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Abstract 21 

 The thermal properties of volcanic rocks are crucial to accurately model heat 22 

transfer in volcanoes and in geothermal systems located within volcanic deposits. 23 

Here we provide laboratory measurements of thermal conductivity and thermal 24 

diffusivity for variably porous andesites from Mt. Ruapehu (New Zealand) and 25 

variably altered basaltic-andesites from Merapi volcano (Indonesia) measured at 26 

ambient laboratory pressure and temperature using the transient hot-strip method. The 27 

specific heat capacity of each sample was then calculated using these measured values 28 

and the bulk sample density. Thermal conductivity and thermal diffusivity decrease as 29 

a function of increasing porosity, but specific heat capacity does not vary 30 

systematically with porosity. For a given porosity, saturation with water increases 31 

thermal conductivity and specific heat capacity, but decreases thermal diffusivity. 32 

Measurements on samples from Merapi volcano show that, compared to the unaltered 33 

samples from Mt. Ruapehu, hydrothermal alteration deceases thermal conductivity 34 

and thermal diffusivity, and increases specific heat capacity. We use an effective 35 

medium approach to parameterise these data, showing that when the porosity and 36 

pore-fluid properties are scaled for, the measured values agree well with theoretical 37 

predictions. We find that despite the microstructural complexity of the studied 38 

andesites, porosity is the principal parameter dictating their thermal properties. To 39 

understand whether the measured changes in thermal properties are sufficient to 40 

influence natural processes, we model heat transfer from magma to the surrounding 41 

host-rock by solving Fick’s second law cast in 1D Cartesian (dyke geometry) and 42 

cylindrical (conduit geometry) coordinates. We provide models for different host-rock 43 

porosities (0-0.6), different initial magmatic temperatures (800-1200 °C), and 44 

different levels of host-rock alteration. Our modelling shows how the cooling of a 45 



dyke and conduit is slowed by a higher host-rock porosity and by increased 46 

hydrothermal alteration. The thermal properties provided herein can help improve 47 

modelling designed to inform on volcanic and geothermal processes. 48 

 49 
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 52 

Highlights: 53 

• Thermal conductivity decreases from 1.5 to 0.4 W.m-1.K-1 as porosity 54 

increases from 0.05 to 0.6. 55 

• Thermal diffusivity decreases from 0.7-0.8 to 0.5-0.55 mm2.s-1 as porosity 56 

increases from 0.05 to 0.6. 57 

• Specific heat capacity is 0.591-0.856 kJ.kg-1.K-1 and does not vary with 58 

porosity. 59 

• Porosity plays a first-order role in dictating thermal properties. 60 

• Cooling of a dyke/conduit is slowed by higher host-rock porosity and 61 

hydrothermal alteration.  62 



1 Introduction 63 

 Volcanic systems are thermally dynamic environments (e.g., Oppenheimer et 64 

al., 1993; Harris et al., 1997; Harris and Stevenson, 1997; Wright et al., 2004; 65 

Hutchison et al., 2013; Heap et al., 2018). As a result, the thermal properties of 66 

volcanic rocks are an important input parameter for a wide range of predictive 67 

models. Examples include: the modelling of heat loss from lava flows, pyroclastic 68 

density current deposits, dykes, sills, conduits, and magma chambers (e.g., Irvine, 69 

1970; Norton and Knight, 1977; Carrigan, 1984; Bruce and Huppert, 1989; Carrigan 70 

et al., 1992; Fialko and Rubin, 1999; Bagdassarov and Dingwell, 1994; Wooster et al., 71 

1997; Annen et al., 2008; Nabelek et al., 2012; Heap et al., 2014; Schauroth et al., 72 

2016; Heap et al., 2017a; Annen, 2017; Mattsson et al., 2018; Tsang et al., 2019), the 73 

modelling of the internal structure and hydrological system of volcanoes (e.g., 74 

Sammel et al., 1988; Ehara, 1992; Violette et al., 1996; Hurwitz et al., 2002, 2003; De 75 

Natale et al., 2004), ground deformation modelling (e.g., Del Negro et al., 2009; 76 

Currenti et al., 2010; Fournier and Chardot, 2012), outgassing models (e.g., Chiodini 77 

et al., 2001), models of viscous sintering (e.g., Wadsworth et al., 2014), and heat 78 

transfer in volcanic lightning storms (e.g., Wadsworth et al., 2017). In addition, the 79 

thermal properties of volcanic rocks are also of use in modelling designed to better 80 

understand large-scale fluid circulation, heat flow calculations, and temperature 81 

estimations at volcanic geothermal sites, such as those in Iceland (e.g., Bodvarsson et 82 

al., 1984; Flóvenz and Sæmundsson, 1993) and New Zealand (e.g., Mercer and Faust, 83 

1979; Kühn and Stöfen, 2005). Finally, an understanding of the thermal properties of 84 

volcanic rocks is important due to their influence on permeability-enhancing thermal 85 

fracturing (e.g., Bauer and Handin, 1983; Siratovich et al., 2015; Lamur et al., 2018). 86 



Due to the need for robust parameters for modelling, experimental studies 87 

have provided values of the thermal properties of volcanic rocks (e.g., Horai et al., 88 

1970; Fuji and Osako, 1972; Robertson and Peck, 1974; Bagdassarov and Dingwell, 89 

1994; Whittington et al., 2009; Romine et al., 2012; Mielke et al., 2015, 2016, 2017; 90 

Vélez et al., 2018; Hofmeister, 2019). Robertson and Peck (1974), for example, 91 

calculated the thermal conductivity of variably porous basalt from Hawai’i (USA) 92 

using the steady-state method. These authors found that thermal conductivity 93 

decreased from ~1.7 W.m-1.K-1 at a porosity <0.05 to ~0.2 W.m-1.K-1 at a porosity of 94 

~0.85. Romine et al. (2012) found that the thermal diffusivity of rhyolite from Mono 95 

Craters (USA), measured using the laser-flash analysis method, decreased from ~0.65 96 

to ~0.55 mm2.s-1 as temperature was increased from ~20 to ~430 °C, but remained 97 

constant from ~430 to ~1300 °C. These authors also calculated that the thermal 98 

conductivity of rhyolitic glasses and melts increases from ~1.1 to ~1.5 W.m-1.K-1 as 99 

temperature is increased from ~20 to ~1300 °C. Horai et al. (1970) and Fuji and 100 

Osako (1972) found that the thermal diffusivity of lunar basalt, measured using the 101 

modified Ångström method, decreased from ~0.7 to ~0.5 mm2.s-1 as temperature was 102 

increased from ~20 to ~230 °C. Mielke et al. (2015) measured the thermal properties 103 

of volcanic rocks (andesites and rhyolites) from the Tauhara geothermal field (New 104 

Zealand) using a portable device that measures thermal conductivity and thermal 105 

diffusivity using a modified optical scanning method. For example, they found 106 

average thermal conductivities of 1.32 and 1.11 W.m-1.K-1 for andesite lava (average 107 

porosity = 0.095) and rhyolite lava (average porosity = 0.275), respectively. Mielke et 108 

al. (2016) measured the thermal properties of volcanic rocks (andesite, dacite, and 109 

rhyolite) from the Taupō Volcanic Zone (New Zealand) using the optical scanning 110 

method. The thermal conductivities of the andesite (porosity = 0.023-0.130), dacite 111 



(porosity = 0.108), and rhyolite (porosity = 0.231) samples were 1.19-1.70, 1.18, and 112 

