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Abstract

We consider a multi-armed bandit problem specified by a set of one-dimensional
family exponential distributions endowed with a unimodal structure. We introduce
IMED-UB, an algorithm that optimally exploits the unimodal-structure, by adapting
to this setting the Indexed Minimum Empirical Divergence (IMED) algorithm in-
troduced by Honda and Takemura [2015]. Owing to our proof technique, we are
able to provide a concise finite-time analysis of the IMED-UB algorithm. Numerical
experiments show that IMED-UB competes with the state-of-the-art algorithms.

1 Introduction

The multi-armed bandit problem is a popular framework to formalize sequential decision making
problems. It was first introduced in the context of medical trials [Thompson, 1933, 1935] and later
formalized by Robbins [1952]: A bandit is specified by a configuration, that is a set of unknown
probability distributions, ν=(νa)a∈A with means (µa)a∈A. At each time t∈N, the learner chooses an
arm at∈A, based only on the past, the learner then receives and observes a reward Xt, conditionally
independent, sampled according to νat . The goal of the learner is to maximize the expected sum of
rewards received over time (up to some unknown horizon T ), or equivalently minimize the regret
with respect to the algorithm constantly receiving the highest mean reward

R(ν, T ) = Eν

[
T∑
t=1

µ? −Xt

]
where µ? = max

a∈A
µa .

Both means and distributions are unknown, which makes the problem non trivial, and the learner
only knows that ν ∈ D where D is a given set of bandit configurations. This problem received
increased attention in the middle of the 20th century, and the seminal paper Lai and Robbins [1985]
established the first lower bound on the cumulative regret, showing that designing an algorithm that
is optimal uniformly over a given set of configurations D comes with a price. The study of the lower
performance bounds in multi-armed bandits successfully lead to the development of asymptotically
optimal algorithms for specific configuration sets, such as the KLUCB algorithm [Lai, 1987, Cappé
et al., 2013, Maillard, 2018] for exponential families, or alternatively the DMED and IMED algorithms
from Honda and Takemura [2011, 2015]. The lower bounds from Lai and Robbins [1985], later
extended by Burnetas and Katehakis [1997] did not cover all possible configurations, and in particular
structured configuration sets were not handled until Agrawal et al. [1989] and then Graves and
Lai [1997] established generic lower bounds. Here, structure refers to the fact that pulling an arm
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may reveals information that enables to refine estimation of other arms. Unfortunately, designing
numerical efficient algorithms that are provably optimal remains a challenge for many structures.

Structured configurations. Motivated by the growing popularity of bandits in a number of in-
dustrial and societal application domains, the study of structured configuration sets has received
increasing attention over the last few years: The linear bandit problem is one typical illustration
Abbasi-Yadkori et al. [2011], Srinivas et al. [2010], Durand et al. [2017], for which the linear structure
considerably modifies the achievable lower bound, see Lattimore and Szepesvari [2017]. The study
of a unimodal structure naturally appears in many contexts, e.g. single-peak preference economics,
voting theory or wireless communications, and has been first considered in Yu and Mannor [2011]
from a bandit perspective, then in Combes and Proutiere [2014] and Trinh et al. [2020] providing an
explicit lower bound together with an algorithm exploiting this specific structure. Other structures
include Lipschitz bandits Magureanu et al. [2014], and we refer to the manuscript Magureanu [2018]
for other examples, such as cascading bandits that are useful in the context of recommender systems.
In Combes et al. [2017], a generic algorithm is introduced called OSSB (Optimal Structured Stochastic
Bandit), stepping the path towards generic multi-armed bandit algorithms that are adaptive to a given
structure. More recently in Degenne et al. [2020], the authors introduce an adaptation of the KLUCB
strategy to handle structured multi-armed bandit problems.

Unimodal-structure. We assume a unimodal structure similar to that considered in Yu and Mannor
[2011] and Combes and Proutiere [2014]. That is, there exists an undirected graph G = (A, E)
whose vertices are arms A, and whose edges E characterize a partial order among means (µa)a∈A.
This partial order is assumed unknown to the learner. We assume that there exists a unique optimal
arm a? = argmaxa∈A µa and that for all sub-optimal arm a 6= a?, there exists a path Pa = (a1 =
a, . . . , a`a = a?) ∈ A`a of length `a > 2 such that for all i ∈ [1, `a − 1], (ai, ai+1) ∈ E and
µai < µai+1 . Lastly, we assume that ν⊂P :={p(µ), µ∈Θ}, where p(µ) is an exponential-family
distribution probability with density f(·, µ) with respect to some positive measure λ on R and mean
µ∈Θ⊂R. P is assumed to be known to the learner. Thus, for all a∈A we have νa=p(µa). We
denote by D(P,G) or simply D the structured set of such unimodal-bandit distributions characterized
by (P, G). In the following, we assume that P is a set of one-dimensional exponential family
distributions.

