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Indexed Minimum Empirical Divergence for Unimodal Bandits

. Owing to our proof technique, we are able to provide a concise finite-time analysis of the IMED-UB algorithm. Numerical experiments show that IMED-UB competes with the state-of-the-art algorithms.

Introduction

The multi-armed bandit problem is a popular framework to formalize sequential decision making problems. It was first introduced in the context of medical trials [START_REF] Thompson | On the likelihood that one unknown probability exceeds another in view of the evidence of two samples[END_REF][START_REF] Thompson | On a criterion for the rejection of observations and the distribution of the ratio of deviation to sample standard deviation[END_REF] and later formalized by [START_REF] Robbins | Some aspects of the sequential design of experiments[END_REF]: A bandit is specified by a configuration, that is a set of unknown probability distributions, ν = (ν a ) a∈A with means (µ a ) a∈A . At each time t ∈ N, the learner chooses an arm a t ∈ A, based only on the past, the learner then receives and observes a reward X t , conditionally independent, sampled according to ν at . The goal of the learner is to maximize the expected sum of rewards received over time (up to some unknown horizon T ), or equivalently minimize the regret with respect to the algorithm constantly receiving the highest mean reward

R(ν, T ) = E ν T t=1 µ -X t where µ = max a∈A µ a .
Both means and distributions are unknown, which makes the problem non trivial, and the learner only knows that ν ∈ D where D is a given set of bandit configurations. This problem received increased attention in the middle of the 20 th century, and the seminal paper [START_REF] Lai | Asymptotically efficient adaptive allocation rules[END_REF] established the first lower bound on the cumulative regret, showing that designing an algorithm that is optimal uniformly over a given set of configurations D comes with a price. The study of the lower performance bounds in multi-armed bandits successfully lead to the development of asymptotically optimal algorithms for specific configuration sets, such as the KLUCB algorithm [START_REF] Lai | Adaptive treatment allocation and the multi-armed bandit problem[END_REF][START_REF] Cappé | Kullback-Leibler upper confidence bounds for optimal sequential allocation[END_REF][START_REF] Maillard | Boundary crossing probabilities for general exponential families[END_REF] for exponential families, or alternatively the DMED and IMED algorithms from Honda andTakemura [2011, 2015]. The lower bounds from [START_REF] Lai | Asymptotically efficient adaptive allocation rules[END_REF], later extended by [START_REF] Burnetas | Optimal adaptive policies for Markov decision processes[END_REF] did not cover all possible configurations, and in particular structured configuration sets were not handled until [START_REF] Agrawal | Asymptotically efficient adaptive allocation schemes for controlled iid processes: Finite parameter space[END_REF] and then [START_REF] Graves | Asymptotically efficient adaptive choice of control laws incontrolled markov chains[END_REF] established generic lower bounds. Here, structure refers to the fact that pulling an arm 35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia. may reveals information that enables to refine estimation of other arms. Unfortunately, designing numerical efficient algorithms that are provably optimal remains a challenge for many structures.

Structured configurations. Motivated by the growing popularity of bandits in a number of industrial and societal application domains, the study of structured configuration sets has received increasing attention over the last few years: The linear bandit problem is one typical illustration [START_REF] Abbasi-Yadkori | Improved algorithms for linear stochastic bandits[END_REF], [START_REF] Srinivas | Gaussian process optimization in the bandit setting: no regret and experimental design[END_REF], [START_REF] Durand | Streaming kernel regression with provably adaptive mean, variance, and regularization[END_REF], for which the linear structure considerably modifies the achievable lower bound, see [START_REF] Lattimore | The end of optimism? an asymptotic analysis of finite-armed linear bandits[END_REF]. The study of a unimodal structure naturally appears in many contexts, e.g. single-peak preference economics, voting theory or wireless communications, and has been first considered in [START_REF] Yu | Unimodal bandits[END_REF] from a bandit perspective, then in [START_REF] Combes | Unimodal bandits: Regret lower bounds and optimal algorithms[END_REF] and [START_REF] Trinh | Solving bernoulli rank-one bandits with unimodal thompson sampling[END_REF] providing an explicit lower bound together with an algorithm exploiting this specific structure. Other structures include Lipschitz bandits [START_REF] Magureanu | Lipschitz bandits: Regret lower bounds and optimal algorithms[END_REF], and we refer to the manuscript [START_REF] Magureanu | Efficient Online Learning under Bandit Feedback[END_REF] for other examples, such as cascading bandits that are useful in the context of recommender systems. In [START_REF] Combes | Minimal exploration in structured stochastic bandits[END_REF], a generic algorithm is introduced called OSSB (Optimal Structured Stochastic Bandit), stepping the path towards generic multi-armed bandit algorithms that are adaptive to a given structure. More recently in [START_REF] Degenne | Structure adaptive algorithms for stochastic bandits[END_REF], the authors introduce an adaptation of the KLUCB strategy to handle structured multi-armed bandit problems.