1.04 W.m-1.K-1, respectively. Despite these studies, there is a paucity of thermal 113 

property data (thermal conductivity, thermal diffusivity, and specific heat capacity) 114 

for volcanic rocks spanning a wide porosity range. These data are necessary to test 115 

effective medium expressions which, if found to well describe data for volcanic rocks, 116 

can be used in a variety of modelling approaches. 117 

We report here on measurements of thermal conductivity, thermal diffusivity, 118 

and specific heat capacity for variably porous (porosity from 0.02 to 0.628) andesites 119 

from Mt. Ruapehu (Taupō Volcanic Zone); we additionally assess the role of water-120 

saturation on the thermal properties of these andesite samples. Due to the ubiquity of 121 

hydrothermally altered zones at active volcanoes worldwide (e.g., Rosas-Carbajal et 122 

al., 2016; Byrdina et al., 2017; Heap et al., 2017b), we also investigated the influence 123 

of hydrothermal alteration on thermal properties by measuring a suite of variably 124 

altered basaltic-andesite samples from Merapi volcano (Indonesia). Theoretical 125 

predictions were then tested against these data. Finally, to understand whether the 126 

measured changes in thermal properties are sufficient to influence natural processes, 127 

we modelled the cooling of a dyke and a conduit by solving the heat equation in 1D in 128 

Cartesian and cylindrical coordinates, respectively. We provide models that cover a 129 

range of typical situations; namely, for different host-rock porosities (0, 0.3, and 0.6), 130 

different initial magmatic temperatures (800, 1000, and 1200 °C), and different 131 

alteration intensities. 132 

 133 

2 Experimental materials and methods 134 

 Two suites of rocks were measured: (1) variably porous andesites from Mt. 135 

Ruapehu and (2) variably altered basaltic-andesites from Merapi volcano. 136 



The andesites from Mt. Ruapehu (Taupō Volcanic Zone; see reviews by 137 

Graham et al., 1995; Wilson et al., 1995) were collected on the northern flank of the 138 

volcano (from the Whakapapa Formation; Hackett and Houghton, 1989). The blocks 139 

were collected thanks to a permit obtained through the Department of Conservation 140 

(DOC) and following consultation with the Māori Iwi. The andesites from Mt. 141 

Ruapehu are porphyritic in texture and contain large phenocrysts of plagioclase and 142 

pyroxene in a glassy groundmass containing abundant microlites (Figure 1a-c; Heap 143 

and Kennedy, 2016). In total, 17 blocks of andesite were collected and labelled from 144 

R1 to R17 (labels used here are the same as in Heap and Kennedy, 2016). Apart from 145 

the presence of rare pore-filling cristobalite in four of the low-porosity samples 146 

(indicated in Tables 2 and 3), the blocks from Mt. Ruapehu are not visibly altered 147 

(from hand-sample inspection and microstructural observations; see Heap and 148 

Kennedy, 2016). The porosity of the samples comprises both pores and microcracks 149 

(Figure 1a-c). 150 

The basaltic-andesites from Merapi volcano (Indonesia; Voight et al., 2000; 151 

Surono et al., 2012; Kushnir et al., 2016), collected from the summit area of the 152 

volcano (from the 1902 lava dome, about 100 m to the northeast of the currently 153 

active dome), are characterised by a porphyritic texture comprising phenocrysts of 154 

dominantly plagioclase and pyroxene within a crystallised groundmass (plagioclase, 155 

K-feldspar, and pyroxene; Figure 1d-e; see Heap et al., 2019a). In total, five blocks of 156 

basaltic-andesite were collected and classified in terms of their alteration (based on 157 

the wt.% of alteration minerals determined by X-ray powder diffraction; Table 1; 158 

Heap et al., 2019a). The alteration phases present, indicative of exposure to acid-159 

sulfate fluids, include natroalunite, alunite, quartz, hematite, cristobalite, gypsum, and 160 

unclassified amorphous phases (Figure 1d-e; Table 1; Heap et al., 2019a). The five 161 



blocks from Merapi volcano were labelled M-U (“unaltered”), M-SA1 and M-SA2 162 

(“slightly altered”), and M-HA1 and M-HA2 (“highly altered”). The labels for these 163 

materials are the same as in Heap et al. (2019a). The porosity of the samples 164 

comprises both pores and microcracks (Figure 1d-e). 165 

Multiple cylindrical samples, 20 mm in diameter, were cored from the blocks 166 

collected and their ends were cut and ground flat and parallel to a nominal length of 167 

40 mm. These samples were then dried under vacuum at 40 °C for at least 48 h. The 168 

dry bulk sample density was measured for each sample using the dry mass and the 169 

bulk sample volume determined using the sample dimensions. The connected 170 

porosities of the cylindrical samples were calculated using the skeletal volume 171 

measured by a helium pycnometer (Micromeritics AccuPyc II 1340) and the bulk 172 

sample volume.  173 

The thermal conductivity, �  (in W.m-1.K-1), and thermal diffusivity, �  (in 174 

mm2.s-1), of each sample was measured using a Hot Disk TPS 500 Thermal Constants 175 

Analyser using the transient plane source (TPS) method (outlined in Gustafsson, 176 

1991; Gustavsson et al., 1994; Harlé et al., 2019). The TPS method is a periodic 177 

method of thermal property measurement (see the review by Hofmeister, 2019). The 178 

standard uncertainty for values of thermal conductivity and thermal diffusivity using 179 

the transient hot-strip method has been determined to be 2.6 and 11%, respectively 180 

(Hammerschmidt and Sabuga, 2000). Measurement uncertainty using this technique 181 

arises from contact losses and ballistic radiative transfer gains (Hofmeister, 2019). 182 

A sensor consisting of two 10 μm-thick nickel foil spirals (radius = 3.189 mm) 183 

insulated on both sides by 30 μm-thick kapton (Figure 2, inset) was sandwiched 184 

between the cylindrical sample and a piece of polyurethane foam of known thermal 185 

properties (Figure 2). The sample and foam piece were held in place using a screw 186 



positioned at the top of the sample jig (Figure 2), which ensured good contact 187 

between the surface of the sample and the sensor. The temperature adjacent to the 188 

sample was measured using a thermocouple and was inputted into the system prior to 189 

launching each measurement. During the measurement, an electrical current of known 190 

power and duration was passed through the sensor, which also recorded the increase 191 

in sample temperature as a function of time. The output power and duration required 192 

for a reliable measurement varied from sample to sample and were found using trial-193 

and-error. Four consecutive measurements were performed on each sample and we 194 

report herein an average of these four measurements (standard deviations are provided 195 

in Tables 2 and 3). Each measurement was performed at least five min apart to ensure 196 

that the sample had cooled back to the ambient temperature. The sensor measured the 197 

temperature drift of the sample for 40 s prior to each measurement to check whether 198 

the sample was in thermal equilibrium. If the sample temperature was not constant 199 

during this 40 s period, the data were not considered and the measurement was 200 

repeated. “Wet” measurements were performed on samples saturated under vacuum 201 

with deionised water, a method that ensures the complete saturation of the connected 202 

void space. The wet mass of these samples was first measured in order to calculate the 203 

bulk sample density of the water-saturated samples. To perform the wet thermal 204 

property measurements, the entire jig (Figure 2) was submersed in a water bath. Wet 205 

measurements were performed with the sensor sandwiched between two cylindrical 206 

samples cored from the same block (of identical or very similar porosity) of material, 207 

rather than using the polyurethane foam described above. The specific heat per unit 208 

volume, ���� (in J/m3K), provided by the Hot Disk device was divided by the bulk 209 

sample density, ��, to provide the bulk sample specific heat capacity, �� (in kJ.kg-1.K-210 