Contributions. In this paper, we provide novel regret minimization results related to the unimodal
structure. We first revisit the Indexed Minimum Empirical Divergence (IMED) algorithm from Honda
and Takemura [2015] introduced for unstructured multi-armed bandits, and adapt it to the unimodal-
structured setting. We introduce in Section 3 the IMED-UB algorithm that is limited to the pulling of
the current best arm or their no more than d nearest arms at each time step, with d the maximum
degree of nodes in G. Being constructed from IMED, IMED-UB does not require any optimization
procedure and does not separate exploration from exploitation rounds. IMED-UB appears to be a local
algorithm. We prove in Theorem 6 that IMED-UB is asymptotically optimal. Furthermore, this novel
algorithm competes with the state-of-the-art algorithms in practice. This is confirmed by numerical
illustrations on synthetic data. We believe that the construction of this algorithm together with the
proof techniques developed in this paper are of independent interest for the bandit community.

Notations. Let ν∈D. Let µ?=maxa∈A µa be the optimal mean and a?=argmaxa∈A µa be the
optimal arm of ν. We define for an arm a∈A its sub-optimality gap ∆a=µ?−µa. Considering an
horizon T >1, thanks to the chain rule we can rewrite the regret as follows:

R(ν, T ) =
∑
a∈A

∆a Eν
[
Na(T )

]
, (1)

where Na(t)=
∑t
s=1 I{as=a} is the number of pulls of arm a at time t.

2 Regret lower bound

In this subsection, we recall for completeness the known lower bound on the regret when we assume
a unimodal structure. In order to obtain non trivial lower bound we consider algorithms that are
consistent (aka uniformly-good).
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Definition 1 (Consistent algorithm) An algorithm is consistent on D if for all configuration ν ∈ D,
for all sub-optimal arm a, for all α > 0,

lim
T→∞

Eν
[
Na(T )

Tα

]
= 0 .

We can derive from the notion of consistency an asymptotic lower bound on the regret, see Combes
and Proutiere [2014].

Proposition 2 (Lower bounds on the regret) Let us consider a consistent algorithm. Then, for all
configuration ν∈D, it must be that

lim inf
T→∞

R(ν, T )

log(T )
> c(ν) :=

∑
a∈Va?

∆a

KL(µa|µ?)
,

where KL(µ|µ′) =
∫
Rlog(f(x, µ)/f(x, µ′))f(x, µ)λ(dx) denotes the Kullback-Leibler divergence

between ν=p(µ) and ν′=p(µ′), for µ, µ′∈Θ.

Remark 3 The quantity c(ν) is a fully explicit function of ν (it does not require solving any opti-
mization problem) for some set of distributions ν (see Remark 4). This useful property no longer
holds in general for arbitrary structures. Also, it is noticeable that c(ν) does not involve all the sub-
optimal arms but only the ones in Va? . This indicates that sub-optimal arms outside Va? are sampled
o(log(T )), which contrasts with the unstructured stochastic multi-armed bandits. See Combes and
Proutiere [2014] for further insights.

Remark 4 For Bernoulli distributions, a possible setting is to assume λ = δ0 + δ1 (with δ0, δ1
Dirac measures), Θ = (0, 1) and for µ ∈Θ, f(·, µ) =: x ∈ {0, 1} 7→ µx(1 − µ)1−x. Then for all
µ, µ′ ∈ (0, 1), KL(µ|µ′) =µ log(µ/µ′) + (1−µ) log((1−µ)/(1−µ′)). For Gaussian distributions
(variance σ2 =1), we assume λ to be the Lebesgue measure, Θ=R, and for µ∈R, f(·, µ)=: x∈R 7→
(
√

2π)−1e−(x−µ)
2/2. Then for all µ, µ′∈R, KL(µ|µ′)=(µ′−µ)2/2. For Exponential distributions,

we assume λ to be the Lebesgue measure, Θ=]0 ; +∞[, and for µ>0, f(·, µ)=: x>0 7→ e−x/µ/µ.
Then for all µ, µ′>0, KL(µ|µ′)=log(µ′/µ)+µ/µ′−1.