Unimodal-structure. We assume a unimodal structure similar to that considered in [START_REF] Yu | Unimodal bandits[END_REF] and [START_REF] Combes | Unimodal bandits: Regret lower bounds and optimal algorithms[END_REF]. That is, there exists an undirected graph G = (A, E) whose vertices are arms A, and whose edges E characterize a partial order among means (µ a ) a∈A . This partial order is assumed unknown to the learner. We assume that there exists a unique optimal arm a = argmax a∈A µ a and that for all sub-optimal arm a = a , there exists a path P a = (a 1 = a, . . . , a a = a ) ∈ A a of length a 2 such that for all i ∈ [1, a -1], (a i , a i+1 ) ∈ E and µ ai < µ ai+1 . Lastly, we assume that ν ⊂ P := {p(µ), µ ∈ Θ}, where p(µ) is an exponential-family distribution probability with density f (•, µ) with respect to some positive measure λ on R and mean µ ∈ Θ ⊂ R. P is assumed to be known to the learner. Thus, for all a ∈ A we have ν a = p(µ a ). We denote by D (P,G) or simply D the structured set of such unimodal-bandit distributions characterized by (P, G). In the following, we assume that P is a set of one-dimensional exponential family distributions.

Contributions. In this paper, we provide novel regret minimization results related to the unimodal structure. We first revisit the Indexed Minimum Empirical Divergence (IMED) algorithm from [START_REF] Honda | Non-asymptotic analysis of a new bandit algorithm for semi-bounded rewards[END_REF] introduced for unstructured multi-armed bandits, and adapt it to the unimodalstructured setting. We introduce in Section 3 the IMED-UB algorithm that is limited to the pulling of the current best arm or their no more than d nearest arms at each time step, with d the maximum degree of nodes in G. Being constructed from IMED, IMED-UB does not require any optimization procedure and does not separate exploration from exploitation rounds. IMED-UB appears to be a local algorithm. We prove in Theorem 6 that IMED-UB is asymptotically optimal. Furthermore, this novel algorithm competes with the state-of-the-art algorithms in practice. This is confirmed by numerical illustrations on synthetic data. We believe that the construction of this algorithm together with the proof techniques developed in this paper are of independent interest for the bandit community.

Notations. Let ν ∈ D. Let µ = max a∈A µ a be the optimal mean and a = argmax a∈A µ a be the optimal arm of ν. We define for an arm a ∈ A its sub-optimality gap ∆ a = µ -µ a . Considering an horizon T 1, thanks to the chain rule we can rewrite the regret as follows:

R(ν, T ) = a∈A ∆ a E ν N a (T ) , (1) 
where N a (t) = t s=1 I {as=a} is the number of pulls of arm a at time t.

Regret lower bound

In this subsection, we recall for completeness the known lower bound on the regret when we assume a unimodal structure. In order to obtain non trivial lower bound we consider algorithms that are consistent (aka uniformly-good).

Definition 1 (Consistent algorithm) An algorithm is consistent on D if for all configuration ν ∈ D, for all sub-optimal arm a, for all α > 0, lim

T →∞ E ν N a (T ) T α = 0 .
We can derive from the notion of consistency an asymptotic lower bound on the regret, see [START_REF] Combes | Unimodal bandits: Regret lower bounds and optimal algorithms[END_REF].

