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Résumé :

Nous étudions l’influence du champ magnétique sur la structure d’un écoulement de convection thermique.
Le champ magnétique modifie le flux de chaleur à la paroi. Il tend à détruire les motifs tridimensionnels et à
rendre l’écoulement bidimensionnel. La dernière partie présente une extension de l’analyse de stabilité marginale
à l’aide d’un schéma aux différences finies. Nous présentons également la validation des développements au sein
du code volumes finis Jadim grâce à la simulation numérique d’écoulements magnétohydrodynamiques (MHD)
possédant des solutions analytiques.

Abstract:

This paper provides a validation of a finite volume code through the simulation of two configurations that
can be solved analytically. We study the structure of a magnetoconvective flow. The magnetic field modifies the
heat fluxes at the walls. It tends to destroy the three-dimensional patterns in favor of two-dimensional rolls. The
last part of this paper consists in an extent to the marginal stability theory, thanks to a finite difference scheme.
We also present the validation of the developments of the finite volume code Jadim, thanks to the simulation of
magnetohydrodynamic (MHD) flows that have analytical solutions.

Mots clefs : computational fluid dynamics, magnetoconvection, heat transfer, linear
stability

1 Introduction
Our study aims at simulating the molten corium behaviour in the presence of an AC magnetic field. The purpose of
induction heating at CEA (Commissariat à l’Energie Atomique) is to heat the bulk of the fluid, in order to mimic
the residual power of nuclear disintegrations that occur in the case of a severe nuclear accident. The question is
then how the Lorentz force modifies the flow structure. To adress this issue, we propose to model this case through
a Rayleigh-Bénard configuration, that will allow us to study the thermonconvective mechanisms in the presence of
an AC magnetic field.

This case consists in a fluid in a cavity heated from below and cooled from above. The Rayleigh-Bénard
convection has been widely studied, and Chandrasekhar [1] theorised the onset of convection in hydromagnetics.
Rayleigh-Bénard experiments have been carried out in a magnetic field and confirm Chandrasekhar’s results that
the magnetic field tends to stabilise the flow, since the Lorentz force is opposed to the velocity. Rossby [2], Aurnou
and Olson [3] and Burr and Müller [4] studied the influence of a vertical magnetic field on the Rayleigh-Bénard
convection in different fluids. They proposed empirical correlations linking the Rayleigh number to the Nusselt
number without magnetic field, in thermoconvection (TC). Aurnou and Olson [3] proposed similar correlation in
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magnetoconvection (MC) that takes into account the influence of the magnetic field. Burr and Müller [5] also
studied the thermal convection in presence of a horizontal magnetic field. Those low-Prandtl experiments (typical
for liquid metals) confirm the general Nusselt-Rayleigh correlation in TC from Globe and Dropkin [6] that also
gives the dependance in Prandtl number.

In a first part, we will proceed to validate the CFD code Jadim, a research code developped at IMFT (Institut
de Mécanique des Fluides de Toulouse) in magnetoconvection to simulate the Rayleigh-Bénard instability in a
second part. The last part of this paper is an extension of Chandrasekhar’s marginal stability theory. This last
work will help us understand if the amplified wavelength is conserved after the apparition of non-linear effects,
accessible through Jadim simulations. Also interesting are the eigenvectors at the onset of convection for the
amplified wavenumber kmax, that provide the profiles of the velocity, temperature and magnetic field perturbations.

2 Validation of the Jadim code in magnetohydrodynamics
The Jadim code has been developped as a research tool for solving two-phase flow problems. This code solves the
Navier-Stokes equations and the heat equation using a Runge-Kutta scheme and a Crank-Nicholson scheme for
the implicit terms. A projection method is used for solving the pressure term. In this paper, we use a Boussinesq

model β = −
1
ρ0

∂ρ

∂T
, in order to take into account the density variations and the buoyancy forces. We add a magnetic

Lorentz force j × B0, assuming a constant and uniform magnetic field B0:

DU
Dt

= −∇
p
ρ0

+ β(T − T0)g + ν4U +
1
ρ0

j × B0, (1)

where j = σU × B0 is the current density, and the energy equation:

DT
Dt

= κ4T +
1
ρcp

j2

σ
. (2)