1). All measurements were conducted in a far-field environment that was at ambient 211 



laboratory temperature (ranging from 19 to 27 °C for the dry measurements and 18 to 212 

20 °C for the wet measurements) and pressure (~100,000 Pa). 213 

 214 

3 Results 215 

 Bulk sample density, specific heat capacity, and thermal conductivity are 216 

plotted as a function of connected porosity in Figure 3 (data available in Tables 2 and 217 

3). We first note that bulk sample density decreases linearly as a function of 218 

increasing porosity for the dry samples from Mt. Ruapehu (black circles in Figure 3a), 219 

suggesting that the volume of isolated porosity is constant over the porosity range or 220 

that the volume of isolated porosity in the studied samples is negligible. Although the 221 

bulk density of the dry samples from Merapi volcano decreases as a function of 222 

increasing porosity (green squares in Figure 3a), the trend is much more scattered 223 

than that for the dry Mt. Ruapehu samples.  224 

The specific heat capacity of the dry Mt. Ruapehu samples varies between 225 

0.591 and 0.856 kJ.kg-1.K-1, but does not vary systematically with porosity (black 226 

circles in Figure 3b; Table 2). The specific heat capacity of the samples from Merapi 227 

volcano also does not vary systematically with porosity (green squares in Figure 3b). 228 

The thermal conductivity of the dry Mt. Ruapehu (black circles in Figure 3c) 229 

and Merapi volcano (green squares in Figure 3c) samples decreases as a function of 230 

increasing porosity. For example, at low porosity (<0.05), the thermal conductivity of 231 

the dry samples from Mt. Ruapehu is between ~1.4 and ~1.6 W.m-1.K-1, but is as low 232 

as ~0.4 W.m-1.K-1 when the porosity is ~0.6 (Figure 3c). 233 

The thermal diffusivity of the dry Mt. Ruapehu (black circles in Figure 4) and 234 

Merapi volcano (green squares in Figure 4) samples decreases as a function of 235 

increasing porosity, but the trend is more scattered than that for the thermal 236 



conductivity (Figure 3c). For example, the thermal diffusivity of the dry samples from 237 

Mt. Ruapehu decreases from ~0.7-0.8 to ~0.5-0.55 mm2.s-1 as porosity increases from 238 

<0.05 to ~0.6 (Figure 4).  239 

When saturated with water, the bulk density (Figure 3a), specific heat capacity 240 

(Figure 3b), and thermal conductivity (Figure 3c) of the andesites from Mt. Ruapehu 241 

increased, and the thermal diffusivity decreased, relative to the dry state (Figure 4). 242 

Our data also show that the influence of water saturation on the thermal properties of 243 

the andesites from Mt. Ruapehu depends on the porosity (Figure 5). At low porosity 244 

(<0.05), the dry and wet thermal properties are essentially equal, but, at the maximum 245 

porosity of ~0.6, the specific heat capacity and thermal conductivity increased by a 246 

factor of ~4.5 and ~2.25, respectively (Figures 5a and 5c), and the thermal diffusivity 247 

decreased by a factor of ~0.5 (Figure 5c). 248 

 For a given porosity, the dry altered basaltic-andesites from Merapi volcano 249 

(green squares) have a higher density (Figure 3a), a higher specific heat capacity 250 

(Figure 3b), and a lower thermal conductivity (Figure 3c) and thermal diffusivity 251 

(Figure 4) than the dry andesites from Mt. Ruapehu. For example, at a porosity of 0.2, 252 

the thermal conductivity and thermal diffusivity of the rocks from Merapi volcano are 253 

~0.4 W.m-1.K-1 and ~0.2 mm2.s-1 lower than respective values for the andesites from 254 

Mt. Ruapehu (Figures 3c and 4).  255 

 256 

4 Discussion 257 

 A decrease in thermal conductivity, thermal diffusivity, and specific heat 258 

capacity as porosity increases for the dry samples (Figures 3 and 4) can be explained 259 

by the large difference in these thermal properties between rock-forming minerals and 260 

pore-filling air. A decrease in thermal properties as a function of increasing porosity 261 



has been observed previously for dry porous rocks (e.g., Robertson and Peck, 1974; 262 

Brigaud and Vasseur, 1989; Clauser and Huenges, 1995; Popov et al., 2003; Pimienta 263 

et al., 2014; Esteban et al., 2015; Mielke et al., 2015, 2017; Heap et al., 2019b; Harlé 264 

et al., 2019). The change in thermal properties following water saturation (Figure 5) 265 

reflects the different thermal properties of pore-filling air and water (e.g., Nagaraju 266 

and Roy, 2014; Harlé et al., 2019): the thermal conductivity of air and water are ~0 267 

and ~0.6 W.m-1.K-1, respectively. Finally, the reduction in thermal conductivity 268 

(Figure 3c) and thermal diffusivity (Figure 4) following hydrothermal alteration, for a 269 

given porosity, is interpreted here as the result of differences between the thermal 270 

properties of the primary and alteration minerals. Gypsum (one of the alteration 271 

minerals; Table 1), for example, has a very low thermal conductivity (Clauser and 272 

Huenges, 1995). The influence of hydrothermal alteration on the thermal properties of 273 

volcanic rock will also depend on whether the alteration increases or decreases 274 

porosity. For example, the alteration of ash tuff from the Tauhara geothermal field 275 

decreased porosity, resulting in an increase in thermal conductivity (Mielke et al., 276 

2015). 277 

 278 

4.1 Theoretical predictions 279 

The effective thermal conductivity, ���	 , can be determined using the 280 

Maxwell equation: 281 

 282 

���	
�


=  �1 − �	�1 − �	 + ���
�1 − �	�1 − �	 + �� ,      �1	 283 

 284 

where �  is the total porosity, � =  ��/�
  (where �
  and ��  are the thermal 285 

conductivities of the rock groundmass and the fluid within the pore space, 286 



respectively), and, for spherical pores, � = 3�1 − �	/�2 + �	  (Zimmerman, 1989). 287 

The Maxwell model assumes no interaction between the spherical pores. To 288 

determine thermal conductivity as a function of porosity for our dry and water-289 

saturated samples, we assume that the thermal conductivity of air and water are 0 and 290 

0.6 W.m-1.K-1, respectively (e.g., Nagaraju and Roy, 2014; Vosteen and 291 

Schellschmidt, 2003). Equation (1) well describes the data for the dry (solid black 292 

line; Figure 3c) and wet (dashed blue line; Figure 3c) andesites from Mt. Ruapehu, 293 

providing a value for �
 of 1.50 W.m-1.K-1. We also plot data for variably porous dry 294 

basalt from Robertson and Peck (1974) in Figure 3c (grey triangles), which are also 295 

well described by Equation (1) (see also Horai, 1991). However, although the low-296 

porosity rocks (porosity <0.1) from Merapi volcano, those characterised by low levels 297 

of hydrothermal alteration, follow the trend delineated by a �
 of 1.50 W.m-1.K-1, the 298 

more altered rocks, containing a higher porosity (from ~0.15 to ~0.25), fall 299 

consistently below the trend (Figure 3c). This discrepancy can be explained by a 300 

change in �
 as a result of the change in the mineral assemblage due to hydrothermal 301 

alteration. Our data show that the minimum possible value of �
 for the altered rocks 302 

from Merapi volcano, using Equation (1), is 1.10 W.m-1.K-1 (dotted green line; Figure 303 