Proposition 2 (Lower bounds on the regret) Let us consider a consistent algorithm. Then, for all configuration ν ∈ D, it must be that lim inf

T →∞ R(ν, T ) log(T ) c(ν) := a∈V a ∆ a KL(µ a |µ ) ,
where

KL(µ|µ ) = R log(f (x, µ)/f (x, µ ))f (x, µ)λ(dx) denotes the Kullback-Leibler divergence between ν = p(µ) and ν = p(µ ), for µ, µ ∈ Θ.
Remark 3 The quantity c(ν) is a fully explicit function of ν (it does not require solving any optimization problem) for some set of distributions ν (see Remark 4). This useful property no longer holds in general for arbitrary structures. Also, it is noticeable that c(ν) does not involve all the suboptimal arms but only the ones in V a . This indicates that sub-optimal arms outside V a are sampled o(log(T )), which contrasts with the unstructured stochastic multi-armed bandits. See [START_REF] Combes | Unimodal bandits: Regret lower bounds and optimal algorithms[END_REF] for further insights.

Remark 4 For Bernoulli distributions, a possible setting is to assume

λ = δ 0 + δ 1 (with δ 0 , δ 1 Dirac measures), Θ = (0, 1) and for µ ∈ Θ, f (•, µ) =: x ∈ {0, 1} → µ x (1 -µ) 1-x . Then for all µ, µ ∈ (0, 1), KL(µ|µ ) = µ log(µ/µ ) + (1-µ) log((1-µ)/(1-µ )).
For Gaussian distributions (variance σ 2 = 1), we assume λ to be the Lebesgue measure, Θ = R, and for µ

∈ R, f (•, µ) =: x ∈ R → ( √ 2π) -1 e -(x-µ) 2 /2 . Then for all µ, µ ∈ R, KL(µ|µ ) = (µ -µ) 2 /2.
For Exponential distributions, we assume λ to be the Lebesgue measure, Θ =]0 ; +∞[, and for µ > 0, f (•, µ) =: x > 0 → e -x/µ /µ. Then for all µ, µ > 0, KL(µ|µ ) = log(µ /µ)+µ/µ -1.

Optimal algorithm for unimodal-structured bandits

We present in this section a novel algorithm that matches the asymptotic lower bound of Proposition 2. This algorithm is inspired by the Indexed Minimum Empirical Divergence (IMED) proposed by [START_REF] Honda | An asymptotically optimal policy for finite support models in the multiarmed bandit problem[END_REF]. The general idea behind this algorithm is, following the intuition given by the lower bound, to narrow on the current best arm and its neighbourhood for pulling an arm at a given time step.

Notations. The empirical mean of the rewards from the arm a is denoted by μa (t) = t s=1 I {as=a} X s /N a (t) if N a (t) > 0, 0 otherwise. We also denote by μ (t) = max a∈A μa (t) and A (t) = argmax a∈A μa (t) respectively the current best mean and the current set of optimal arms.

The IMED-UB algorithm.

We first pull each arm once. For all arm a ∈ A and time step t 1 we introduce the IMED index

I a (t) = N a (t) KL(μ a (t)|μ (t)) + log(N a (t)) ,
with the convention 0×∞ = 0. This index can be seen as a transportation cost for moving a suboptimal arm to an optimal one plus an exploration term: the logarithm of the number of pulls. When an optimal arm is considered, the transportation cost is null and there is only the exploration part. Note that, as stated in [START_REF] Honda | An asymptotically optimal policy for finite support models in the multiarmed bandit problem[END_REF], I a (t) is an index in the weaker sense since it cannot be determined only by samples from the arm a but also uses the empirical mean of the current optimal arm. We define IMED-UB (Indexed Minimum Empirical Divergence for Unimodal Bandits), described in Algorithm 1, to be the algorithm consisting of pulling an arm a t ∈ { a t } ∪ V a t with minimum index at each time step t, where is a t ∈ argmin a ∈ A (t) N a (t) is a current best arm. This is a natural algorithm since the lower bound on the regret given in Proposition 2 involves only the arms in V a , the neighbourhood of the arm a of maximal mean. In this section, we state the main theoretical result of this paper.