Here ν, κ, g, σ are the kinematic viscosity, thermal diffusivity, acceleration of gravity and electrical conductivity.
Simulations were done with computations of the Joule term and it appears to be of no significant interest. Scaling
the flow with an advective time gives:

∂u∗

∂t∗
+ (u∗ · ∇∗)u∗ = −∇p∗ +

1
Re
4∗u∗ −

Ra
Re2Pr

T ∗ez +
Ha2

Re
j∗ × B∗, (3)

∂T ∗

∂t∗
+ (u∗ · ∇∗)T∗ =

1
RePr

4∗T ∗, (4)

where Re =
u0e
ν

, Pr =
ν

κ
, Ra =

gβ∆Te3

νκ
, Ha = B0e

√
σ

ρν
respectively are the Reynolds, Prandtl, Rayleigh and

Hartmann numbers, and the variables X∗ denote the dimensionless variables. Here ∆T is the imposed temperature
difference and e is the gap between the horizontal plates.

If we estimate the typical velocity u0 thanks to the buoyancy forces, we can show that
Ra

Re2Pr
= 1.

We first validate the code in a purely hydromagnetic flow, and in a second time, we solve a thermoconvective
case to simulate the Rayleigh-Bénard instability. For both cases, we use analytical solutions.

2.1 Hartmann flow
We consider a 2D channel flow, similar to a Poiseuille flow, and we apply a constant vertical magnetic field B0 and

a constant pressure gradient −
∂p
∂x

, as described in Fig. 1. In this configuration, an analytical solution is possible,
assuming a steady unidimensional flow.

The steady equation of motion then becomes:

ν
∂2u
∂z2 = −

1
ρ0

∂p
∂x

+
1
ρ0
σB2

0u, (5)
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Figure 1: Hartmann flow.

where u is the horizontal component of U of the velocity. The solution is then:

u(z) = u0

[
1 −

cosh Ha(z/e)
cosh Ha/2

]
, (6)

introducing the Hartmann number Ha = B0e
√

σ

ρ0ν
and u0 = −

1
σB2

0

∂p
∂x

. Note that when B0 = 0 we get the

classical Poiseuille equations. The results are represented in Fig. 2, where a 64-point regular grid in the z direction
was used. We have a good agreement with the theoritical profiles of the Hartmann, which constitutes the first step
of the validation of our code.

z/ e

u
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Figure 2: Velocity profiles obtained through Jadim computations of the Hartmann flow. The symbols stand for
different Ha numbers and the solid lines represent the theoritical profiles. As Ha increases, the shear rate at the
walls increases and the velocity profile is flattened.

2.2 Natural convection validation
We now need to validate the code in natural convection. For this purpose, we used a theorical solution proposed
by Garandet et al. [7]. This case consists in a vertically differentially heated cavity at Th and Tc (with Th > Tc) and
with an aspect ratio L/e � 1 as described in Fig. 3.

Far away from the walls, the flow can be considered horizontal and we have:

u(z) = u0
Gr
Ha2

(
sinh(2Ha z/e)

2 sinh(Ha)
−

z
e

)
, (7)

where u(z) is the horizontal component of the velocity, and u0 is estimated using viscous eddies. Considering
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Figure 3: Rectangular cavity with vertically heated walls.

horizontal insulated walls, we also have the analytical non-dimensional temperature profile:

T (x, z) =
ex
L2

PrGr(e/L)
Ha2

[
1

2Ha2

sinh(Haz/e)
2 sinh(Ha/2)

−
(z/e)3

6
+

(
1
8
−

cosh(Ha/2)
2Ha sinh(Ha/2)

)
z
e

]
. (8)
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(a) Velocity profiles at the center of the cavity.
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(b) Temperature profiles at the center of the cavity.

Figure 4: Jadim computations of natural convection between vertically heated plates. The symbols stand for
different Ha numbers and the solid lines represent the analytical solutions from Garandet et al. [7].

We then have the velocity and temperature profiles in Fig. 4. The computations are in accordance with the
analytical profile.