3c).  304 

The effective thermal diffusivity ���	 can be obtained using (e.g., Connor et 305 

al., 1997): 306 

 307 

���	 = ���	
�����1 − �	 + ����,��,     �2	 308 

 309 



where �� and �� are the matrix and pore fluid densities, respectively, and �� and ��,� 310 

are the matrix and pore fluid specific heat capacity, respectively. Based on Equation 311 

(2), the effective specific heat capacity ����	 can be derived as: 312 

 313 

����	 = �����1 − �	 + ����,��
��

.     �3	 314 

 315 

To model the thermal diffusivity and specific heat capacity data for the andesites from 316 

Mt. Ruapehu, we use �� = 2750 kg.m-3 and �� = 0.750 kJ.kg-1.K-1 (values selected 317 

based on our laboratory measurements for the Mt. Ruapehu samples; Table 2), �� = 318 

1.275 kg.m-3 and ��,� = 1.007 kJ.kg-1.K-1 for air, and ��  = 1000 kg.m-3 and ��,� = 319 

4.182 kJ.kg-1.K-1 for water. We find that Equation (2) can well describe the dry (solid 320 

black line in Figure 4) and water-saturated (dashed blue line in Figure 4) thermal 321 

diffusivity data for the Mt. Ruapehu andesites. We also find that Equation (3) well 322 

describes the dry (solid black line in Figure 3b) and water-saturated (dashed black line 323 

in Figure 3b) specific heat capacity data. We also provide theoretical curves, using 324 

Equations (1-3), for the wet/dry ratios for the specific heat capacity, thermal 325 

conductivity, and thermal diffusivity data (solid black lines in Figure 5). We find that 326 

the theoretical predictions for the wet/dry ratios also well describe our experimental 327 

data (Figure 5). 328 

The fact that Equations (1-3) can accurately describe the thermal conductivity, 329 

thermal diffusivity, and specific heat capacity of the andesites from Ruapehu, despite 330 

their microstructural differences (e.g., differences in pore size, pore shape, microcrack 331 

density; Figure 1), highlights that porosity exerts a first order control on the thermal 332 

properties of porous andesites. 333 



 334 

4.2 Case studies: heat loss from a dyke and conduit 335 

It is important to assess whether the measured changes to thermal conductivity, 336 

thermal diffusivity, and specific heat capacity as a function of porosity and alteration 337 

(Figures 3 and 4; Tables 2 and 3) are sufficient to influence volcanic/geothermal 338 

processes. To do so, we model the migration of the 700 °C isotherm with respect to 339 

the boundary of a dyke and a conduit by solving the heat equation in 1D for two 340 

different coordinate systems: (1) Cartesian (analogous to dyke geometry) and (2) 341 

cylindrical (analogous to conduit geometry) coordinates. We explore a scenario in 342 

which the magma in the dyke or conduit is stagnant and loses heat to the host-rock 343 

through conduction, leading to wholescale cooling of the system. Fick’s second law 344 

for heat transfer by conduction is given by (Crank, 1979): 345 

 346 

��
�� = ∇ ∙ ����	∇�	,     �4	 347 

 348 

where � is the time since the onset of heat transfer, � is the temperature, and ���	 is 349 

the effective thermal diffusivity. In 1D, the right-hand side of Equation (4) becomes 350 

(Crank, 1979, pages 56 and 69): 351 

  352 

�
��  ���	 ��

!�" ; cartesian coordinates −  dyke geometry
1
�

�
��  ����	 ��

!�" ; cylindrical coordinates − conduit geometry
 353 

 354 

In Cartesian coordinates, � represents for the distance from the dyke centre 355 

(assuming an axisymmetric dyke) and, in cylindrical coordinates, � represents for the 356 



radial distance from the conduit centre. In both cases we have the same initial 357 

conditions at � = 0 that � = �5  for � ≤ 7 and � ≤ 8, and � = �9  for � > 7 and � >358 

8 , where �5  and �9  are the initial temperature of the magma and the host-rock, 359 

respectively, and 7 and 8 are the dyke half-width and conduit radius, respectively. �5 360 

is only applied at the start (i.e. � = 0) and the magma cools down by conducting heat 361 

to the host-rock. We take a range of �5 from 800 to 1200 °C and �9 = 50 °C. We 362 

consider a pore-free magma and explore the influence of the porosity of the host-rock 363 

on the migration of the isotherm (i.e. the cooling of the system). We scale the effect of 364 

porosity by decomposing the bulk specific heat capacity using Equation (3), and by 365 

using the Maxwell equation for the bulk thermal conductivity (Equation (1)). The use 366 

of these theoretical relationships is supported by their accurate description of our 367 

experimental data (Figure 3a and 3c) (the maximum and minimum difference between 368 

the data and the value predicted by the model are 0.205 and -0.089 W.m-1.K-1 and 369 

0.107 and -0.144 kJ.kg-1.K-1 for thermal conductivity and specific heat capacity, 370 

respectively). We also use our experimental data to constrain the matrix properties of 371 

the host-rock, such that � = 2750 kg.m-3, �
 = 1.50 ± 1 W.m-1.K-1, and �� = 0.750 ± 372 

0.010 kJ.kg-1.K-1. As above, we use �� = 1.275 kg.m-3 and ��,� = 1.007 kJ.kg-1.K-1 for 373 

air. Our modelling therefore uses data collected at ambient laboratory pressure and 374 

temperature (see our “Data limitations” section below). In our simulations of heat 375 

transfer, both dyke and conduit centres are insulated (Neumann boundary condition of 376 

0) such that ��/�� = ��/�� = 0 for all �. The far-field temperature in the host-rock 377 

is kept constant at �9. We take a typical dyke half-width and conduit radius of 7 =378 

8 = 25 m. We explicitly acknowledge that our approach does not account for the 379 

advection or convection of heat (in the magma and in the host-rock). It is also 380 

assumed that no heat is generated. With these conditions, we solve Equation (4) 381 



numerically using a backward-time, centred-space finite difference scheme. The 382 

model setup is presented in Figure 6. 383 

 The resulting migration of the 700 °C isotherm as a function of time are 384 

shown in Figure 7a (dyke geometry) and Figure 8a (conduit geometry), for air-filled 385 

pores, initial magma temperatures, �5 , of 800, 1000, and 1200 °C, and host-rock 386 

porosities, �, of 0, 0.3, and 0.6. Figures 7a and 8a show that there is a large influence 387 

of initial magma temperature on the migration of the isotherm. For example, after 50 388 

days, and for a porosity of 0.3, the isotherm moves 2.7, 1.1, and 0.2 m from the 389 

boundary of the dyke at initial magma temperatures of 800, 1000, and 1200 °C, 390 

respectively (Figure 7a). The isotherm moves 2.9, 1.2, and 0.4 m from the boundary 391 

of the conduit (i.e. inside the conduit) after 50 days (assuming a porosity of 0.3) at 392 

initial magma temperatures of 800, 1000, and 1200 °C, respectively (Figure 8a). Host-393 

rock porosity also influences the migration of the isotherm (Figures 7a and 8a). 394 