Theorem 5 (Upper bounds) Let us consider a set of distributions ν ∈ D and let a its optimal arm. Let V a be the sub-optimal arms in the neighbourhood of a . Then under the IMED-UB algorithm for all 0 < ε < ε ν , for all horizon time T 1, for all a ∈ V a ,

E ν [N a (T )] 1 + α ν (ε) KL(µ a |µ a ) log(T ) + 2d C ε log(c ε T ) + d 1 + c -1 εν + d(2d + 3) 2σ 2 εν e ε 2 ν /2σ 2 ε ε 2 + 1
and, for all a / ∈ {a }∪V a , In particular one can note that the arms in the neighbourhood of the optimal one are pulled O(log(T ))

E ν [N a (T )] 2d C ε log(c ε T ) + d 1 + c -1 εν + d(2d + 3) 2σ 2 εν e ε 2 ν /2σ 2 ε ε 2 + 1 , where d is the maximum degree of nodes in G, ε ν = min a =a |µ a -µ a |/2, σ 2 ε = max a∈A V X∼p(µ ) (X) : µ ∈ [µ a -ε , µ a ]
times while the other sub-optimal arms are pulled O log(T ) of times under IMED-UB. This is coherent with the lower bound that only involves the neighbourhood of the best arm. More precisely, combining Theorem 5 and the chain rule (1) gives the asymptotic optimality of IMED-UB with respect to the lower bound of Proposition 2.

Corollary 6 (Asymptotic optimality) With the same notations as in Theorem 5, then under the IMED-UB algorithm lim sup

T →∞ R(ν, T ) log(T ) c(ν) = a∈V a ∆ a KL(µ a |µ a )
.

A finite time analysis of IMED-UB is provided in following Section 4.

IMED-UB finite time analysis

At a high level, the key interesting step of the proof is to realize that the considered algorithm implies empirical lower and empirical upper bounds on the numbers of pulls (see Lemma 7, Lemma 8). Then, based on concentration lemmas (see Section B), the algorithm-based empirical lower bounds ensure the reliability of the estimators of interest (Lemma 12). Interestingly, this makes use of arguments based on recent concentration of measure that enable to control the concentration without adding some log log bonus (such a bonus was required for example in the initial analysis of the KL-UCB strategy from [START_REF] Cappé | Kullback-Leibler upper confidence bounds for optimal sequential allocation[END_REF]). Then, combining the reliability of these estimators with the obtained algorithm-base empirical upper bounds, we obtain upper bounds on the average numbers of pulls (Theorem 5). The proof is concise to fit mostly in the next few pages.

Notations

Let us consider ν ∈ D and let us denote by a its best arm. We recall that for all a ∈ A, V a = {a ∈ A : (a, a ) ∈ E} is the neighbourhood of arm a in graph G = (A, E), and that

d = max a∈A |V a | , ε ν = min a =a |µ a -µ a | 2 . ( 2 
)
Then, there exists a function α ν (•) such that for all 0 < ε < ε ν , for all a = a ,

KL(µ a +ε|µ -ε) (1+α ν (ε)) -1 KL(µ a |µ ) (3) 
and

lim ε↓0 ↓ α ν (ε) = 0. At each time step t 1, a t is arbitrarily chosen in argmin a∈ A (t)
N a (t) where

A (t) = argmax a∈A μa (t).

Algorithm-based empirical bounds

The IMED-UB algorithm implies inequalities between the indexes that can be rewritten as inequalities on the numbers of pulls. While lower bounds involving log(t) may be expected in view of the asymptotic regret bounds, we show lower bounds on the numbers of pulls involving instead log N at+1 (t) , the logarithm of the number of pulls of the current chosen arm. We also provide upper bounds on N at+1 (t) involving log(t).

We believe that establishing these empirical lower and upper bounds is a key element of our proof technique, that is of independent interest and not a priori restricted to the unimodal structure. 

Non-reliable current means

For all arms a, a ∈ A and for all accuracy ε > 0, let E + a,a (ε) be the set of times where the current mean of arm a ε-deviates from above while arm a has more pulls than the current pulled arm a ,

E + a,a (ε) := {t ∈ 1, T -1 : a t+1 = a , N a (t) N a (t), μa (t) µ a + ε} . (7) 
We similarly define

E - a,a (ε) := {t ∈ 1, T -1 : a t+1 = a , N a (t) N a (t), μa (t) µ a -ε} . (8) 
We also define

E a,a (ε) = E + a,a (ε) ∪ E - a,a (ε) . (9) 
Definition 9 (KL-log deviation) For ε > 0, the couple of arms (a, a ) ∈ A 2 shows ε --KL-log deviation at time step t 1 if the following conditions are satisfied