3 Three-dimensional simulation of Rayleigh-Bénard convection in pres-
ence of a magnetic field

In this case, we consider a cavity of aspect ratio 1 × 10 × 5 and of height e = 0.02m, the computational grid is
regularly spaced with a number of points 64 × 256 × 128. The cavity is heated from below and cooled from above
and vertical walls are insulated. Gravity is acting along the smallest side of the cavity. For the simulation, the
properties of liquid Gallium were used, since it will be used to simulate molten steel at over 2500K. They are
listed at table 1 and taken from Iida and Guthrie [8] and Okada and Ozoe [9].

3.1 Qualitative structure of the flow
At sufficiently high Ra numbers, results without magnetic field in Fig. 5(a) show that 3D effects are of importance.
Indeed, non-linear effects (3D motion) appear right after the onset of convection. The magnetic field strongly
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Property Symbol Units Value
Density ρ0 kg ·m−3 6095

Thermal expansion coefficient β K−1 1.27 · 10−4

Kinematic viscosity ν m2 · s−1 3.2 · 10−7

Thermal diffusivity κ m2 · s−1 1.27 · 10−5

Thermal conductivity k W ·m−1 · K−1 31
Electrical conductivity σ S ·m−1 3.85 · 106

Table 1: Physical properties of liquid Gallium

affects the flow structure, as seen in Fig. 5(b). The three-dimensional patterns tend to be destructed, and two-
dimensional convection rolls appear, which concurs with Burr and Müller [4]. One can also notice that the magnetic
field are smooths the flow structures. This happens for the same reason that magnetic effects kill the isotropic
character of turbulence [10]. We also see that the flow becomes 3D when the Ra is high enough, as it is shown in
Fig. 5(c).

3.2 Heat transfer
Computations show that the magnetic field affects the flow dynamics. It affects as well the heat transfer. We define
the local heat transfer coefficient at the walls, as well as its average (over the surface of the wall S ):

h =
k

∆T
∂T
∂z

∣∣∣∣∣
walls

, (9)

h =
k

∆T
1
S

"
∂T
∂z

∣∣∣∣∣
walls

dS , (10)

where k is the thermal conductivity of the fluid and we consider the direction z to be normal to the horizontal walls.
We also define the dimensionless heat transfer coefficients, the local and averaged Nusselt number:

Nu =
he
k
, (11)

Nu =
he
k
. (12)

The results, presented in Fig. 6, show large variations of the Nusselt number at the horizontal walls both with
and without magnetic field. But the presence of a magnetic field implies a different repartition of hot and cold
spots. Figure 6 shows that the repartition of the regions where heat transfer is strong or low follows the same
patterns as the convective structures. Due to convective motions, the local Nu can be lower than unity.

However, even if the surface averaged Nu at the walls is reduced in the presence of a magnetic field, it remains
of the same order of magnitude, as shown in Fig. 7. The simulations at Ha = 0 are found to be in a good
agreement with experimental results from Rossby [2], Aurnou and Olson [3]. The direction of the rolls is different
without a magnetic field at low Ra and at a higher Ra and with a magnetic field. We suppose that this is due to
confinement effects. The change in convection patterns is of importance in the case of corium-concrete interaction.
In those experiments, the ablation rate of the concrete is proportional to the heat flux. Strong local variations of
heat transfer due to the magnetic field will generate a wrong local ablation rate and question those experiments.
Therefore, simulations of a case more representative of the corium-concrete interaction will be computed.

4 Stability analysis
In this section, we propose to investigate the linearised dynamic of the Rayleigh-Bénard flow subject to a constant
magnetic field. We aim to compare the most unstable wavelength with the wavelength of the stationnary rolls
obtained with Jadim at a Ra slightly above the critical Rayleigh number. To this end, we provide a finite difference
scheme to solve the growth rate s of the Rayleigh-Bénard instability according to the wavenumber k, as an extent
to Chandrasekhar’s theory [1].
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(a) Ra = 5 · 104, Ha = 0. (b) Ra = 5 · 104, Ha = 18, vertical magnetic field.

(c) Ra = 1.5 · 105, Ha = 18, vertical magnetic field.

Figure 5: Surfaces of vertical isovelocity. Light grey represents ascending structures and dark grey represents
descending structures . Colored lines represent isothermal contours.