3 Optimal algorithm for unimodal-structured bandits

We present in this section a novel algorithm that matches the asymptotic lower bound of Proposition 2.
This algorithm is inspired by the Indexed Minimum Empirical Divergence (IMED) proposed by Honda
and Takemura [2011]. The general idea behind this algorithm is, following the intuition given by the
lower bound, to narrow on the current best arm and its neighbourhood for pulling an arm at a given
time step.

Notations. The empirical mean of the rewards from the arm a is denoted by µ̂a(t) =∑t
s=1 I{as=a}Xs/Na(t) if Na(t) > 0, 0 otherwise. We also denote by µ̂?(t) = maxa∈A µ̂a(t)

and Â?(t)=argmax
a∈A

µ̂a(t) respectively the current best mean and the current set of optimal arms.

3.1 The IMED-UB algorithm.

We first pull each arm once. For all arm a∈A and time step t>1 we introduce the IMED index

Ia(t) = Na(t) KL(µ̂a(t)|µ̂?(t)) + log(Na(t)) ,

with the convention 0×∞= 0. This index can be seen as a transportation cost for moving a sub-
optimal arm to an optimal one plus an exploration term: the logarithm of the number of pulls. When
an optimal arm is considered, the transportation cost is null and there is only the exploration part.
Note that, as stated in Honda and Takemura [2011], Ia(t) is an index in the weaker sense since it
cannot be determined only by samples from the arm a but also uses the empirical mean of the current
optimal arm. We define IMED-UB (Indexed Minimum Empirical Divergence for Unimodal Bandits),
described in Algorithm 1, to be the algorithm consisting of pulling an arm at ∈ {â?t }∪Vâ?t with
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minimum index at each time step t, where is â?t ∈argminâ?∈Â?(t)Nâ?(t) is a current best arm. This
is a natural algorithm since the lower bound on the regret given in Proposition 2 involves only the
arms in Va? , the neighbourhood of the arm a? of maximal mean.

Algorithm 1 IMED-UB

Pull each arm once
for t = |A| . . . T − 1 do

Choose â?t ∈ argmin
â?∈Â?(t)

Nâ?(t) (chosen arbitrarily)

Pull at+1 ∈ argmin
a∈{â?t }∪Vâ?t

Ia(t) (chosen arbitrarily)

end for

3.2 Asymptotic optimality of IMED-UB

In this section, we state the main theoretical result of this paper.

Theorem 5 (Upper bounds) Let us consider a set of distributions ν∈D and let a? its optimal arm.
Let Va? be the sub-optimal arms in the neighbourhood of a?. Then under the IMED-UB algorithm for
all 0<ε<εν , for all horizon time T >1, for all a∈Va? ,

Eν [Na(T )] 6
1 + αν(ε)

KL(µa|µa?)
log(T ) + 2dCε

√
log(cεT ) + d

(
1 + c−1εν

)
+ d(2d+ 3)

2σ2
ενe

ε2ν/2σ
2
ε

ε2
+ 1

and, for all a /∈{a?}∪Va? ,

Eν [Na(T )] 6 2dCε
√

log(cεT ) + d
(
1 + c−1εν

)
+ d(2d+ 3)

2σ2
ενe

ε2ν/2σ
2
ε

ε2
+ 1 ,

where d is the maximum degree of nodes in G, εν =mina 6=a′ |µa−µa′ |/2,

σ2
ε =max

a∈A

{
V
X∼p(µ′)(X) : µ′∈ [µa−ε , µa]

}
and cε, Cε>0 are the constants involved in Theorem 15.

αν(·) is a non-negative function depending only on ν such that lim
ε→0

αν(ε)=0 (see Section 4.1 for

more details).

In particular one can note that the arms in the neighbourhood of the optimal one are pulledO(log(T ))

times while the other sub-optimal arms are pulled O
(√

log(T )
)

of times under IMED-UB. This is
coherent with the lower bound that only involves the neighbourhood of the best arm. More precisely,
combining Theorem 5 and the chain rule (1) gives the asymptotic optimality of IMED-UB with respect
to the lower bound of Proposition 2.

Corollary 6 (Asymptotic optimality) With the same notations as in Theorem 5, then under the
IMED-UB algorithm

lim sup
T→∞

R(ν, T )

log(T )
6 c(ν) =

∑
a∈Va?

