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Résumé :   
 

Le but est d’utiliser la fonction de transfert vibroacoustique G construite numériquement pour un état 

vibratoire afin de prédire le rayonnement acoustique de la transmission par engrenages pour d’autres 

états d’excitation vibratoire. Cette méthode d’approche basée sur le modèle de C. MARQUIS, permet 

à partir de quelques mesures accessibles de vitesses vibratoires normales relevées sur la transmission 

de reproduire le champ acoustique rayonné dans son environnement pour un état vibratoire différent, 

des interpolations de type local ou global sont faites sur les valeurs de G. Ce champ exprimé en 

niveaux de pression et de puissance acoustiques peut être prédit aux mêmes points ou en d’autres 

points du maillage acoustique. Les constatations et les remarques nous permettent de dire que cette 

fonction de Green G construite numériquement pour un état vibratoire a contribué à prédire de 

manière confortable le rayonnement pour d’autres états vibratoires, elle a bien gardé son rôle de 

fonction de transfert vibroacoustique. Elle servira pour le suivi, le diagnostic et la maintenance des 

transmissions par engrenages. 

 

Abstract :  
 

The aim is to use the vibroacoustic transfer function G constructed numerically for a vibrational state 

to predict the acoustic radiation of the gear transmission for other vibrational excitation states. This 

approach method based on C. MARQUIS’s model allows from some measures available normal 

vibrational velocities measured on the transmission to reproduce the acoustic field radiated in its 

environment for a different vibrational state, local or global interpolation types are made on the 

values of G. This field expressed in acoustic pressure and power levels can be predicted at the same 

points or on other points of the acoustic meshing. The findings and observations allow us to say that 

the Green function G constructed digitally for a certain vibrational state has comfortably predicted 

the acoustic radiation for others vibrational states; it has kept its role of vibroacoustic transfer 

function. It will be used for monitoring, diagnosis and maintenance of gear drives. 

 

Key words: acoustic radiation, gears, Green function, vibroacoustic 

function transfer, noise sources. 
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1 Introduction  
 

The prediction of acoustic radiation gear drives is rather complex and still poorly resolved despite the 

immense research work on this subject. The authors are unanimous in saying that only a global and 

profound study that takes into account all the components of the transmission can predict the vibratory 

and acoustic response of the transmission. This study involves in all cases, the use of structure 

calculation codes based on the finite element method (FEM) for the vibration behavior and 

computational codes based on the boundary element method (BEM) to predict the acoustic behavior. 

For these methods, the real difficulty lies in determining the Green's function satisfying the Helmholtz 

equation, the condition of Sommerfeld and the boundary conditions on the vibrating surface. 

Among the literature on the reduction of noise and vibration gear drives, we can cite the work of Opitz 

[1] whose results are come from large experiments specifying the sound pressure level emitted by 

reducers and multipliers gears. As for Houser [2], he drove an excellent course on noise gear offered 

by Gear Dynamics of Ohio State University and Gear Noise Research Laboratory. For Seybert et al 

[3], they used the modal data housing experimentally measured by finite boundary elements (BEM) 

for calculating the pressure and the acoustic intensity on the surface of the housing, and the acoustic 

radiation efficiency of each mode. For Sabot and Perret-Liaudet [4], they calculated the noise radiated 

by the casing of the gearbox using the Rayleigh integral formulation, in which the acceleration 

response of the associated housing was made by finite elements. Despite the simplicity of their model, 

their results have provided a better understanding of the characteristics of acoustic radiation of gear 

transmission systems. Inverse methods began to be used on sources of irregular geometries in the mid-

90s and that in order to overcome the geometric limits of near-field acoustic holography (NAH) whose 

bases and developments were introduced in the early 80s by Maynard Williams [5]. The training paths 

invented by Billingsley and Kinns [6] allow from a linear antenna constituted of microphonic sensors 

regularly distributed to calculate the sound pressure emitted in a particular direction. It is widely used 

in transmission systems, and acts as a spatial filter for each desired direction of interest, the gain will 

be maximum and attenuates signals in undesired directions (interference). The methods based on 

models and which require the inversion of transfer or propagation matrices include the method of 

inverse boundary element (IBEM) and the method of equivalent sources (ESM). IBEM was used for 

the direct problem by Veronesi and Maynard [7] or in an indirect way by Schuhmacher et al 2003 [8], 

whenever the identification technique having a great potential in practice called inverse frequency 

response function (IFRF), it was introduced and developed by Kim [9] and Veronesi. [7]. 