4.1 Linearisation of the equations

Remembering from Ampère’s law that j =
1
µ0
∇ × B, and hence we can rewrite the Lorentz force as j × B =

1
µ0

(∇ × B) × B =
1
µ0

[
(B · ∇)B − ∇

B2

2

]
. The last term −∇

B2

2µ0
can be combined with −∇p and is thus called the

magnetic pressure gradient. The momentum equation becomes:

DU
Dt

= −
1
ρ0
∇

(
p +

B2

2µ0

)
+ β(T − T0)g + ν4U +

1
ρ0µ0

(B · ∇)B. (13)

Accounting for the Joule dissipation in the heat equation reads:

DT
Dt

= κ4T +
1
ρcp

j2

σ
, (14)

where cp is the specific heat. We shall see that the Joule dissipation will not be of importance, since it is a second
order term. The last equation is the induction equation for the magnetic field B, obtained from the Maxwell
equations:

∂B
∂t

= η∇2B + ∇ × (U × B), (15)

with η = 1/µ0σ the magnetic diffusivity.
We consider the purely conductive and stable state that we infinitesimally perturbate. The velocity, temperature

and magnetic fields become:
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(a) Ha = 0. (b) Ha = 18, vertical magnetic field.

Figure 6: Local Nusselt number at the walls for Ra = 5 · 104.
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Figure 7: Comparison of Jadim simulations with experimental Nu-Ra-correlations. Symbols represent the simula-
tions and the lines represent the experimental correlations of sevenral authors.

U = U0 + u, (16)

T = T0(z) + ϑ, (17)

B = B0 + b, (18)

where U0, T0(z) = ∆T
z
h

and B0 = constant · ez are the stable fields, and u, ϑ and b are the small perturbations.
Note that since there is no movement, U0 = 0. We now linearise the equations and we obtain:

∂4w
∂t

= gβ
(
∂2ϑ

∂x2 +
∂2ϑ

∂y2

)
+ ν42w +

B0

ρµ0

∂4bz

∂z
, (19)

∂ϑ

∂t
= κ4ϑ +

∆T
h

w, (20)

∂bz

∂t
= η4bz + B0

∂w
∂z
. (21)

The equations (19) and (21) are the ez component of rotationnal of vorticity equation and of the induction
equation, w is the ez component of the velocity. Using a characteristic viscous time, we get the non dimensional
equations:
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∂4∗w∗

∂t∗
=

Ra
Pr

(
∂2ϑ∗

∂x∗2
+
∂2ϑ

∂y∗2

)
+ 4∗2w∗ +

Ha2

Pm
∂4∗b∗z
∂z∗

, (22)

∂ϑ∗

∂t∗
=

1
Pr
4∗ϑ∗ + w∗, (23)

∂b∗z
∂t∗

=
1

Pm
4∗b∗z +

∂w∗

∂z∗
, (24)

with Pm = µ0σν, the magnetic Prandtl number. We look for plane waves solutions:w
∗

ϑ∗

b∗z

 =

W(z)
Θ(z)
B(z)

 exp(i(kxx∗ + kyy∗) + st∗). (25)

W, Θ, B are the amplitudes of the perturbations, kx and ky are the dimensionless wavenumbers, and s is the growth
rate of the instability. Chandrasekhar proposed to focus on the marginal stablity i.e. s = 0. He demonstrated the
stabilising effect of the magnetic field on thermal convection (Fig. 8). If Ha increases, Rac and kc (represented by
the minimums of the curves in Fig. 8(a)) also inrease, and in the limit Ha −→ ∞, we have Rac −→ π2Ha2, as we
see in Fig. 8(b). In other words, if for a given Ha, the Ra number is below Rac, there is no convection, but only
conduction.

k

R
a

2 4 6 80

2000

4000
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(a) The minimum of each curves represents the critical values of
Ra and k. They are delayed to higher values when Ha increases.

Ha

R
a c

100 101 102 103103

104

105

106

107

~ 2Ha2

(b) There is destabilisation for Ra above the curve. Higher Ha
imply higher critical Ra.

Figure 8: Linear stability analysis .

We propose to focus on what happens beyond s = 0, while staying in the linear domain. We use these solutions
in equations (22)-(24), and we have the following system:

s(D2 − k2)W = −
Ra
Pr

k2Θ + (D2 − k2)2W +
Ha2

Pm
[D(D2 − k2)B], (26)

sΘ =
1
Pr

(D2 − k2)Θ + W, (27)

sB =
1

Pm
(D2 − k2)B + DW, (28)

where D =
∂

∂z∗
and k2 = k2

x + k2
y . We propose to solve this generalised eigenvalue problem with a finite difference

scheme.