∆a

KL(µa|µa?)
.

A finite time analysis of IMED-UB is provided in following Section 4.

4 IMED-UB finite time analysis

At a high level, the key interesting step of the proof is to realize that the considered algorithm implies
empirical lower and empirical upper bounds on the numbers of pulls (see Lemma 7, Lemma 8). Then,
based on concentration lemmas (see Section B), the algorithm-based empirical lower bounds ensure
the reliability of the estimators of interest (Lemma 12). Interestingly, this makes use of arguments
based on recent concentration of measure that enable to control the concentration without adding
some log log bonus (such a bonus was required for example in the initial analysis of the KL-UCB
strategy from Cappé et al. [2013]). Then, combining the reliability of these estimators with the
obtained algorithm-base empirical upper bounds, we obtain upper bounds on the average numbers of
pulls (Theorem 5). The proof is concise to fit mostly in the next few pages.
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4.1 Notations

Let us consider ν ∈ D and let us denote by a? its best arm. We recall that for all a ∈ A, Va =
{a′ ∈ A : (a, a′) ∈ E} is the neighbourhood of arm a in graph G=(A, E), and that

d = max
a∈A
|Va| , εν = min

a6=a′
|µa − µa′ |

2
. (2)

Then, there exists a function αν(·) such that for all 0<ε<εν , for all a 6= a?,

KL(µa+ε|µ?−ε) 6(1+αν(ε))
−1 KL(µa|µ?) (3)

and lim
ε↓0
↓ αν(ε) = 0. At each time step t > 1, â?t is arbitrarily chosen in argmin

a∈Â?(t)
Na(t) where

Â?(t)=argmax
a∈A

µ̂a(t).

4.2 Algorithm-based empirical bounds

The IMED-UB algorithm implies inequalities between the indexes that can be rewritten as inequalities
on the numbers of pulls. While lower bounds involving log(t) may be expected in view of the asymp-
totic regret bounds, we show lower bounds on the numbers of pulls involving instead log

(
Nat+1(t)

)
,

the logarithm of the number of pulls of the current chosen arm. We also provide upper bounds on
Nat+1(t) involving log(t).

We believe that establishing these empirical lower and upper bounds is a key element of our proof
technique, that is of independent interest and not a priori restricted to the unimodal structure.

Lemma 7 (Empirical lower bounds) Under IMED-UB, at each step time t> |A|, for all a∈Vâ?t ,

log
(
Nat+1

(t)
)
6 Na(t) KL(µ̂a(t)|µ̂?(t)) + log(Na(t)) (4)

and
Nat+1

(t) 6 Nâ?t (t) . (5)

Proof For a∈A, by definition, we have Ia(t)=Na(t)KL(µ̂a(t)|µ̂?(t))+log(Na(t)), hence

log(Na(t)) 6 Ia(t) .

This implies, since the arm with minimum index is pulled, log
(
Nat+1

(t)
)

6 Iat+1
(t) =

min
a′∈{â?t }∪Vâ?t

Ia′(t) 6 Iâ?t (t) = log
(
Nâ?t (t)

)
. By taking the log−1(·), the last inequality allows us

to conclude.

Lemma 8 (Empirical upper bounds) Under IMED-UB at each step time t> |A|,

Nat+1
(t) KL

(
µ̂at+1

(t)|µ̂?(t)) 6 log(t) . (6)

Proof As above, by construction we have

Iat+1(t) 6 Iâ?t (t) .

It remains, to conclude, to note that

Nat+1(t)KL
(
µ̂at+1(t)|µ̂?(t)) 6 Iat+1(t) ,

and
Iâ?t (t) = log(Nâ?t (t)) 6 log(t) .
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4.3 Non-reliable current means

For all arms a, a′∈A and for all accuracy ε > 0, let E+a,a′(ε) be the set of times where the current
mean of arm a ε-deviates from above while arm a has more pulls than the current pulled arm a′,

E+a,a′(ε) := {t ∈ J1, T−1K : at+1 = a′, Na′(t) 6 Na(t), µ̂a(t) > µa + ε} . (7)

We similarly define

E−a,a′(ε) := {t ∈ J1, T−1K : at+1 = a′, Na′(t) 6 Na(t), µ̂a(t) 6 µa − ε} . (8)

We also define
Ea,a′(ε) = E+a,a′(ε) ∪ E

−
a,a′(ε) . (9)

Definition 9 (KL-log deviation) For ε > 0, the couple of arms (a, a′) ∈ A2 shows ε−-KL-log
deviation at time step t>1 if the following conditions are satisfied

(1) at+1 = a′

(2) µ̂a(t) 6 µa − ε
(3) log(Na′(t)) 6 Na(t) KL(µ̂a(t)|µa−ε) + log(Na(t)) .