Following 50 days, for an initial magma temperature of 1200 °C, the isotherm moves 395 

from the dyke and conduit boundary by 0.4, 0.2, and 0.1 m and 0.6, 0.4, and 0.2 m for 396 

host-rock porosities of 0, 0.3, and 0.6, respectively (Figures 7a and 8a).  397 

 We additionally approximate the effect of host-rock hydrothermal alteration 398 

on the cooling of a dyke and conduit. To do so, the matrix thermal conductivity, �
, 399 

was changed from 1.50 ± 1 to 1.10 ± 1 W.m-1.K-1, as guided by our experimental data 400 

(Figure 3c). All other parameters remained unchanged. Figures 7b and 8b show the 401 

results (for a host-rock porosity of 0.1, air-filled pores, and an initial magma 402 

temperature of 1000 °C) for the dyke and conduit geometries, respectively. It can be 403 

seen that host-rock hydrothermal alteration influences the migration of the isotherm 404 

(Figures 7b and 8b). For example, after 50 days, the 700 °C isotherm moves from the 405 



dyke and conduit boundary by 1.2 and 1.0 m and 1.3 and 1.1 m for �
 = 1.50 (i.e. 406 

unaltered) and �
 = 1.10 W.m-1.K-1 (i.e. altered), respectively (Figures 7b and 8b). 407 

 408 

4.3 Data limitations 409 

 First, as outlined in our methods section, the standard uncertainty of our 410 

thermal conductivity and thermal diffusivity measurements is 2.6 and 11%, 411 

respectively (Hammerschmidt and Sabuga, 2000). Data collected using the method 412 

used suffers from contact losses and ballistic radiative transfer gains (Hofmeister, 413 

2019). Second, our measurements were performed at ambient pressure and 414 

temperature. For example, an increase in pressure (i.e. depth) will close microcracks 415 

(e.g., Vinciguerra et al., 2005; Nara et al., 2011; Zhu et al., 2016), abundant in these 416 

materials (Figure 1). A reduction in porosity, due to the closure of microcracks, will 417 

likely increase thermal conductivity, thermal diffusivity, and specific heat capacity 418 

(Figures 3 and 4; Equation 1). However, we note that microcracks typically only 419 

represent a very small proportion of the porosity within a sample due to their very low 420 

aspect ratio (e.g., Kranz, 1983). Therefore, our measurements, performed at room 421 

pressure, will likely slightly underestimate the thermal properties of volcanic rock at 422 

depth. An increase in temperature has been shown to influence the thermal properties 423 

of rocks and rock-forming minerals (e.g., Guéguen and Palciauskas, 1994; Nabelek et 424 

al., 2010; Guo et al., 2017; Vosteen and Schellschmidt, 2017; Harlé et al., 2019), 425 

including volcanic rocks (e.g., Bates et al., 1970; Horai et al., 1970; Petrunin et al., 426 

1971; Fuji and Osako, 1972; Büttner et al., 1998; Romaine et al., 2012; Hofmeister, 427 

2019). Compiled thermal diffusivity data for volcanic materials show that the largest 428 

differences in thermal diffusivity occur at temperatures below ~300 °C (Figure 9). For 429 

example, Romine et al. (2012) found that the thermal diffusivity of rhyolite decreased 430 



from ~0.65 to ~0.55 mm2.s-1 as temperature was increased from ~20 to ~430 °C, but 431 

remained constant from ~430 to ~1300 °C. We also note that the differences as a 432 

result of porosity variation (data from this study) are as large as the variation in 433 

thermal diffusivity as temperature is increased from ~20 to ~1300 °C (Figure 9). 434 

Therefore, although our measurements were performed at room temperature and 435 

likely overestimate the thermal diffusivity of volcanic rock at high-temperature, 436 

relatively small changes in thermal diffusivity between ~300 and ~1300 °C (Figure 9) 437 

provides some support for the assumption of a constant thermal diffusivity in our 438 

modelling. It is clear, however, that thermal property measurements at high 439 

temperature are now required for a range of variably porous volcanic rocks. An 440 

increase in temperature can also generate thermal microcracks that will also serve to 441 

decrease thermal conductivity and thermal diffusivity (Kant et al., 2017). However, 442 

although rocks such as granites are well known to suffer thermal microcracking when 443 

exposed to high-temperature (e.g., Homand-Etienne and Houpert, 1989; David et al., 444 

1999; Chaki et al., 2008; Griffiths et al., 2018), the microstructure of some volcanic 445 

rocks is unaffected (e.g., Vinciguerra et al., 2005; Heap et al., 2018; Coats et al., 446 

2018; Eggertsson et al., 2018). Measuring the thermal properties for a range of 447 

volcanic rocks at a range of pressures and temperatures offers an exciting avenue for 448 

future research. 449 

 450 

4.4 Implications 451 

  The thermal property data provided herein (Tables 2 and 3) can be used for a 452 

wide range of modelling endeavours. We note that, because Equations (1-3) are 453 

suitable approximations for the data collected for this study (Figures 3 and 4), the 454 

thermal property structure of a volcano or volcanic environment could be estimated 455 



using geophysical methods that provide images of the subsurface in terms of density 456 

or porosity, such as muon tomography (Tanaka et al., 2010; Marteau et al., 2012; 457 

Lesparre et al., 2012; Rosas-Carbajal et al., 2017). Therefore, if the saturation state of 458 

the edifice is known, or can be approximated, Equations (1-3) could be used to 459 

estimate the thermal property structure of a volcano that could, in turn, be employed 460 

to model heat flow within a volcanic edifice. 461 

Our modelling (Figures 7 and 8) also highlights that hydrothermal alteration 462 

slows the cooling of a dyke and conduit. Therefore, progressive hydrothermal 463 

alteration of an edifice or lava dome could keep a conduit-dwelling magma or the 464 

core of a dome hotter for longer, respectively. Indeed, the maintenance of these 465 

elevated temperatures may promote further alteration within the edifice or dome. 466 

Hydrothermal alteration of volcanic rocks can result in decreases to rock strength 467 

(e.g., Pola et al., 2012; Wyering et al., 2014; Frolova et al., 2014; Heap et al., 2015; 468 

Farquharson et al., 2019; Mordensky et al., 2019). Thus, as edifices remain under 469 

temperature and fluid conditions amenable to alteration, their structure may become 470 

progressively unstable and more prone to mass-wasting events (e.g., López and 471 

Williams, 1993; Reid et al., 2001; Finn et al., 2001; Ball et al., 2013, 2015). The 472 

volume of edifice material available to such events will be, in part, defined by the 473 

extent of alteration, where planes of failure are more likely to be found in areas with 474 

extensive alteration. An increase in the spatial distribution and/or intensity of 475 

alteration will also hasten permeability reductions as a result of pore- and crack-filling 476 

alteration, a process linked to erratic explosive behaviour (Heap et al., 2019a). We 477 

further note that recent discrete element modelling has shown that the volume of 478 

material in a dome collapse is larger when the ductile core of the dome is smaller, as 479 

it controls the depth to which a shear plane can form (Harnett et al., 2018). Therefore, 480 



if the hydrothermal alteration of the talus rocks forming the outer shell of a lava dome 481 

can inhibit the cooling of the ductile dome core, hydrothermal alteration could limit 482 

the volume of material mobilised during the collapse of a lava dome. We consider it 483 

important, therefore, to monitor the extent and progression of hydrothermal alteration 484 

at active volcanoes using geophysical methods such as electrical tomography (e.g., 485 

Rosas-Carbajal et al., 2016; Byrdina et al., 2017; Soueid Ahmed et al., 2018; 486 