22ème Congrès Français de Mécanique Lyon, 24 au 28 Août 2015

4.2 Finite difference scheme for the generalised eigenvalue problem
4.2.1 Numerical schemes

Let us consider the vector x that either stands for W, Θ, or B and we discretise in the z direction and for a number
of points Nz, the space step is ∆z = 1

Nz . We choose the following second order schemes to approximate the
derivatives:

x′i =
xi+1 − xi−1

2∆z
(29)

x′′i =
xi+1 + xi−1 − 2xi

∆z2 (30)

x′′′i =
xi+2 − xi−2 − 2xi+1 + 2xi−1

2∆z3 (31)

x(4)
i =

xi+2 + xi−2 − 4xi+1 − 4xi−1 + 6xi

∆z4 (32)

Let us express the problem as a generalised eigenvalue problem:

sAX = BX, (33)

where:

X =



W0
...

WNz

Θ0
...

ΘNz

B0
...
BNz



, A =

A11 A12 A13
A21 A22 A23
A31 A32 A33

 , B =

B11 B12 B13
B21 B22 B23
B31 B32 B33

 , (34)

and the Ai j, Bi j are Nz × Nz matrices, s is the eigenvalue of the problem. As shown in the following paragraph,
the matrices A and B depend on Ra, Ha, Pr, Pm and k. For a given value of k, we solve the eigenvalue problem to
obtain s and the profiles of the perturbation amplitudes (the eigenvector X).

4.2.2 Expression of the matrices

We can note that the matrices Ai j and Bi j will be (n + 1)-diagonal where n is the order of derivation. Replacing the
terms in equations (26)-(28) with the expressions given by (29)-(32):

A11 =
1

∆z2



a11
11 a12

11 0 · · · 0

1 −2 1
. . .

...

0
. . .

. . .
. . . 0

...
. . . 1 −2 1

0 · · · 0 aNz,Nz−1
11 aNz,Nz

11


, A22 = A33 = I, Ai j,i, j = 0, (35)

where I is the identity matrix. Ther terms a11
11, a12

11, aNz,Nz−1
11 and aNz,Nz

11 will be given by the boundary conditions.
Those matrices represent the terms on the left side of the equations, and except for A11, there is no derivative term
which implies the matrices to be diagonal. The Bi j matrices represent the coupling between the different equations.
Let b(0)

i j , b(−1)
i j , b(−2)

i j , b(+1)
i j , b(+2)

i j be the main, first lower, second lower, first upper and second upper diagonal terms
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of the matrix. The inner aspect of the matrix is:

Bi j =


. . .

. . .
. . .

. . .
. . .

b(−2)
i j b(−1)

i j b(0)
i j b(+1)

i j b(+2)
i j

. . .
. . .

. . .
. . .

. . .


. (36)

The other terms are all equal to zero. The two first and the two last lines will be given by the boundary conditions.
We can first express the B11, B22, B33 matrices. The B11 matrix is pentadiagonal and we have:

b(0)
11 =

6
∆z4 + 4

k2

∆z2 + k4, (37)

b(+1)
11 = b(−1)

11 = −
4

∆z4 −
2k2

∆z2 , (38)

b(+2)
11 = b(−2)

11 =
1

∆z4 . (39)

The B22 et B33 matrices are tridiagonal, hence b(+2)
22 = b(−2)

22 = b(+2)
33 = b(−2)

33 = 0. We can express the other terms as:

b(0)
22 = −

1
Pr

k2 + 2
∆z2 , (40)

b(+1)
22 = b(+1)

22 =
1
Pr

1
∆z2 , (41)

b(0)
33 = −

1
Pm

k2 + 2
∆z2 , (42)

b(+1)
33 = b(+1)

33 =
1

Pm
1

∆z2 . (43)

The B13 and B31 are also pentadiagonal and tridiagonal matrices and the diagonal terms can be expressed as:

b(0)
13 = 0, (44)

b(+1)
13 = −b(−1)

13 =
Ha2

Pm

(
1

∆z3 +
k2

2∆z

)
, (45)

b(+2)
13 = b(−2)