For all couple of arms (a, a′)∈A2 and for all accuracy ε > 0, let K−a,a′(ε) be the set of times where
couple of arms (a, a′) shows ε−-KL-log deviation, that is

K−a,a′(ε) :=

t ∈ J1, T−1K :

(1) at+1 = a′

(2) µ̂a(t) 6 µa − ε
(3) log(Na′(t)) 6 Na(t) KL(µ̂a(t)|µa−ε) + log(Na(t))

 .

(10)
We note that

E−a,a′(ε) ⊂ K
−
a,a′(ε) .

We can now resort to concentration arguments in order to control the size of these sets, which yields
the following upper bounds. We defer the proof to Appendix A.1.

Lemma 10 (Bounded subsets of times) For ε>0, for (a, a′)∈A2,

Eν
[∣∣∣E+a,a′(ε)∣∣∣] , Eν[∣∣∣E−a,a′(ε)∣∣∣] 6 2σ2

ε e
ε2/2σ2

ε

ε2

Eν
[∣∣∣K−a,a′(ε)\E−a,a′(ε)∣∣∣] 6 1 + c−1ε + 2Cε

√
log(cεT ) ,

where σ2
ε = max

a∈A

{
V
X∼p(µ′)(X) : µ′∈ [µa−ε , µa]

}
, cε, Cε> 0 are the constants involved in Theo-

rem 15.

4.4 Non-reliable current best arm

For accuracy ε > 0, letM?(ε) be the set of times t>1 that do not belong to E+â?t ,at+1
(ε) and where

some of the current best arm â?t differs from a?,

M?(ε) :=

{
t > |A| :

(1) t /∈ E+â?t ,at+1
(ε)

(2) â?t 6= a?

}
. (11)

Lemma 11 (Relation between subsets of times) Under IMED-UB, for all accuracy 0 < ε < εν =
min
a6=a′
|µa−µa′ |/2,

M?(ε) ⊂
⋃

a∈Vâ?t

K−a,at+1
(εν) . (12)
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Proof Let us consider t∈M?(ε). Since â?t 6=a?, there exists a∈Vâ?t such that

µa > µâ? . (13)

Then, since â?t ∈argmaxa∈A µ̂a(t), we have

µ̂â?(t) = µ̂?(t) > µ̂a(t) . (14)

Since t∈M?(ε), t /∈E+â?t ,at+1
(ε). By considering empirical lower bounds (5) and Equation (7), we

have
µâ?t + ε > µ̂â?t (t) . (15)

By combining Equations (14) and (15), it comes

µâ?t + ε > µ̂?(t) > µ̂a(t) . (16)

Since ε<εν6
∣∣µa−µâ?t ∣∣/2, Equation (13) and previous Equation (16) imply

µa − εν > µ̂â?t (t) > µ̂a(t) . (17)

Since a∈Vâ?t , empirical lower bounds (4) imply

log
(
Nat+1

(t)
)
6 Na(t) KL(µ̂a(t)|µ̂?(t)) + log(Na(t)) . (18)

The classical monotonic properties of KL(·|·) and Equation (17) imply{
µ̂a(t) < µa−εν
KL(µ̂a(t)|µ̂?(t)) 6 KL(µ̂a(t)|µa−εν) .

(19)

Combining Equations (17) and (19), we get{
µ̂a(t) < µa−εν
log
(
Nat+1

(t)
)
6 Na(t) KL(µ̂a(t)|µa−εν) + log(Na(t)) ,

(20)

which means t∈K−a,at+1
(εν).

4.5 Reliable current means and current best arm

In this subsection, we characterize subsets of times where both the mean of current pulled arm and
the optimal mean are well-estimated.