The position of our problem and the proposed model were made following the fact that for these 

methods, the relationship between the vibrating surface and the sound field is achieved through the 

Green's function constructed analytically from the boundary conditions of the problem. The analytical 

construction of the Green's function requires either the assumption of a acoustic propagation in fluid 

medium infinite or semi-infinite (assumption made in most of the studies) or knowledge of boundary 

conditions on the surfaces defining the finite environment wherein is the radiating structure [10]. 

Thus, the difficulty of constructing analytically Green's function of a gear transmission, and classic 

models based on FEM and BEM judged to be too heavy led us to use the model proposed by C. 

Marquis [10]. 

Our work will focus on the use of the Green's function G constructed digitally to vibratory state from 

complex vibratory measurements taken at accessible points of the gear transmission and complex 

sound pressures considered in some points of the surrounding field [11,12]. This transfer function 

vibroacoustics discreet built will be used to predict the acoustic radiation for other vibrational 

excitation states which will be expressed in sound pressure levels and power Lp and Lw. The 
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calculations will be made to the same listens points of the acoustic mesh as well as the other points 

that do not belong to the acoustic mesh by local interpolations on the numerical values of G. 

 

2 Overview on the model of acoustic problem 
 

The digital construction of the vibroacoustic transfer function is made from experimental data 

collected at certain points point sources distributed over the gear transmission giving the complex 

vibration velocities and points of space surrounding the gear transmission characterizing the given 

radiated field by complex acoustic pressure. This vibroacoustic transfer function will be used for 

prediction of the noise radiated by the transmission for any speed hence for any vibratory condition. 

 
Fig. 1. Model of the radiation of the gear transmission [11] 

 

2.1 Approach and formulation of acoustic radiation 
 

In what follows, the theoretical formulation of the model in Figure 1 of the external acoustic problem 

will be briefly described. The gear transmission whose surface is S vibrates in the fluid field eV ; it is 

delimited by the Σ surface outside. In the absence of any other external source, the sound pressure 

represented by the acoustic field must satisfy the homogeneous Helmholtz differential equation: 

 

eVMMPkMP  0)()( 2  (1) 

 

 Laplace operator, ck / the wave number,  the excitation pulse and c is the speed of the waves 

in the medium eV . The conditions on S and Σ limits are of the inhomogeneous Neumann. 

The difficulties encountered in the computation of the vibrational velocities on the entire outer surface 

Σ, the calculation of wall pressure on S and Σ and particularly the problem of knowledge of the 

Green's function of our problem is not at all easy. The introduction of assumptions and approximations 

were necessary to gain access to the Green's function of the problem posed. Thus, the construction 

process of the vibroacoustic transfer function G according to C. Marquis [10] is to consider two 

problems that follow. 

We assume in the first known, the acoustic pressure radiated into the surrounding environment eV , 

and secondly we introduce a fictitious structure vibrating surface S’ which is identical to the surface S 
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with the same distribution point sources radiating in free field the same sound field radiated by the 

vibrating structure in its real environment. 

In the first case, we assume that the Green's function G satisfies the boundary conditions on S and Σ 

quasi homogeneous Neumann type, that the normal vibratory velocities on Σ are negligible compared 

to those that occur on S. These simplifications allow rewriting of the acoustic pressure at any point M 

of eV , it will be approached by: 

 

SMVMdSMMGMvjMP eM
S

n   000 ,),()()(
0

  (2) 

ρ is the density of the acoustic medium, nv  is the normal vibrational velocity to 0M , this point 

belongs to the surface S. 

In the second case, we assign to each source point 0M  a density function μ. The acoustic field 

generated by S' in free space which is identical to the one created by S in its local, it is accessible by 

the following formulation of the potential single-layer-type: 
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  is the Green function in the infinite space solution of the Helmholtz 

equation in a free environment and verifying the condition of Sommerfeld to infinity, r is the distance 

between the source point and the listening point. In addition, this function does not have to satisfy the 

boundary conditions on S. We can determine the density μ for each source point 0M from the sound 

pressure around the surface S’. We thus from the actual system and the system fictitious the same 

pressure field defined by: 
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The unknown in this equation is ),( 0MMG  because μ is obtained by solving the equation (3). The 

expression (4) is the basic model of the problem, which allows access to the vibroacoustic transfer 

function ),( 0MMG . 