(1) a t+1 = a (2) μa (t) µ a -ε (3) log(N a (t)) N a (t) KL(μ a (t)|µ a -ε) + log(N a (t)) .
For all couple of arms (a, a ) ∈ A 2 and for all accuracy ε > 0, let K - a,a (ε) be the set of times where couple of arms (a, a ) shows ε --KL-log deviation, that is

K - a,a (ε) :=    t ∈ 1, T -1 : (1) a t+1 = a (2) μa (t) µ a -ε (3) log(N a (t)) N a (t) KL(μ a (t)|µ a -ε) + log(N a (t))    .
(10) We note that E - a,a (ε) ⊂ K - a,a (ε) . We can now resort to concentration arguments in order to control the size of these sets, which yields the following upper bounds. We defer the proof to Appendix A.1.

Lemma 10 (Bounded subsets of times) For ε > 0, for (a, a ) ∈ A 2 ,

E ν E + a,a (ε) , E ν E - a,a (ε) 2σ 2 ε e ε 2 /2σ 2 ε ε 2 E ν K - a,a (ε)\E - a,a (ε) 1 + c -1 ε + 2C ε log(c ε T ) , where σ 2 ε = max a∈A V X∼p(µ ) (X) : µ ∈ [µ a -ε , µ a ] , c ε , C ε > 0 are the constants involved in Theo- rem 15.

Non-reliable current best arm

For accuracy ε > 0, let M (ε) be the set of times t 1 that do not belong to E + a t ,at+1 (ε) and where some of the current best arm a t differs from a ,

M (ε) := t |A| : (1) t / ∈ E + a t ,at+1 (ε) (2) a t = a . ( 11 
)
Lemma 11 (Relation between subsets of times) Under IMED-UB, for all accuracy 0 < ε < ε ν = min

a =a |µ a -µ a |/2, M (ε) ⊂ a∈V a t K - a,at+1 (ε ν ) . ( 12 
)
Proof Let us consider t ∈ M (ε). Since a t = a , there exists a ∈ V a t such that

µ a > µ a . (13) 
Then, since a t ∈ argmax a∈A μa (t), we have

μ a (t) = μ (t) μa (t) . ( 14 
)
Since t ∈ M (ε), t / ∈ E + a t ,at+1 (ε). By considering empirical lower bounds (5) and Equation ( 7), we have µ a t + ε μ a t (t) .

(15) By combining Equations ( 14) and ( 15), it comes

µ a t + ε μ (t) μa (t) . ( 16 
)
Since ε < ε ν µ a -µ a t /2, Equation ( 13) and previous Equation ( 16) imply

µ a -ε ν > μ a t (t) μa (t) . ( 17 
)
Since a ∈ V a t , empirical lower bounds (4) imply

log N at+1 (t) N a (t) KL(μ a (t)|μ (t)) + log(N a (t)) . ( 18 
)
The classical monotonic properties of KL(•|•) and Equation ( 17) imply

μa (t) < µ a -ε ν KL(μ a (t)|μ (t)) KL(μ a (t)|µ a -ε ν ) . (19) 
Combining Equations ( 17) and ( 19), we get

μa (t) < µ a -ε ν log N at+1 (t) N a (t) KL(μ a (t)|µ a -ε ν ) + log(N a (t)) , (20) 
which means t ∈ K - a,at+1 (ε ν ).

Reliable current means and current best arm

In this subsection, we characterize subsets of times where both the mean of current pulled arm and the optimal mean are well-estimated.

Let us consider for 0 < ε < ε ν , for a = a ,

U a (ε) = {t |A| : a t+1 = a} E + at+1,at+1 (ε) ∪ E - a t ,at+1 (ε) ∪ E + a t ,at+1 (ε) ∪ M (ε) . (21) Then, Lemma 11 implies U a (ε) ⊂ a ∈{a}∪Va a ∈V a E + a ,a (ε) ∪ E - a ,a (ε) ∪ K - a ,a (ε ν ) . (22) 
In particular, from Lemma 10 and previous Equation ( 22) we have

E ν [U a (ε)] 2d(d + 1) 2σ 2 ε e ε 2 /2σ 2 ε ε 2 + d 2σ 2 εν e ε 2 ν /2σ 2 εν ε 2 ν + 1 + c -1 εν + 2C ε log(c ε T ) d(2d + 3) 2σ 2 εν e ε 2 ν /2σ 2 ε ε 2 + d 1 + c -1 εν + 2C ε log(c ε T ) , (23) 
where d = max a∈A |V a | is the maximum degree of nodes in graph G.