Let us consider for 0<ε<εν , for a 6=a?,

Ua(ε) = {t > |A| : at+1 = a}
⋂(
E+at+1,at+1

(ε) ∪ E−â?t ,at+1
(ε) ∪ E+â?t ,at+1

(ε) ∪M?(ε)
)
. (21)

Then, Lemma 11 implies

Ua(ε) ⊂
⋃

a′∈{a}∪Va
a′′∈Va′

E+a′,a(ε) ∪ E−a′,a(ε) ∪ K−a′′,a(εν) . (22)

In particular, from Lemma 10 and previous Equation (22) we have

Eν [Ua(ε)] 6 2d(d+ 1)
2σ2
ε e

ε2/2σ2
ε

ε2
+ d

(
2σ2
ενe

ε2ν/2σ
2
εν

ε2ν
+ 1 + c−1εν + 2Cε

√
log(cεT )

)

6 d(2d+ 3)
2σ2
ενe

ε2ν/2σ
2
ε

ε2
+ d
(

1 + c−1εν + 2Cε
√

log(cεT )
)
, (23)

where d=maxa∈A |Va| is the maximum degree of nodes in graph G.

Lemma 12 (Reliable current means) Under IMED-UB, for all accuracy 0 < ε < εν =
min
a6=a′
|µa−µa′ |/2, for all sub-optimal arm a 6= a?, for all time step t /∈ Ua(ε), t > |A|, such that

at+1 =a, 
â?t = a?

µ̂?(t) > µ? − ε
µ̂a(t) 6 µa + ε .

7



4.6 Upper bounds on the numbers of pulls of sub-optimal arms

In this subsection, we now combine the different results of the previous subsections to prove Theo-
rem 5.

Proof [Proof of Theorem 5.] For 0<ε<εν , for a 6=a?, let us consider t /∈Ua(ε), t> |A|, such that
at+1 =a. From empirical upper bounds (6), we have

Na(t) KL(µ̂a(t)|µ̂?(t)) 6 log(t) . (24)

From Lemma 12 and Algorithm 1, we have a∈Va? and µ̂a(t)6µa+ε<µ?−ε6 µ̂?(t). From classical
monotonic properties of KL(·|·) and Equation (3), we have KL(µ̂a(t)|µ̂?(t))>KL(µa+ε|µ?−ε)>
(1+αν(ε))

−1 KL(µa|µ?). In view of Equation (24), this implies

∀t /∈ Ua(ε), t > |A| , such that at+1 = a,


a ∈ Va?

Na(t) 6
(1 + αν(ε)) log(t)

KL(µa|µ?)
.

(25)

For all arm a∈A, for all time step t> |A|, we denote by

τa(t) = max {t′ ∈ J|A| ; tK : at′+1 = a and t′ /∈ Ua(ε)} (26)

the last time step before time step t that does not belong to Ua(ε) such that we pull arm a.

Then, from Equations (25) and (26) we have

∀a 6= a?, ∀t > 1, Na(t) = Na(|A|) +

t−1∑
t′>|A|

I{at′+1=a}

6 1 +

t−1∑
t′>1

I{at′+1=a, t
′∈Ua(ε)} +

t−1∑
t′>|A|

I{at′+1=a, t
′ /∈Ua(ε)}

6 1 + |Ua(ε)|+
t−1∑
t′>|A|

I{at′+1=a, t
′ /∈Ua(ε)}

6 1 + |Ua(ε)|+ I{a/∈Va?} × 0 + I{a∈Va?} ×Na(τa(t))

6 1 + |Ua(ε)|+ I{a∈Va?}
(1 + αν(ε)) log(τa(t))

KL(µa|µ?)

6 1 + |Ua(ε)|+ I{a∈Va?}
(1 + αν(ε)) log(t)

KL(µa|µ?)
.

This implies

∀a 6= a?,∀t > 1, Na(t) 6


(1 + αν(ε)) log(t)

KL(µa|µ?)
+ |Ua(ε)|+ 1 if a ∈ Va?

|Ua(ε)|+ 1 if a /∈ Va? .
(27)

From Equation (23), averaging these inequalities allows us to conclude.

5 Numerical experiments

In this section, we compare empirically the following algorithms : OSUB, UTS [Combes and Proutiere,
2014, Trinh et al., 2020] and IMED-UB described in Algorithm 1. We illustrate how performs the
IMED-UB algorithm under Bernoulli, Gaussian (variance σ2 = 0.25) or Exponential distribution
assumption. For the experiments we consider a graph G with maximal degree d = 2 and the unimodal
unimodal vectors of means µ = (0.05, 0.10, 0.15, 0.20, 0.25, 0.20, 0.15, 0.10, 0.05), and average
regrets over 500 runs for each distribution family. Based on these experiments (Figure 1), it seems
that IMED-UB competes with OSUB and UTS.