The μ density function assigned to the source points hM0 is determined digitally from the measured 

pressure to the np points of the acoustic meshing and, with the discretization of the surface S’, the 

integral equation is expressed as a system of linear equations. Each system equation takes the 

following form: 

'

1

],1[ hih

mv

h

hi SgPnpi  


  (5) 

 

2.2 Use of the G function for the noise prediction 
 

The G function is known between each source point and listening points. For new vibratory 

acquisitions, the calculation of the pressure is possible only for listening points already chosen; an 

approach has been developed to overcome this disadvantage. For the calculation of the Green's 

function for listening points other than the acoustic mesh, an interpolation is made on the different 
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values of G. The latter being defined by the pair ( ihr , ihG ), its value for a point source h is 

characterized by its distance from the listening point i, 
hi

G ' . For i’, a new listening point '
iM , 

hi
G '  is 

numerically calculated by local or global approach. 

The local approach used in this case of Figure 2, is to linearly interpolate the value of 
hi

G '  in all the 

]),1[( npiGih   values of a source h. The operation is repeated for each source point h and we get all 

the values of 
hi

G ' , h from 1 to mv. The chosen interpolation method is performed using the Lagrange 

polynomials of the first degree. 

 

 

 

 

 

 

 

 

 

Fig. 2. Local approach for G [10] 

 

For other vibrational state acquired at source points ]),1[(0 mvhM h   of the surface S and with the 

same integral calculation approximations, the expression of the sound pressure in the one or more of 

'
iM  points is given by: 

hhi

mv

h

nhi
SGvjP 



''

1

  (6) 

The prediction is either local with pressure in decibels of 'i
P calculated by one or more points 

'
iM , or 

global by determining the active acoustic power. 

The active power is obtained by calculation of the normal flow of the active acoustic intensity 

throughout a control surface Sc around the vibrating structure and its expression is: 

 )().(Re
2

1
.. '*' MuMPIoùdSnIW

CS
c


   (7) 

I


 is the active acoustic intensity vector, n


 is the unit vector normal to outer Sc and *u


 the conjugate 

complex vector of the acoustic particle velocity. 

 

3 Application to the geared transmission 
 

The experiments were undertaken at the Laboratory Vibration and Acoustics (LVA) INSA Lyon in a 

semi-anechoic chamber. The measurements were recorded by OROS 32 channels (OR38); it made 

rapid measures through its multi-function analysis and simultaneous recording. The data recorded by 

OROS are downloaded to NVGate front OROS to the PC, we recorded the time signals during these 

measures and we have exported them directly .mat in order to be post-process and analyze under 

MATLAB software. 

 

 

ih
r  

ihG  

hihi
Gr '' ,  
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3.1 Experimental test bench and acquisition system 
 

The simplified gear transmission mechanism is made of a spur gear comprising a pair of teeth 45/65, 

as shown in Figure 3 (c). The main characteristics of this gear are given in Table 1. The wheels are full 

made of steel mounted on shafts of the same diameter equal to 0.02 m. The input shaft is connected to 

the motor by a flexible coupling. The shafts are guided in rotation by rolling bearings. The 

parallelepiped shape housing is of dimensions (0.4m*0.35m*0.16m) and a thickness of 0.025m except 

for the wall 5 (cover) which, it is to 0.005m. The casing is made of two materials, steel and Plexiglas, 

it have Young's modulus 2.1*10
11

N/m
2 
and 3.3*10

9
N/m

2
, a density of 7800kg/m

3
 and 1190kg/m

3
 and 

coefficient Poisson 0.3 and 0.37 respectively. The sides 3 and 5 are made of Plexiglas, others are made 

of steel. 

 

Table 1. Main characteristics of the gear 

 Pinion wheel 

Tooth number 45 65 

Module (m) 0.002 0.002 

Tooth width (m), 0.020 0.020 

Base radius (m) 0.045 0.065 

Pressure angle (deg) 20 20 

 

   
(a) (b) (c) 

Fig. 3. (a): Experimental bench, Oros 32 channels in semi-anechoic room LVA, Lyon 

(b): Antenna composed of 30 microphones, (c): open mechanism [11] 

 

3.1.1 Prediction at the same points of the acoustic meshing 

 

Figure 4 on the left is an example amongst the various configurations, showing the positioning of 

accelerometers on the housing, the motor and close to the bearings. On the right, the spatial 

representation of the problem shows the points of vibratory measurements in red on the transmission, 

blue points correspond to the position of the microphones on the hologram placed above the 

transmission, and the black prediction points are located on an imaginary plane parallel to the 

hologram. 

The approximate method was applied to the prediction of noise radiated by transmission gears for the 

same given vibrational state; the results have been reported in [12]. Vibroacoustic transfer function is 

constructed for a given state; it will be used for predictive calculation of the acoustic radiation to other 

states of excitement at the same points and other points of the acoustic meshing using local 

interpolations on G values. Two cases of radiation transmission gears are considered, they correspond 

to two engine entry speeds equal to fm1=30.1 Hz and fm2=41.1 Hz. 