Ghorbani et al., 2018), gas monitoring (e.g., de Moor et al., 2019), or methods such as 487 

visible and infrared spectroscopy (Crowley et al., 1997; John et al., 2008) and 488 

hyperspectral analysis (Kereszturi et al., 2018). 489 

 490 

5 Conclusions 491 

 The thermal properties of volcanic rocks are sought-after parameters for 492 

numerous modelling endeavours. Here we present laboratory-measured values of 493 

thermal conductivity, thermal diffusivity, and specific heat capacity of variably 494 

porous andesites. Our data show that thermal conductivity, thermal diffusivity, and 495 

specific heat capacity of dry andesites all decrease as a function of increasing 496 

porosity. Relative to the dry state, saturation with water increases the thermal 497 

conductivity and specific heat capacity of the andesites, but decreases their thermal 498 

diffusivity. Additionally, our data show that hydrothermal alteration, specifically 499 

acid-sulphate alteration, increases the specific heat capacity and decreases the thermal 500 

conductivity and thermal diffusivity. We find that the measured experimental values 501 

agree well with theoretical predictions, suggesting that, despite the microstructural 502 

complexity of volcanic rocks, porosity is the principal parameter dictating their 503 

thermal properties. To understand whether the measured changes in thermal 504 

properties are sufficient to influence natural processes, we provide modelling that 505 



shows how the cooling of a dyke and conduit is slowed by a higher host-rock porosity 506 

and by increasing host-rock hydrothermal alteration. The values of thermal 507 

conductivity, thermal diffusivity, and specific heat capacity provided herein can help 508 

improve modelling designed to inform on volcanic and geothermal processes. 509 
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Figure captions 902 

 903 

Figure 1. Backscattered scanning electron microscope images of select samples from 904 

Ruapehu (panels a to c; images from Heap and Kennedy (2016)) and Merapi (panels d 905 

to e; images from Heap et al. (2019a)). Important microstructural features are labelled 906 

on the images. 907 

 908 

Figure 2. Photograph of the experimental setup. The inset shows the detail of the 909 

sensor, consisting of two 10 μm-thick nickel foil spirals (radius = 3.189 mm) 910 

insulated on both sides by 30 μm-thick kapton. 911 

 912 

Figure 3. (a) Bulk sample density, (b) specific heat capacity, and (c) thermal 913 

conductivity as a function of connected porosity for the andesites from Mt. Ruapehu 914 

and the altered basaltic-andesites from Merapi volcano (see Tables 2 and 3). Solid, 915 

dashed, and dotted lines correspond to theoretical curves (see text for details). Blue 916 

circles – Mt. Ruapehu (wet); black circles – Mt. Ruapehu (dry); green squares – 917 

Merapi volcano (dry); grey triangles – Hawaiian basalt (data from Robertson and 918 

Peck, 1974). The standard uncertainty for values of thermal conductivity and thermal 919 

diffusivity using the transient hot-strip method has been determined to be 2.6 and 920 

11%, respectively (Hammerschmidt and Sabuga, 2000). 921 

 922 

Figure 4. Thermal diffusivity as a function of connected porosity for the andesites 923 

from Mt. Ruapehu and the altered basaltic-andesites from Merapi volcano (see Tables 924 

2 and 3). Solid and dashed lines correspond to theoretical curves (see text for details). 925 

Blue circles – Mt. Ruapehu (wet); black circles – Mt. Ruapehu (dry); green squares – 926 



Merapi volcano (dry). The standard uncertainty for values of thermal diffusivity using 927 

the transient hot-strip method has been determined to be 11% (Hammerschmidt and 928 

Sabuga, 2000). 929 

 930 

Figure 5. The ratio of wet-to-dry (a) thermal conductivity, (b) thermal diffusivity, and 931 

(c) specific heat capacity as a function of connected porosity for the samples from Mt. 932 

Ruapehu. Solid lines correspond to theoretical curves (see text for details). 933 

 934 

Figure 6. Model set up and example results using the thermal properties for the host-935 

rock (or edifice) constrained herein. We present two suites of simplified conduction 936 

model, for heat transfer from a dyke (a-c) or from a cylindrical conduit (d-f). Panels 937 

(a) and (d) show the general coordinate system (we do not introduce the coordinate 938 

directions <, =, or > in the text because these are implicit in the derivation for each 939 

geometry). In panels (b-c) and (e-f), the vertical dashed grey line represents the dyke 940 

margin (b-c; � = 7) or the conduit margin (e-f; � = 8). In panels (b) and (e) we show 941 

the distribution of the porosity across the domain, which is imposed throughout the 942 

simulations, where the magma is always at zero porosity, and the country rock has a 943 

porosity of 0, 0.3, or 0.6 (each solution type is delineated by line style). In panels (c) 944 

and (f) we show an example suite of solutions for the evolution of temperature across 945 

the domain for each geometry, and also mark the initial magma temperature �5 946 

(colour delineates the three magma temperatures investigated), and the country rock 947 

temperature �9 = 50 °C. The thermal property determinations at low temperature are 948 

most applicable to the evolution of temperature in the host-rock far field, relevant to 949 

the geothermal system, but we note that these simulations show that the thermal 950 



evolution in this host-rock domain depends on the thermal pathway taken by the 951 

magma, as well as the geometry of the system. 952 

 953 

Figure 7. (a) The migration of the 700 °C isotherm within a dyke (dyke half-width = 954 

25 m) as a function of time for an unaltered host-rock with air-filled pores. Modelled 955 

curves are provided for different initial magma temperatures (800, 1000, and 1200 956 

°C) and different host-rock porosities (0, 0.3, and 0.6). (b) The migration of the 700 957 

°C isotherm within a dyke as a function of time for host-rocks with different thermal 958 

conductivities chosen to represent unaltered host-rock (�
  = 1.50 W.m-1.K-1) and 959 

hydrothermally altered host-rock (�
 = 1.10 W.m-1.K-1). Both curves are for an initial 960 

magma temperature of 1000 °C and a host-rock porosity of 0.1. 961 

 962 

Figure 8. (a) The migration of the 700 °C isotherm within a conduit (conduit radius = 963 

25 m) as a function of time for a host-rock with air-filled pores. Modelled curves are 964 

provided for different initial magma temperatures (800, 1000, and 1200 °C) and 965 

different host-rock porosities (0, 0.3, and 0.6). (b) The migration of the 700 °C 966 

isotherm within a conduit as a function of time for host-rocks with different thermal 967 

conductivities chosen to represent unaltered host-rock (�
  = 1.50 W.m-1.K-1) and 968 

hydrothermally altered host-rock (�
 = 1.10 W.m-1.K-1). Both curves are for an initial 969 

magma temperature of 1000 °C and a host-rock porosity of 0.1. 970 

 971 

Figure 9. Thermal diffusivity for volcanic materials as a function of temperature. 972 

Data from: this study, Romine et al. (2012), Büttner et al. (1998), Fuji and Osako 973 

(1972), Bates et al. (1970), and Petrunin et al. (1971).  974 



Table 1. X-ray powder diffraction (XRPD) analysis showing quantitative bulk 975 

mineralogical composition for the five blocks from Merapi volcano (in wt.%). The 976 

five blocks from Merapi volcano are labelled M-U (“unaltered”), M-SA1 and M-SA2 977 

(“slightly altered”), and M-HA1 and M-AH2 (“highly altered”) (as in Heap et al., 978 

2019a). An asterisk denotes an alteration phase. Data from Heap et al. (2019a). 979 