Lemma 12 (Reliable current means) Under IMED-UB, for all accuracy 0 < ε < ε ν = min a =a |µ a -µ a |/2, for all sub-optimal arm a = a , for all time step t / ∈ U a (ε), t |A|, such that

a t+1 = a,    a t = a μ (t) µ -ε μa (t) µ a + ε .

Upper bounds on the numbers of pulls of sub-optimal arms

In this subsection, we now combine the different results of the previous subsections to prove Theorem 5.

Proof [Proof of Theorem 5.] For 0 < ε < ε ν , for a = a , let us consider t / ∈ U a (ε), t |A|, such that a t+1 = a. From empirical upper bounds (6), we have

N a (t) KL(μ a (t)|μ (t)) log(t) . (24) 
From Lemma 12 and Algorithm 1, we have a ∈ V a and μa (t) µ a +ε < µ -ε μ (t). From classical monotonic properties of KL(•|•) and Equation (3), we have KL(μ a (t)|μ (t)) KL(µ a +ε|µ -ε)

(1+α ν (ε)) -1 KL(µ a |µ ).
In view of Equation ( 24), this implies

∀t / ∈ U a (ε), t |A| , such that a t+1 = a,    a ∈ V a N a (t) (1 + α ν (ε)) log(t) KL(µ a |µ ) . ( 25 
)
For all arm a ∈ A, for all time step t |A|, we denote by

τ a (t) = max {t ∈ |A| ; t : a t +1 = a and t / ∈ U a (ε)} (26) 
the last time step before time step t that does not belong to U a (ε) such that we pull arm a.

Then, from Equations ( 25) and ( 26) we have

∀a = a , ∀t 1, N a (t) = N a (|A|) + t-1 t |A| I {a t +1 =a} 1 + t-1 t 1 I {a t +1 =a, t ∈Ua(ε)} + t-1 t |A| I {a t +1 =a, t / ∈Ua(ε)} 1 + |U a (ε)| + t-1 t |A| I {a t +1 =a, t / ∈Ua(ε)} 1 + |U a (ε)| + I {a / ∈V a } × 0 + I {a∈V a } × N a (τ a (t)) 1 + |U a (ε)| + I {a∈V a } (1 + α ν (ε)) log(τ a (t)) KL(µ a |µ ) 1 + |U a (ε)| + I {a∈V a } (1 + α ν (ε)) log(t) KL(µ a |µ ) .
This implies

∀a = a , ∀t 1, N a (t)      (1 + α ν (ε)) log(t) KL(µ a |µ ) + |U a (ε)| + 1 if a ∈ V a |U a (ε)| + 1 if a / ∈ V a . (27) 
From Equation ( 23), averaging these inequalities allows us to conclude.

Numerical experiments

In this section, we compare empirically the following algorithms : OSUB, UTS [Combes andProutiere, 2014, Trinh et al., 2020] and IMED-UB described in Algorithm 1. We illustrate how performs the IMED-UB algorithm under Bernoulli, Gaussian (variance σ 2 = 0.25) or Exponential distribution assumption. For the experiments we consider a graph G with maximal degree d = 2 and the unimodal unimodal vectors of means µ = (0.05, 0.10, 0.15, 0.20, 0.25, 0.20, 0.15, 0.10, 0.05), and average regrets over 500 runs for each distribution family. Based on these experiments (Figure 1), it seems that IMED-UB competes with OSUB and UTS. 

Conclusion

In this paper, we have revisited the setup of unimodal multi-armed bandits: We introduced a novel variant based on the IMED algorithm. This algorithm does not separate exploration from exploitation rounds and is proven optimal for one-dimensional exponential family distributions. Remarkably, the IMED-UB algorithm do not require any optimization procedure, which can be interesting for practitioners. We also provided a novel proof algorithm, in which we make explicit empirical lower and upper bounds, before tackling the handling of bad events by specific concentration tools. This proof technique greatly simplifies and shorten the analysis of IMED-UB. Last, we provided numerical experiments that show the practical effectiveness of IMED-UB.

