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Abstract :
The electrodynamics of a loudspeaker is affected by several nonlinear phenomena,
mainly due to mechanical suspensions, coil with ferromagnetic core and temperature
variations. In this paper we address the numerical correction of distortions in the high
level response of these systems. The proposed method is based on one hand on the port-
Hamiltonian approach for passive system modeling (including the nonlinear case), on
the other hand on the flatness approach for exact trajectory planning (here the displace-
ment of the loudspeaker’s diaphragm). The model includes a simple linear acoustical
load and a phenomenological position saturating nonlinear spring effect due to the
suspension. The feed-forward controller is built and simulation results are shown. The
method is applied here on a simulated system, with the perspective to be applied on a
real device.

Mots clefs : Nonlinear control, Electroacoustic transducers, Port-
Hamiltonian systems, Differential flatness.

1 Introduction
The electrodynamic loudspeaker is a nonlinear electroacoustic transducer that includes
several nonlinear phenomena, mainly due to mechanical suspensions, coil with ferro-
magnetic core and temperature variations (see e.g. [16]). In this paper we address the
numerical correction of distortions in the high level response of these systems. Sev-
eral signal processing or physically inspired approach have been considered (see e.g.
[4],[3] and references therein). Such approaches do not allow straightforward inference
of physical knowledge in the model and its parameters nor in the design process of the
controller. Moreover, such system identification techniques can lead to non-physically
unstable behaviors.
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Figure 1: Schematic view of the electrodynamic loudspeaker.

We propose a method in the port-Hamiltonian (pH) formalism, which provides a
continuous-time state-space model structured according to energy flows. This guaran-
tees the passivity of the model, including the nonlinear case. In this preliminary work,
magnetic and thermal effects are neglected, and we consider a simple low frequency ap-
proximation of the acoustic load. This leads to a simple open non-linear system which
allows for an easy derivation of the controller. The proposed method is based on the
differential flatness of the resulting pH system, which allows for exact trajectory planing.

The port-Hamiltonian modeling of the loudspeaker is given in section 2. A remain-
der on differential flatness theory is given in section 3. Then we build the feed-forward
controller for the loudspeaker. Finally, section 4 is devoted to the application of the
method in discrete-time. First, we present the numerical method which preserves the
passivity property. Second, simulation results for a FANE Sovereign 12-500LF are
shown.

2 The electrodynamic loudspeaker
This section details the physical model of the loudspeaker considered in the remainder.
We firstly extend the usual linear modeling (namely, the Thiele and Small modeling)
to account for the nonlinearity that first appears in practice. Secondly, we recast this
model in the port-Hamiltonian framework. That proves the passivity of the model.

2.1 Physical description and model
The electrodynamic loudspeaker is a transducer which is composed of an electromag-
netic and a mechanical parts, a simplified lumped parameter model of which has been
proposed by Thiele and Small (see figure 2). This modeling includes a simple acousti-
cal load as additional spring effect due to air volume in the cabinet, and additional air
mass and dissipation due to acoustic radiation, see [13, 14, 15].
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The electromagnetic part involves:
a: voltage source (amplifier)
r: wire resistance,
c: coil inductance,
L: back electromotive force.

The mechanical part involves:
m: moving mass (diaphragm, coil and air)
s: spring effects (spider, dust cap and air)
d: damping effects (idem)
L: Lorentz force.

The corresponding set of ordinary differential equations are derived by applying Kirch-
hoff’s laws to the electrical part and Newton’s second law to the mechanical part:

vaptq “ Rr ¨ iaptq ` L ¨ Btiaptq `Bl ¨ Btqptq, (1)
m ¨ B2t qptq “ Bl ¨ iaptq ´Rd ¨ Btqptq ´ Fspqq. (2)

va and ia are respectively the input tension and current (in receiver convention with re-
ceived power Pa “ va ¨ ia), L is the inductance of the voice-coil (linear approximation)
andRr is the electrical resistance of the wires of the coil. q is the diaphragm’s displace-
ment (distance from equilibrium),m is the total mass of the moving part (including the
diaphragm, voice coil and the equivalent mass due to acoustical load), and Rd is the
linear approximation of the mechanical losses (including frictions and acoustical power
radiation). The electro-mechanical coupling terms are the back e.m.f vL “ Bl ¨ Btq,
and the Lorentz force FL “ Bl ¨ ia, with Bl the product of the (constant) magnetic
induction field’s magnitude with the length of the coil’s wire in that field.

Figure 2: Thiele and Small equivalent electro-mechanic modeling of loudspeakers.