 980 

Mineral M-U M-SA1 M-SA2 M-HA1 M-HA2 

Plagioclase 54 ± 3 47 ± 3 38 ± 3 38 ± 3 19 ± 3 
K-Feldspar 19 ± 3 9 ± 3 13 ± 3 6 ± 3 10 ± 3 

Clinopyroxene 
± 

orthopyroxene 

16 ± 2 13 ± 2 14 ± 2 11 ± 2 8 ± 2 

Magnetite 3 ± 0.5 2 ± 0.5 2.5 ± 0.5 <1 ± 0.5 <1 ± 0.5 
Gypsum* - 0.5 ± 0.5 4 ± 0.5 5 ± 0.5 6 ± 0.5 

K-Na-
Alunite* 

- 1 ± 0.5 8.5 ± 2 11 ± 2 24 ± 2 

Quartz* 1 ± 0.5 1.5 ± 0.5 0.5 ± 0.5 1 ± 0.5 0.5 ± 0.5 
Hematite* 0.5 ± 0.5 2 ± 0.5 0.5 ± 0.5 3 ± 0.5 1 ± 0.5 

Cristobalite* 6 ± 0.5 - - - 2.5 ± 0.5 
Amorphous 

phases* 
- 24 ± 4 19 ± 4 25 ± 4 28 ± 4 

  981 



Table 2. Connected porosity, bulk sample density, thermal conductivity, thermal 982 

diffusivity, and specific heat capacity of the dry volcanic rocks measured for this 983 

study. Asterisk indicates that the sample contains cristobalite (see Heap and Kennedy, 984 

2016; Heap et al., 2019a). The five blocks from Merapi volcano are labelled M-U 985 

(“unaltered”), M-SA1 and M-SA2 (“slightly altered”), and M-HA1 and M-AH2 986 

(“highly altered”) (as in Heap et al., 2019a). Quoted values of thermal conductivity 987 

and thermal diffusivity are the average of four measurements. The specific heat 988 

capacity was calculated by dividing the specific heat per unit volume, given by the 989 

Hot Disk device (using the average of the four measurements), by the bulk sample 990 

density. The standard deviations provided relate to measurement precision (calculated 991 

using the four measurements). The standard uncertainty for values of thermal 992 

conductivity and thermal diffusivity using the transient hot-strip method has been 993 

determined to be 2.6 and 11%, respectively (Hammerschmidt and Sabuga, 2000). 994 

 995 

Volcano 
Sample 
number 

Bulk 
sample 

density, �� 
(kg.m-3) 

Connected 
porosity 

Thermal 
conductivity, � 

(W.m-1.K-1) 

Thermal 
diffusivity, � 

(mm2.s-1) 

Specific 
heat 

capacity, 
�� (kJ.kg-

1.K-1) 