22
ème

 Congrès Français de Mécanique                                               Lyon, 24 au 28 Août 2015 

 

  

  

Fig. 4. Sensor positions on the housing, the motor and the bearings to the left 

Spatial representation of the problem: acoustic meshing: np=npp=72 

Velocities (red), measured Pressures (blue) and calculated (black) to the right 

 

We defer the results of prediction of the acoustic radiation of the geared transmission for an acoustic 

meshing with 72 microphones distributed over the hologram and the fictitious plane of calculation as 

shown in Figure 4 to the right. The calculations of acoustic pressure and power levels radiated by the 

transmission are performed on all the points of the fictitious meshing by our approximate method. We 

can also plot the cartographies representing the sound level from all points of the calculated fictitious 

plane and compare them with those measured by the hologram considered confounded in this case 

with the fictitious plane. 

 

a. Calculation of the sound pressure level Lp 

 

The calculation of the pressure at a point M’(0.05, 0.15, 0.20) of the surrounding field has been well 

approached as shown in both Figures 5 and 6 below. Vibroacoustic transfer function G was 

constructed at fm1 respectively for the predictive calculation by the approximation method to fm2 

vibrational state, and vice versa. We note the overestimation of Lp level low frequency up to 80 Hz for 

both curves, and always increasing the level above 800 Hz in Figure 6, the effect is inverse in Figure 

5. 

 

  

Fig. 5. Acoustic pressure level, mv=14, np=72 

Calculation at M’(0.05, 0.15, 0.20) and fm2=41.1 Hz, G built at fm1= 30.1 Hz 
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Fig. 6. Acoustic pressure level, mv=14, np=72 

Calculation at M’(0.05, 0.15, 0.20) and fm1= 30.1 Hz, G built at fm2=41.1 Hz 

 

  
(a) (b) 

Fig. 7. Cartography of sound pressure level at f=130 Hz, 

fm2=41.1 Hz, G built at fm1=30.1 Hz, mv=14, (a) np=npp=36, (b) np=npp=72 

 

The superposition of the sound pressure maps Lp calculated by the proposed approach at the same 

points as those measured in dashed blue, the measurement being continuously black to the vibrational 

state at fm2 using for G function built at fm1 is shown Figure 7. The plots are made at a frequency of 

130 Hz (mode(1,1)) of the cover. Acoustic meshing sizes are worth np=36 left and 72 right. We 

remark that at some points, the gap is larger; the error may come from the interpolation of the Green 

function G then disrupting the predictive calculation of the sound pressure. 

 

b. Calculation of the sound power level Lw  

 

  

Fig. 8. Sound power level, mv=14, np=72, Calculation at fm1=30.1 Hz, G built at fm2= 41.1 Hz 
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3.1.2 Prediction in other points of the acoustic meshing 

 

Sound power on curves 8 and 9 calculated by the proposed approach and using the vibroacoustic 

function G built for a different vibrational state has well predicted the acoustic radiation in this case 

for points outside the acoustic meshing. Regardless of this vibrational state higher or lower, the results 

are satisfactory and the calculation is at the same points of listening or other items provided results 

consistent Lp and Lw levels. Only those power curves were put to alleviate the report. The function G 

has fulfilled its role of transfer function. 

 

  

Fig. 9. Sound power level, mv=14, np=72, Calculation at fm1=41.1 Hz, G built at fm2= 30.1 Hz 

 

4 Conclusions and perspectives 
 

This method of approach differs from conventional FEM and BEM usual methods used in the 

calculation of acoustic radiation that are heavy, tedious and expensive to implement. With the 

acquisition of some normal vibrational velocities recorded in accessible locations of the geared 

transmission, and use of the Green's function G built for a vibrational state, the approach based on a 

monopole distribution allowed a good enough approximation of the acoustic radiation for other 

vibrational states related to the speed of rotation. The results are comparable, the disparities persist at 

low frequencies, significant peaks are found, nevertheless under estimates in intensity are observed on 

some frequency regions. 

The objectives and points to be achieved are multiple and can be summarized in some suggestions 

such as improving the parameters used in the predictive calculating by the proposed approach, the 

performance of pressure convergence criteria for the same state or any other state vibration, the 

respective limits of the dimensions of vibration and acoustic mesh sizes that would best describe the 

acoustic radiation gear drives. 

The monitoring of the evolution of the vibrational velocities over time and the use of the vibroacoustic 

transfer function G constructed digitally will monitor and diagnose gear drives. 
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