According to the literature [17, 16], the main nonlinearity is the spring effect Fspqq.
In the original model of Thiele and Small, it is supposed to be linear with stiffness k0:

Fspqq ” Flinpqq “ k0 ¨ q. (3)

Here, we consider a phenomenological po-
sition saturating nonlinear spring given in
equation (4) and figure 3, with qsat the sat-
urating position. The nonlinear term Fsat
does not contribute around the origin q “ 0.

Fspqq“Flin pqq ` Fsat pqq
Fsatpqq“

4ks
4´π

´

tan
´

π¨q
2¨qsat

¯

´
π¨q

2¨qsat

¯

(4) Figure 3: Linear and nonlinear spring.
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2.2 Port-Hamiltonian formulation
Port-Hamiltonian systems The port-Hamiltonian (pH) formalism have been intro-
duced in the 90’s. It provides a framework for the passive guaranteed modeling of open
dynamical system through a state space representation structured according to energy
flows with state x P Rnx , input u P Rnu and storage function Hpxq P R` (see [6, 5, 2]
for details). Here, we consider the same algebraic-differential formulation as in [18],
which includes a resisitive variable w P Rnw and a dissipative relation zpwq P Rnw :

¨

˝

Btx

w
y

˛

‚“

¨

˚

˝

Jx ´K Gx

Kᵀ Jw Gw

´Gᵀ
x ´Gᵀ

w Jy

˛

‹

‚

¨

¨

˝

∇Hpxq
zpwq
u

˛

‚, (5)

where the output y P Rnu , and Jx, Jw and Jy are skew-symmetric matrices. Matrices
K P Rnxˆnw ,Gx P Rnxˆν andGw P Rnwˆν . The incoming power is S “ uᵀ ¨y, and
function z restores the (possibly nonlinear) dissipated power Dpwq “ zpwqᵀ ¨ w ě 0

with zp0q “ 0 and positive definite Jacobian matrix r Bzpwq
Bw sm,n “

Bzmpwq
Bwn

, so that the
following power balance holds:

¨

˝

∇Hpxq
zpwq
u

˛

‚

ᵀ

¨

¨

˝

Btx
w
y

˛

‚“ BtHpxq ´ Dpwq ` S “ 0 (6)

Port-Hamiltonian modeling of the loudspeaker The pH system that corresponds to
the loudspeaker’s modeling (1), (2) and (4) is composed of nx “ 3 storage components
(coil, moving mass and spring), nw “ 2 dissipative components (electric resistance and
mechanical damping) and nu “ 1 source (input tension). For storage components, the
state is x “ rxc, xm, xssᵀ with xc “φ the magnetic flux in the coil, xm “m ¨ Btq the
momentum of the mass and xs “q the elongation of the spring. The Hamiltonian is
Hpxq“Hcpxcq`Hmpxmq`Hspxsq with quadratic storage functions Hc and Hm defined
in table 1, and nonlinear potential energy Hspxsq“ 1

2k0 ¨ x
2s`Hsatpxsq,

Hsatpxsq“ks
8 qsat

πpπ ´ 4q

˜

ln
ˆ

cos

ˆ

π ¨ xs
2 ¨ qsat

˙̇

`
1

2

ˆ

π ¨ xs
2 ¨ qsat

˙2
¸

.

The dissipative variables are w “ rwr, wdsᵀ, with wr “ ir the current in the resis-
tance and wd “ Btq the velocity associated to the damping, and associated function
zpwq “ rzrpwrq, zdpwdqsᵀ “ rRr ¨ wr, Rd ¨ wds

ᵀ. The input is the tension from the
amplifier ua “ va, and the output is the current ya “ ia.

The structurematrices in (5) are obtained applying conservation laws (namely, Kirch-
hoff and Newton’s laws) to the following set of power variables (see table 1):

∇Hpxq “ ric, Btq,Fssᵀ, Btx “ rvc,mB2t q, Btqs
ᵀ

w “ rir, Btqsᵀ, z “ rvr, Fdsᵀ
y “ ia, u “ va

(7)
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Label Electric Flux ” i (A) Effort ” v (V)
(c) coil inductance xc “ φ Hcpxcq “

x2c
2¨L ic “

BHc
Bxc vc “ Btxc

(r) resistance wr “ ir zrpwrq “ Rr ¨ wr ir “ wr vr “ zrpwrq
(a) external port ia “ ya va “ ua

Label Mechanic Flux ” Btq (m.s´1) Effort ” F (N)
(m) Total mass xm “ m ¨ Btq Hmpxmq “

x2m
2¨m Btq “

BHm
Bxm Fm “ Btxm

(s) Nonlinear spider xs “ q Hspxsq “ k0
2 x

2s ` Hsatpxsq Btq “Btxs Fs “
BHs
Bxs

(d) Mechanical damping wd “ Btq zdpwdq “ Rd ¨ wd Btq “wd Fd “ zdpwdq

Table 1: Elementary components in the nonlinear pH modeling of the loudspeaker.