A IMED-UB finite time analysis

We regroup in this section, for completeness, the proofs of the remaining lemmas used in the analysis of IMED-UB in Section 4.

A.1 Proof of Lemma 10

Proof We start by proving E ν E - a,a (ε) e 2ε 2 /2ε 2 . The proof that E ν E + a,a (ε) e 2ε 2 /2ε 2 is similar.

We write

E - a,a (ε) = T -1 t=1 I {at+1=a ,N a (t) Na(t), µa-μa(t) ε} . (28) 
Considering the stopped stopping times τ n = inf {t 1, N a (t) = n} we will rewrite the sum of indicators and use Lemma 14.

E - a,a (ε)

t 1 I {at+1=a , N a (t) Na(t), µa-μa(t) ε} (29) 
n 1

I {n-1 Na(τn-1), µa-μa(τn-1) ε}

+

n 2

I {n-1 Na(τn-1), µa-μa(τn-1) ε} .

Taking the expectation of Equation ( 29), it comes

E ν E - a,a (ε) 1 + n 1 P ν     t 1 Na(t) n μa (t) µ a -ε     . ( 30 
)
From Lemma 14, previous Equation ( 30) implies

E ν E - a,a (ε) 1 + n 1 exp(-m KL(µ a -ε|µ a )) . (31) 
From Lemma 13, previous Equation ( 31) implies

E ν E - a,a (ε) n 0 exp -nε 2 /2σ 2 ε = 1 1 -e -ε 2 /2σ 2 ε , (32) 
where

σ 2 ε = max a∈A V X∼p(µ ) (X) : µ ∈ [µ a -ε , µ a ] . Finally we note that 1 1 -e -ε 2 /2σ 2 ε = e ε 2 /2σ 2 ε e ε 2 /2σ 2 ε -1 2σ 2 ε e ε 2 /2σ 2 ε ε 2 . We now show that E ν K - a,a (ε) \ E - a,a (ε) 1+c -1 ε +C ε log log(c ε T ).
We write

K - a,a (ε)\E - a,a (ε) = T -1 t=1 I {at+1=a , 1 Na(t)<N a (t), μa(t) µa-ε, log(N a (t)) Na(t) KL(μa(t)|µa-ε)+log(Na(t))} .( 33 
)
Considering the stopped stopping times τ n = inf {t 1, N a (t) = n} we will rewrite the sum t∈ 1,T-1 I {at+1=a , 1 Na(t)<N a (t), μa(t) µa-ε, log(N a (t)) Na(t) KL(μa(t)|µa-ε)+log(Na(t))} and use boundary crossing probabilities for one-dimensional exponential family distributions.

K - a,a (ε)\E - a,a (ε) T -1 t=1 I {at+1=a , 1 Na(t)<N a (t), μa(t) µa-ε, log(N a (t)) Na(t) KL(μa(t)|µa-ε)+log(Na(t))} = T -1 t=1 T -1 n=1 I {τn+1=t+1} I {1 Na(τn+1-1)<n, μa(τn+1-1) µa-ε} × I {log(n) Na(τn+1-1) KL(μa(τn+1-1)|µa-ε)+log(Na(τn+1-1))} = T -1 n=1 I {1 Na(τn+1-1)<n, μa(τn+1) µa-ε} × I {log(n) Na(τn+1-1) KL(μa(τn+1-1)|µa-ε)+log(Na(τn+1-1))} T -1 t=1 I {τn+1=t+1} T -1 n=1 I {1 Na(τn+1-1)<n, μa(τn+1) µa-ε, log(n) Na(τn+1-1) KL(μa(τn+1-1)|µa-ε)+log(Na(τn+1-1))} = T -1 n=2 I {1 Na(τn+1-1)<n, μa ( 
τn+1) µa-ε, log(n) Na(τn+1-1) KL(μa(τn+1-1)|µa-ε)+log(Na(τn+1-1))} .(34)

From Equation (34), we get

K - a,a (ε)\E - a,a (ε) (35) 
T -1 n=2 I {1 Na(τn+1-1)<n, KL(μa(τn+1-1)|µa-ε) log(n/Na(τn+1-1))} .