Ruapehu R1-1* 2760 0.021 
1.54 

± 0.018 
0.70 

± 0.020 
0.80 

± 0.032 

Ruapehu R1-2* 2710 0.040 
1.62 

± 0.016 
0.77 

± 0.018 
0.78 

± 0.010 

Ruapehu R2-1* 2714 0.024 
1.47 

± 0.064 
0.77 

± 0.074 
0.72 

± 0.100 

Ruapehu R2-2* 2686 0.036 
1.46 

± 0.051 
0.75 

± 0.009 
0.73 

± 0.016 

Ruapehu R3-1* 2706 0.042 
1.53 

± 0.007 
0.76 

± 0.035 
0.74 

± 0.037 

Ruapehu R3-2* 2692 0.047 
1.51 

± 0.050 
0.72 

± 0.054 
0.79 

± 0.085 

Ruapehu R4-1* 2669 0.038 
1.45 

± 0.030 
0.70 

± 0.033 
0.77 

± 0.053 

Ruapehu R4-2* 2681 0.036 
1.51 

± 0.005 
0.72 

± 0.007 
0.78 

± 0.005 

Ruapehu R5-1 2709 0.024 
1.48 

± 0.016 
0.71 

± 0.018 
0.77 

± 0.028 



Ruapehu R5-2 2704 0.027 
1.46 

± 0.031 
0.68 

± 0.012 
0.79 

± 0.003 

Ruapehu R6-1 2635 0.048 
1.39 

± 0.011 
0.83 

± 0.056 
0.64 

± 0.039 

Ruapehu R6-2 2663 0.042 
1.41 

± 0.002 
0.67 

± 0.004 
0.80 

± 0.004 

Ruapehu R7-1 2260 0.184 
1.06 

± 0.010 
0.65 

± 0.038 
0.73 

± 0.049 

Ruapehu R7-2 2227 0.205 
1.00 

± 0.047 
0.58 

± 0.055 
0.79 

± 0.112 

Ruapehu R8-1 2500 0.098 
1.26 

± 0.013 
0.70 

± 0.037 
0.72 

± 0.045 

Ruapehu R8-2 2455 0.118 
1.22 

± 0.058 
0.65 

± 0.054 
0.77 

± 0.100 

Ruapehu R9-1 2361 0.153 
1.17 

± 0.048 
0.66 

± 0.081 
0.76 

± 0.057 

Ruapehu R9-2 2389 0.140 
1.23 

± 0.051 
0.71 

± 0.058 
0.74 

± 0.080 

Ruapehu R10-1 2372 0.149 
1.14 

± 0.043 
0.65 

± 0.016 
0.73 

± 0.046 

Ruapehu R10-2 2322 0.167 
1.08 

± 0.092 
0.72 

± 0.094 
0.65 

± 0.030 

Ruapehu R11-1 2417 0.129 
1.21 

± 0.045 
0.59 

± 0.005 
0.86 

± 0.039 

Ruapehu R11-2 2361 0.151 
1.13 

± 0.052 
0.60 

± 0.063 
0.80 

± 0.048 

Ruapehu R12-1 2209 0.204 
1.01 

± 0.046 
0.61 

± 0.029 
0.75 

± 0.002 

Ruapehu R12-2 2286 0.182 
1.09 

± 0.018 
0.62 

± 0.051 
0.78 

± 0.051 

Ruapehu R13-1 1924 0.308 
0.81 

± 0.004 
0.64 

± 0.029 
0.66 

± 0.033 

Ruapehu R14-1 1886 0.320 
0.84 

± 0.003 
0.75 

± 0.108 
0.61 

± 0.104 

Ruapehu R14-2 1834 0.345 
0.81 

± 0.041 
0.52 

± 0.050 
0.85 

± 0.046 

Ruapehu R15-1 1817 0.348 
0.81 

± 0.060 
0.59 

± 0.019 
0.76 

± 0.053 

Ruapehu R15-2 1866 0.333 
0.79 

± 0.052 
0.53 

± 0.065 
0.81 

± 0.072 

Ruapehu R16-1 1725 0.382 
0.73 

± 0.044 
0.63 

± 0.092 
0.68 

± 0.138 

Ruapehu R17-1 1068 0.602 
0.43 

± 0.026 
0.51 

± 0.044 
0.79 

± 0.020 

Ruapehu R17-2 999 0.628 
0.38 

± 0.027 
0.55 

± 0.082 
0.71 

± 0.155 

Merapi 
M-U* 
5B-4 

2578 0.080 
1.43 

± 0.022 
0.70 

± 0.038 
0.79 

± 0.031 

Merapi 
M-U* 
5B-5 

2564 0.084 
1.37 

± 0.033 
0.73 

± 0.031 
0.74 

± 0.023 
Merapi M-U* 2586 0.077 1.48 0.73 0.79 



5B-8 ± 0.025 ± 0.041 ± 0.037 

Merapi 
M-SA-2 

2B-4 
2490 0.079 

1.20 
± 0.015 

0.57 
± 0.022 

0.86 
± 0.041 

Merapi 
M-SA-2 

2B-6 
2493 0.080 

1.23 
± 0.052 

0.57 
± 0.027 

0.87 
± 0.019 

Merapi 
M-SA-2 

2B-8 
2494 0.083 

1.28 
± 0.015 

0.53 
± 0.021 

0.98 
± 0.030 

Merapi 
M-HA-1 

4B-4 
2293 0.154 

1.07 
± 0.068 

0.51 
± 0.030 

0.91 
± 0.041 

Merapi 
M-HA-1 

4B-5 
2207 0.182 

0.90 
± 0.059 

0.51 
± 0.028 

0.81 
± 0.014 

Merapi 
M-HA-1 

4B-6 
2251 0.144 

1.07 
± 0.049 

0.53 
± 0.011 

0.91 
± 0.059 

Merapi 
M-HA-1 

4B-7 
2266 0.155 

1.04 
± 0.013 

0.52 
± 0.022 

0.88 
± 0.041 

Merapi 
M-HA-1 

4B-8 
2233 0.160 

0.97 
± 0.079 

0.54 
± 0.027 

0.81 
± 0.056 

Merapi 
M-HA-1 

4B-9 
2254 0.162 

0.97 
± 0.008 

0.66 
± 0.210 

0.73 
± 0.227 

Merapi 
M-HA-1 

4B-10 
2189 0.182 

0.94 
± 0.004 

0.43 
± 0.001 

0.99 
± 0.003 

Merapi 
M-HA-

2* 
3B-4 

2061 0.215 
0.78 

± 0.076 
0.60 

± 0.094 
0.66 

± 0.185 

Merapi 
M-HA-

2* 
3B-5 

2013 0.233 
0.80 

± 0.037 
0.51 

± 0.087 
0.79 

± 0.103 

Merapi 
M-HA-

2* 
3B-6 

2036 0.220 
0.86 

± 0.066 
0.51 

± 0.043 
0.82 

± 0.019 

Merapi 
M-HA-

2* 
3B-7 

2108 0.188 
0.86 

± 0.060 
0.50 

± 0.027 
0.83 

± 0.021 

Merapi 
M-HA-

2* 
3B-8 

2173 0.163 
0.88 

± 0.008 
0.55 

± 0.045 
0.75 

± 0.063 

Merapi 
M-HA-

2* 
3B-9 

1990 0.242 
0.79 

± 0.049 
0.46 

± 0.004 
0.86 

± 0.046 

Merapi 
M-HA-

2* 
3B-10 

1938 0.263 
0.79 

± 0.011 
0.47 

± 0.042 
0.88 

± 0.067 

Merapi 
M-HA-

2* 
3B-11 

2166 0.168 
0.85 

± 0.028 
0.45 

± 0.093 
0.93 

± 0.195 

Merapi 
M-SA-1 

1A-4 
2116 0.231 

0.75 
± 0.061 

0.45 
± 0.062 

0.80 
± 0.107 

Merapi 
M-SA-1 

1A-6 
2102 0.236 

0.76 
± 0.052 

0.51 
± 0.018 

0.70 
± 0.071 

Merapi 
M-SA-1 

1A-8 
2033 0.262 

0.76 
± 0.038 

0.55 
± 0.105 

0.70 
± 0.109 



Merapi 
M-SA-1 
1A-10 

2048 0.256 
0.75 

± 0.049 
0.47 

± 0.052 
0.78 

± 0.062 

  996 



Table 3. Average connected porosity, bulk sample density (of the water-saturated 997 

samples), thermal conductivity, thermal diffusivity, and specific heat capacity for the 998 

water-saturated andesites from Mt. Ruapehu. Asterisk indicates that the sample 999 

contains cristobalite (see Heap and Kennedy, 2016). Quoted values of thermal 1000 

conductivity and thermal diffusivity are the average of four measurements. The 1001 

specific heat capacity was calculated by dividing the specific heat per unit volume, 1002 

given by the Hot Disk device (using the average of the four measurements), by the 1003 

bulk sample density. The standard deviations provided relate to measurement 1004 

precision (calculated using the four measurements). The standard uncertainty for 1005 

values of thermal conductivity and thermal diffusivity using the transient hot-strip 1006 

method has been determined to be 2.6 and 11%, respectively (Hammerschmidt and 1007 

Sabuga, 2000). 1008 

 1009 

Volcano 
Sample 
number 

Average 
bulk 

sample 
density, �� 

(kg.m-3) 

Average 
connected 
porosity 

Thermal 
conductivity, � 

(W.m-1.K-1) 

Thermal 
diffusivity, 
� (mm2.s-1) 

Specific 
heat 

capacity, 
�� (kJ.kg-

1.K-1) 

Ruapehu R1* 2765 0.030 
1.95 

± 0.068 
0.85 

± 0.113 
0.84 

± 0.107 

Ruapehu R2* 2730 0.030 
1.67 

± 0.021 
0.75 

± 0.027 
0.82 

± 0.029 

Ruapehu R3* 2744 0.044 
1.92 

± 0.046 
0.78 

± 0.094 
0.90 

± 0.091 

Ruapehu R4* 2712 0.037 
1.67 

± 0.021 
0.75 

± 0.027 
0.83 

± 0.029 

Ruapehu R5 2732 0.026 
1.52 

± 0.056 
0.63 

± 0.032 
0.88 

± 0.027 

Ruapehu R6 2694 0.045 
1.51 

± 0.063 
0.64 

± 0.062 
0.88 

± 0.051 

Ruapehu R7 2438 0.195 
1.37 

± 0.030 
0.54 

± 0.045 
1.04 

± 0.066 

Ruapehu R8 2586 0.108 
1.47 

± 0.021 
0.60 

± 0.061 
0.96 

± 0.105 

Ruapehu R9 2522 0.147 
1.42 

± 0.042 
0.57 

± 0.053 
0.99 

± 0.074 

Ruapehu R10 2505 0.158 
1.42 

± 0.034 
0.60 

± 0.033 
0.96 

± 0.049 



Ruapehu R11 2530 0.140 
1.42 

± 0.040 
0.61 

± 0.012 
0.92 

± 0.021 

Ruapehu R12 2440 0.193 
1.35 

± 0.024 
0.55 

± 0.008 
1.01 

± 0.020 

Ruapehu R14 2192 0.333 
1.27 

± 0.025 
0.49 

± 0.023 
1.20 

± 0.080 

Ruapehu R15 2182 0.341 
1.31 

± 0.061 
- - 

Ruapehu R17 1649 0.615 
0.90 

± 0.024 
0.27 

± 0.010 
2.02 

± 0.021 
 1010 



b) Ruapehu R8 

c) Ruapehu R14

a) Ruapehu R3
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e) Merapi M-SA2 

f) Merapi M-HA2

d) Merapi M-U

Figure 1; Heap et al., JVGR
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Figure	2;	Heap	et	al.,	JVGR	
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Figure	3;	Heap	et	al.,	JVGR



Figure	4;	Heap	et	al.,	JVGR
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Figure	5;	Heap	et	al.,	JVGR



Figure	6;	Heap	et	al.,	JVGR
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Figure	7;	Heap	et	al.,	JVGR
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Figure	8;	Heap	et	al.,	JVGR
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Figure	9;	Heap	et	al.,	JVGR
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