The nonlinear port-Hamiltonian system corresponding to the loudspeaker modeling
(1), (2) and (4) is given by (5), with (7) and the following structure matrices:

Jx “

¨

˝

0 ´Bl 0
`Bl 0 ´1

0 `1 0

˛

‚, K “

¨

˝

1 0
0 1
0 0

˛

‚,Gx “

¨

˝

1
0
0

˛

‚

ᵀ

Jw “ 0, Gw “ 0, Jy “ 0.

(8)

Remark 2.1 (Perspectives) The pH systems framework allows easy inclusion of mod-
eling refinement, such as the dynamic behavior of the magnetic circuit (magnet, iron
and air-gap) [19], or the fractional order dynamic [24] due to the losses by magnetic
hysteresis and eddy-currents [22]. This will be studied in further works.

3 Flatness and trajectory planning
The flatness-based feed-forward controller for the system (5) is derived in this section.
After a short remainder on differential flatness, this method is used to derive a closed-
form expression of the input that ensures the system’s state follows a given trajectory.
Then, the pH structure is exploited to derive an equivalent formal expression.

3.1 Recalls
Here we recall the notion of differential flatness for the full linearization of nonlinear
systems via dynamic feedback (see [7, 8, 9] for details). A classic dynamical system
given by Btx “ fpx,uq, with state x P Rnx , input u P Rnµ and nonlinear dynamic
f : Rnx ˆ Rnµ Ñ Rnx is differentially flat if both the following conditions are satisfied.

(I) There exists a finite setµ P Rnµ of variables which are differentially independent
and such that the µi’s are functions of the state x, and the input u with a finite
number of its derivatives µ “ ϕµpx,u, Btu, ¨ ¨ ¨ , B

pαµq

t uq, µ P Rnµ .
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(II) Any system variable is a function of µ and of a finite number of its derivatives:
x “ ϕx

`

µ, Btµ, ¨ ¨ ¨ , B
pαxq

t µ
˘

and u “ ϕu

`

µ, Btµ, ¨ ¨ ¨ , B
pαx`1q
t µ

˘

.

The setµ is the linearizing (or flat) output of the system, with dimpµq “ dimpuq “ nµ.

3.2 Flat output and input design
The loudspeaker model (5) proves differentially flat: basic manipulations of equations
(1), (2) and (4) show that the position is the flat output µ “ q, with αµ “ 0, αx “ 2

and
µ “ ϕµpx3q,
x “ ϕxpµ, Btµ, B

2
t µq

“

¨

˝

L
Bl

`

m ¨ B2t µ`Rd ¨ Btµ` Fspµq
˘

m ¨ Btµ
µ

˛

‚.

This leads to the following closed-from expression of the input va “ u:

u “ ϕu

`

µ, Btµ, B
2
t µ, B

3
t µ

˘

(9)

“
m ¨ L

Bl
¨ B3t µ`

Rd ¨ L`Re ¨m
Bl

¨ B2t µ

`

ˆ

BxFspµq `
L`Re ¨Rd

Bl
`Bl

˙

¨ Btµ (10)

`
Rr
Bl
¨ Fspµq.

Then, given any admissible nominal trajectory of the flat output µ‹, the nominal in-
put trajectory u‹ of the input u is obtained from (9), replacing all occurrences of µ
by µ‹, that is u‹ “ ϕu

`

µ‹, Btµ
‹, ¨ ¨ ¨ , B

pαx`1q
t µ‹

˘

(see [10]). Here, the target is the
diaphragm’s displacement and the feed-forward controller is given by equation (10),
replacing µ with q‹.

3.3 Port-Hamiltonian formalization
The same basic manipulations on equations (5), (7) and (8) rather than on (1), (2) and
(4) yields x “ ϕxpµ, Btµ, B

2
t µq, with

ϕxpµ, Btµ, B
2
t µq “

¨

˚

˚

˝

pBxHcq´1

ˆ

BtpBxHmq´1
pBtµq`zdpBtµq`BxHspµq

Bl

˙

pBxHmq´1
pBtµq

µ

˛

‹

‹

‚

.

This formal expression combined with Kirchhoff’s voltage law encoded in the pH struc-
ture (5) makes the input appear to be composed of three terms va “ vc ` vr ` vL
that find straightforward individual interpretations. The input of the mechanical sub-
system (m, s, d) is the Lorentz force FL “ Bl ¨ iL, which is designed to compensate
the mechanical dynamic and loss iL “ 1

Bl

“

Bt pBxHmq´1
pBtµq ` zdpBtµq ` BxHspµq

‰

.
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Coil vc
Bt
Ð φ

BxH
´1

c
ÐÝ ic “ iL

Wire vr
zr
Ð ir “ iL

back e.m.f vL “ Bl ¨ Btµ.