8



Figure 1: Cumulative regrets averaged over 500 runs.

Conclusion

In this paper, we have revisited the setup of unimodal multi-armed bandits: We introduced a novel
variant based on the IMED algorithm. This algorithm does not separate exploration from exploitation
rounds and is proven optimal for one-dimensional exponential family distributions. Remarkably,
the IMED-UB algorithm do not require any optimization procedure, which can be interesting for
practitioners. We also provided a novel proof algorithm, in which we make explicit empirical lower
and upper bounds, before tackling the handling of bad events by specific concentration tools. This
proof technique greatly simplifies and shorten the analysis of IMED-UB. Last, we provided numerical
experiments that show the practical effectiveness of IMED-UB.
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A IMED-UB finite time analysis

We regroup in this section, for completeness, the proofs of the remaining lemmas used in the analysis
of IMED-UB in Section 4.

A.1 Proof of Lemma 10

Proof We start by proving Eν
[∣∣∣E−a,a′(ε)∣∣∣]6e2ε2/2ε2. The proof that Eν

[∣∣∣E+a,a′(ε)∣∣∣]6e2ε2/2ε2 is
similar.

We write ∣∣∣E−a,a′(ε)∣∣∣ =

T−1∑
t=1

I{at+1=a′,Na′ (t)6Na(t), µa−µ̂a(t)>ε} . (28)

Considering the stopped stopping times τn = inf {t>1, Na′(t)=n} we will rewrite the sum of
indicators and use Lemma 14.∣∣∣E−a,a′(ε)∣∣∣ 6

∑
t>1

I{at+1=a′, Na′ (t)6Na(t), µa−µ̂a(t)>ε} (29)

6
∑
n>1

I{n−16Na(τn−1), µa−µ̂a(τn−1)>ε}

6 1 +
∑
n>2

I{n−16Na(τn−1), µa−µ̂a(τn−1)>ε} .

Taking the expectation of Equation (29), it comes

Eν
[∣∣∣E−a,a′(ε)∣∣∣] 6 1 +

∑
n>1

Pν

 ⋃
t>1

Na(t)>n

µ̂a(t) 6 µa − ε

 . (30)

From Lemma 14, previous Equation (30) implies

Eν
[∣∣∣E−a,a′(ε)∣∣∣] 6 1 +

∑
n>1

exp(−mKL(µa−ε|µa)) . (31)

From Lemma 13, previous Equation (31) implies

Eν
[∣∣∣E−a,a′(ε)∣∣∣] 6∑

n>0

exp
(
−nε2/2σ2

ε

)
=

1

1− e−ε2/2σ2
ε
, (32)

where σ2
ε =max

a∈A

{
V
X∼p(µ′)(X) : µ′∈ [µa−ε , µa]

}
. Finally we note that

1

1− e−ε2/2σ2
ε

=
eε

2/2σ2
ε

eε
2/2σ2

ε − 1
6

2σ2
ε e

ε2/2σ2
ε

ε2
.

We now show that Eν
[∣∣∣K−a,a′(ε)∣∣∣\∣∣∣E−a,a′(ε)∣∣∣]61+c−1ε +Cε log log(cεT ).

We write ∣∣∣K−a,a′(ε)\E−a,a′(ε)∣∣∣
=

T−1∑
t=1

I{at+1=a′, 16Na(t)<Na′ (t), µ̂a(t)6µa−ε, log(Na′ (t))6Na(t) KL(µ̂a(t)|µa−ε)+log(Na(t))}.(33)
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Considering the stopped stopping times τn = inf {t>1, Na′(t)=n} we will rewrite the
sum

∑
t∈J1,T−1K I{at+1=a′, 16Na(t)<Na′ (t), µ̂a(t)6µa−ε, log(Na′ (t))6Na(t) KL(µ̂a(t)|µa−ε)+log(Na(t))}

and use boundary crossing probabilities for one-dimensional exponential family distributions.∣∣∣K−a,a′(ε)\E−a,a′(ε)∣∣∣
6

T−1∑
t=1

I{at+1=a′, 16Na(t)<Na′ (t), µ̂a(t)6µa−ε, log(Na′ (t))6Na(t) KL(µ̂a(t)|µa−ε)+log(Na(t))}