13 =
1

2∆z3 , (46)

b(0)
31 = 0, (47)

b(+1)
31 = −b(−1)

31 =
1

2∆z
. (48)

Since the magnetic field and the temperature do not influence each other, the B23 and B32 are empty. If we took
in consideration the Joule dissipation, the B32 would not be zero, but since the equations were linearised and the
Joule dissipation is a second order term, it does not appear here. B12 and B21 are diagonal matrices and express as:

B12 = −
Ra
Pr

k2I, B21 = I. (49)

4.2.3 Boundary conditions

We have not discussed the boundary conditions so far. At the walls, the velocity is zero due to the non-slip
condition and we suppose that walls are maintained at constant temperature, so the temperature perturbation is
also zero. This follows:

W0 = WNz = 0, Θ0 = ΘNz = 0. (50)

However, for the magnetic field, the boundary condition depends on the electrical properties of the wall. Assuming
a perfectly conductive wall, the perturbation is zero at the walls (Dirichlet’s conditions at the walls, B = 0).
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4.2.4 Marginal stability

In this part, we look for the wavenumber k = kc such that the maximum of the real part of s is zero. We compare
the critical values of the Rayleigh number Rac and of the wavenumber kc with those given by the linear stability
theory from Chandrasekhar [1].

The classic linear stability theory gives the values of Rac and kc for the onset of convection. For B0 = 0, the
critical values for the Rayleigh number and the wavenumber of Rac = 1708 and kc = 3.11. Using a number of
points Nz = 256, we find with the finite difference scheme that Rac = 1734 and kc = 3.14. The results presented
in Fig. 9(a) were obtained with seven different Hartmann numbers that are evenly spaced on the logarithmic scale
between Ha = 1 and Ha = 21.5. Figure 9(b) shows a relative error εRa of the order of 2% for the critical Rayleigh
number and the relative εk error for the critical wavenumber less than 1%.

kc
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a c

3 3.5 4 4.5 5 5.5

2000

4000

6000

8000

10000

Linear stability theory
Finite difference scheme

(a) Comparison of the linear stability theory and the finite dif-
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Figure 9: Marginal stability to the finite difference scheme.

4.2.5 Eigenvectors and growth rate of the instability

Thanks to this finite difference scheme, we can access the eigenfunctions of temperature, velocity and magnetic
field perturbations. The growth rate is given by the maximal value of the real part of s. The results are shown in
Fig. 10 for Ha = 0 and in Fig. 11 for Ha = 10. Figures 10(a) and 11(a) show that the magnetic field enlarges
the critical wavenumber kc. The amplitudes of the pertubations for k = kc along the z axis are the eigenvectors
for this given k and are shown in Figs. 10(b) and 11(b). However, the eigenvectors remain relatively close. We
can nevertheless notice that the amplitude of the perturbations for Θ is slightly lower whith an impressed magnetic
field. Figure 11(b) shows that the amplitude of the perturbation of B is antisymmetric, which contrasts with the
other amplitudes that are symmetric.

We can see that the perturbation are zero at the walls, as imposed by the boundary conditions, as well as the
DW = 0.

5 Conclusion and perspectives
The simulations confirm that three dimensional effects are of importance and the flow cannot be considered as
2D. However, as magnetic effects become significant enough, we observe that the flow becomes two-dimensional
again. This change in the flow structure is essential and modifies the local heat transfer, but the global heat transfer
remains of the same order of magnitude. Simulations in a more realistic case of a corium-concrete interaction will
be computed, in order to see if the local variations of heat transfer are of importance when the pool is subjected to
a steady magnetic field. Next steps of this work will focus on a time-varying magnetic field, in order to study the
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Figure 10: Eigenvectors and growth rate for Ra = 1734 ∼ Rac and Ha = 0.
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(a) Growth rate (∼ max(Re(s))) depending on k. The red dot
represents the kc = 4.0 where max(Re(s)) = 0.
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Figure 11: Eigenvectors and growth rate for Ra = 3800 ∼ Rac and Ha = 10.

influence of Faraday’s induction on the flow dynamic. It will also allow us to design an experimental test rig to
confirm the accuracy of the simulations.

The linear stability analysis seems promising and the next developments will focus on including a time-varying
B, to show how a sinusoidal magnetic field affects the onset of convection.
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