Then, the input u “ va for the electrical part
(c, r) is designed to compensate the electrical
dynamic and loss so that iL “ i‹L. Finally,
each term in the controller va corresponds to
a chain of conversion from µ to a tension:

4 Simulation and results
This section is concerned with the discrete-time simulation of the algebro-differential
system (5), that is, the computation of xpkq ” xpk ¨ Tsq from upkq ” upk ¨ Tsq, with
k P N, for the constant sampling frequency fs “ 1{Ts, in such a way that a discrete
power balance is satisfied. First, we present a structure-preserving numerical scheme
and show direct simulation for a given loudspeaker. Second, results for the flatness-
based controller are shown.

4.1 Passive-guaranteed numerical scheme and simulation
Here, the objective is to define the discrete time derivative of the state δtxpkq and the
discrete gradient of the Hamiltonian δxHpkq so as to recover the chain rule in discrete
time: δtEpkq “ δxHpkq

ᵀ ¨ δtxpkq. The level of energy is the one associated to the state
xpkq through storage function H. Additionally, we choose a first order finite difference
scheme: δtxpkq “ xpk`1q´xpkq

Ts
to approximate the variation of the state. Then, for a

pH system composed of a collection of mono-variant energy storing components, the
Hamiltonian is Hpxq “

řnx

n“1 Hnpxnq and the solution is

rδxHpkqsn “
Hn

`

xnpk ` 1q
˘

´ Hn
`

xnpkq
˘

xnpk ` 1q ´ xnpkq
. (11)

This numerical scheme restores the midpoint rule for linear systems, with its natural
extension to the nonlinear cases. Applying this numerical method to the pH system
(5) leads to an implicit system of algebraic equations, which is then solved by Newton-
Raphson algorithm. The device used for simulation is a FANE Sovereign 12-500LF,
with physical parameters in table 2. Simulation results are given in figure 4.

m 0.075 (kg)
L 2.36 (mH)
Rr 5.9 (Ω)
Rd 3 (N¨s¨m´1)

Bl 16.37 (T¨m)
k0 7.14 (N¨m´1)
ks 100 (N¨m´1)
qsat 5.17 (mm)

Table 2: Physical parameters for the simulated FANESovereign 12-500LF loudspeaker.

4.2 Results
The feed-forward controller (10) is applied to the same loudspeaker device as in sec-
tion 4.1, and numerical simulations are performed. We assign a sinusoidal trajectory to
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Figure 4: Simulated displacement for a FANE Sovereign 12-500LF excited with a
sinusoidal tension (amplitude 100V and frequency 100Hz).

the target flat output: µ‹ “ A ¨ sinp2π ¨ f0 ¨ tq , with amplitude A “ 0.7 ¨ qsat(m) and
frequency f0 “ 100(Hz). Since the system is supposed initially at rest, initial values
for the flat output and all the needed derivatives have to be zeros for the trajectory to
be admissible [9]. Here, the set pµ‹, Btµ‹, B2t µ‹, B3t µ‹q is smoothed between t “ 0 and
t “ 1{f0 with third order polynomial. Results for the target input v‹a is given in figure
5. The comparison between the target µ‹ and the simulated flat output µ for the input
v‹a are given in figure 5.

Figure 5: Upper: Input tension v‹a (upper) for a sinusoidal target trajectory (smoothed at
the origin) with amplitude 3.62mm and frequency f0 “ 100 Hz (fs “ 48kHz). Lower:
Target and system’s flat output.
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5 Conclusion
Firstly, we recast the usual Thiele-Small modeling of loudspeaker in port-Hamiltonian
framework. The model has been slightly refined to include the main nonlinearity ac-
cording to the literature, preserving passivity due to pH structure. Secondly, we de-
signed an numerically efficient flatness-based feed-forward controller. We have shown
that port-Hamiltonian framework permits a physical interpretation of the generation
of the controller. The main perspective is the application of this method to a real de-
vice. We shall include several refinement of the physical model (magnetic, thermic and
acoustic) in future work, benefiting from the modular construction of pH systems. The
change of variable from the pH state to the Brunovsky coordinate provided by the flat-
ness property of the system shall be used to build an additional feedback controller to
account for model or measurement errors in practice. Another perspective is to study
the possible automated derivation of the flat output based on a port-Hamiltonian system
and bond-graph formalism.
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