for the case of the coincidence index.

7 The Double Pearson Coefficient

As described recently in [6], it is interesting to split Equa-

tion 32 as a combination of the indices proposed in [8],

i.e.:

f u g = 2 [α] [f u+ g]− 2 [1− α] [f u− g] (61)

where 0 ≤ α ≤ 1 controls the contribution of the pairs

of values x and y that have the same or opposite signs

on the resulting integration. This resource has proven

to allow an effective means for obtaining progressions of

datasets represented as complex networks that are in-

creasingly more connected for increasing values of α.

The concepts and methods reviewed and reported in

this work paves the way to obtaining an analogous decom-

position of the classic inner product as well as its normal-

ized version known as the Pearson correlation coefficient.

Let’s define the functionals:

〈f, g〉− =

ˆ
S

|sx − sy|/2x ydz (62)

〈f, g〉+ =

ˆ
S

|sx + sy|/2x ydz (63)

(64)

The double inner product can therefore be written as:

〈f, g〉 = [α] 〈f, g〉− − [1− α] 〈f, g〉+ (65)

(a)

(b)

(c)

(d)

Figure 7: The scala version of the real-valued Jaccard index with

the numerator taken to the power of D for D = 2 (a), 3, (b), 5 (c),

and 21 (d). Observe the convergence of this index to the generalized

Kronecker delta function as D →∞, D odd.

It may also be interesting to consider the two split

terms separately in order to provide additional informa-
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tion about the joint variation of the two operands x and

y.

Figure 8: Two rather distinct point distributions which could have

the same inner product or Pearson correlation coefficient. The con-

sideration of the double Pearson correlation suggested in this work

allows these situations to be effectively distinguished. For instance,

in the case of this specific example, we would have that 〈f, g〉−
would be non-zero at (x = 0, y = 0) for (a) and zero for the point

distribution in (b).

8 Concluding Remarks

The prsent work has addressed the properties of the inner

product as well as the real-valued Jaccard and coincidence

indices, with emphasis on the several interesting schemes

that can be employed to take into account the sign of the

operands. These developments are strongly based on the

generalization of multisets to take into account real, pos-

sibly negative values. In particular, these generalizations

allow several additional binary operators between multi-

sets to be defined, many of which have been presented

here.

Special attention has been give to the geometrical char-

acterization of the surfaces arising by the several involved

multiset operators which, for scalar values of the operands

x and y, define respective scalar fields that can be conve-

niently visualized. This approach has allowed us to ob-

serve that the real-valued Jaccard and coincidence indices

present a geometry that closely resembles the generalized

Kronecker delta function, involving a rotation from the

identity line x = y to the anti-identity line x = −y fol-

lowing the tangent function. It has also been verified that

taking the numerator of the real-valued Jaccard index to

the power of D, with D odd, provides an effective man-

ner to control de degree of how much strict the similarity

quantification is performed. In particular, these functions

converge to the generalized Kronecker delta as D → ∞,

D odd.

The reported approach also motivates the considera-

tion of local and global properties of the geometry of the

obtained surfaces, such as the respective gradients, as a

means to formally specify criteria for the similarity quan-

tification. For instance, one may aim at achieving min-

imum variation of the gradient magnitude as one moves

from x = y to x = −y.

The described concepts also paved the way to devel-

oping a double Pearson correlation coefficient, in which

the contribution of the values x and y with the same or

opposite signs can be separated and taken as a linear com-

bination controlled by a respective parameter 0 ≤ α ≤ 1,

in a similar manner to that described recently in [6, 20].
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