=

T−1∑
t=1

T−1∑
n=1

I{τn+1=t+1}I{16Na(τn+1−1)<n, µ̂a(τn+1−1)6µa−ε} ×

I{log(n)6Na(τn+1−1) KL(µ̂a(τn+1−1)|µa−ε)+log(Na(τn+1−1))}

=

T−1∑
n=1

I{16Na(τn+1−1)<n, µ̂a(τn+1)6µa−ε} ×

I{log(n)6Na(τn+1−1) KL(µ̂a(τn+1−1)|µa−ε)+log(Na(τn+1−1))}

T−1∑
t=1

I{τn+1=t+1}

6
T−1∑
n=1

I{16Na(τn+1−1)<n, µ̂a(τn+1)6µa−ε, log(n)6Na(τn+1−1) KL(µ̂a(τn+1−1)|µa−ε)+log(Na(τn+1−1))}

=

T−1∑
n=2

I{16Na(τn+1−1)<n, µ̂a(τn+1)6µa−ε, log(n)6Na(τn+1−1) KL(µ̂a(τn+1−1)|µa−ε)+log(Na(τn+1−1))}.(34)

From Equation (34), we get∣∣∣K−a,a′(ε)\E−a,a′(ε)∣∣∣ (35)

6
T−1∑
n=2

I{16Na(τn+1−1)<n, KL(µ̂a(τn+1−1)|µa−ε)>log(n/Na(τn+1−1))}.

Taking the expectation of Equation (35), it comes

Eν
[∣∣∣K−a,a′(ε)\E−a,a′(ε)∣∣∣] (36)

6
T−1∑
n=2

Pν


⋃
t>1

µ̂a(t)<µa−ε
16Na(t)6n

Na(t)KL(µ̂a(t)|µa−ε)> log(n/Na(t))

 .

From Theorem 15, previous Equation (36) implies

Eν
[∣∣∣K−a,a′(ε)\E−a,a′(ε)∣∣∣] (37)

6 1 + c−1ε + Cε

T−1∑
n>1+c−1

ε

cε

cεn
√

log(cεn)

6 1 + c−1ε + Cε

∫ T

c−1
ε

cε dx

cεx
√

log(cεx)

= 1 + c−1ε + 2Cε
√

log(cεT ) . (38)
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A.2 Proof of Lemma 12

Proof For 0<ε<εν = min
a 6=a′
|µa−µa′ |/2, for a 6=a?, let us consider a time step t /∈Ua(ε), t> |A|

such that at+1 =a.

Since at+1 =a and t /∈Uat+1(ε) then t /∈E+at+1,at+1
(ε), that is µ̂at+1(t) < µat+1+ε or µ̂a(t) < µa+ε

(since at+1 =a).

Since at+1 =a and t /∈Uat+1(ε) then t /∈E−â?t ,at+1
(ε), that is

µ̂?(t) = µ̂â?t (t) > µâ?t − ε . (39)

Since at+1 =a and t /∈Uat+1
(ε) then t /∈E+â?t ,at+1

(ε) ∪M?(ε). From Equation (11), this implies

â?t = a? . (40)

By combining Equations (39) and (40), we get

µ̂?(t) > µa? − ε = µ? − ε . (41)

B Generic tools

In this section, Pinsker’s inequality for one-dimensional exponential family distributions is reminded.
Please refer to Lemma 3 from Cappé et al. [2013] for more insights. We also state two concentration
results from Maillard [2018]. Relevantly, Theorem 15 is the main concentration result used in this
paper.

Lemma 13 (Pinsker’s inequality) For µ<µ′, it holds that

KL(µ|µ′) > (µ′ − µ)2

2σ2
,

where σ2 =max
{
V
X∼p(µ′′)(X) : µ′′∈ [µ , µ′]

}
.

Lemma 14 (Time-uniform concentration) For all arm a∈A, for x<µa, m>1, we have

Pν

 ⋃
t>1

Na(t)>m

µ̂a(t) < x

 6 exp(−mKL(x|µa)) .

Theorem 15 (Boundary crossing probabilities) For all arm a∈A, for all ε>0, for all n>1, we
have

Pν


⋃
t>1

µ̂a(t)<µa−ε
16Na(t)6n

Na(t)KL(µ̂a(t)|µa−ε)> log(n/Na(t))

6
Cε

n
√

log(cεn)
,

where cε, Cε>0 are explained in Maillard [2018].
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