Taking the expectation of Equation ( 35), it comes

E ν K - a,a (ε)\E - a,a (ε) (36) 
T -1

n=2 P ν        t 1 μa(t)<µa-ε 1 Na(t) n
N a (t)KL(μ a (t)|µ a -ε) log(n/N a (t))

       .
From Theorem 15, previous Equation ( 36) implies

E ν K - a,a (ε)\E - a,a (ε) (37) 1 + c -1 ε + C ε T -1 n 1+c -1 ε c ε c ε n log(c ε n) 1 + c -1 ε + C ε T c -1 ε c ε dx c ε x log(c ε x) = 1 + c -1 ε + 2C ε log(c ε T ) . (38) 
A.2 Proof of Lemma 12 Proof For 0 < ε < ε ν = min a =a |µ a -µ a |/2, for a = a , let us consider a time step t / ∈ U a (ε), t |A| such that a t+1 = a.

Since a t+1 = a and t / ∈ U at+1 (ε) then t / ∈ E + at+1,at+1 (ε), that is μat+1 (t) < µ at+1 +ε or μa (t) < µ a +ε (since a t+1 = a).

Since a t+1 = a and t / ∈ U at+1 (ε) then t / ∈ E - a t ,at+1 (ε), that is

μ (t) = μ a t (t) > µ a t -ε . ( 39 
)
Since a t+1 = a and t / ∈ U at+1 (ε) then t / ∈ E + a t ,at+1 (ε) ∪ M (ε). From Equation ( 11), this implies

a t = a . ( 40 
)
By combining Equations ( 39) and ( 40), we get

μ (t) > µ a -ε = µ -ε . (41) 

B Generic tools

In this section, Pinsker's inequality for one-dimensional exponential family distributions is reminded. Please refer to Lemma 3 from [START_REF] Cappé | Kullback-Leibler upper confidence bounds for optimal sequential allocation[END_REF] for more insights. We also state two concentration results from [START_REF] Maillard | Boundary crossing probabilities for general exponential families[END_REF]. Relevantly, Theorem 15 is the main concentration result used in this paper.

Lemma 13 (Pinsker's inequality) For µ < µ , it holds that

KL(µ|µ ) (µ -µ) 2 2σ 2 ,
where σ 2 = max V X∼p(µ ) (X) : µ ∈ [µ , µ ] .

Lemma 14 (Time-uniform concentration) For all arm a ∈ A, for x < µ a , m 1, we have

P ν     t 1 Na(t) m μa (t) < x     exp(-m KL(x|µ a )) .
Theorem 15 (Boundary crossing probabilities) For all arm a ∈ A, for all ε > 0, for all n 1, we have

P ν        t 1 μa(t)<µa-ε 1 Na(t) n N a (t)KL(μ a (t)|µ a -ε) log(n/N a (t))        C ε n log(c ε n) ,
where c ε , C ε > 0 are explained in [START_REF] Maillard | Boundary crossing probabilities for general exponential families[END_REF].

  and c ε , C ε > 0 are the constants involved in Theorem 15. α ν (•) is a non-negative function depending only on ν such that lim ε→0 α ν (ε) = 0 (see Section 4.1 for more details).

Figure 1 :

 1 Figure 1: Cumulative regrets averaged over 500 runs.

  ∈{ a t }∪V a t I a (t) I a t (t) = log N a t (t) . By taking the log -1 (•), the last inequality allows us to conclude.Lemma 8 (Empirical upper bounds) Under IMED-UB at each step time t |A|,

	N at+1 (t) KL μat+1 (t)|μ (t)) log(t) .	(6)
	Proof As above, by construction we have	
	I at+1 (t) I a t (t) .	
	It remains, to conclude, to note that	
	N at+1 (t)KL μat+1 (t)|μ (t)) I at+1 (t) ,	
	and	
	I a	

Lemma 7 (Empirical lower bounds) Under IMED-UB, at each step time t |A|, for all a ∈ V a t ,

log N at+1 (t) N a (t) KL(μ a (t)|μ (t)) + log(N a (t))

(4)

and N at+1 (t) N a t (t) .

(5)

Proof For a ∈ A, by definition, we have I a (t) = N a (t)KL(μ a (t)|μ (t))+log(N a (t)), hence log(N a (t)) I a (t) .

This implies, since the arm with minimum index is pulled, log N at+1 (t) I at+1 (t) = min a t (t) = log(N a t (t)) log(t) .
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