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Résumé :

Une stratégie de réduction de modèle est cruciale pour contrôler par une ap-

proche basée sur des modèles une grande classe d'écoulement. En turbulence,

les modèles réduits sont principalement développés par projection de Galerkin

des équations de premier principe sur les modes de la décomposition orthogo-

nale aux valeurs propres (POD). La POD est largement utilisée car elle extrait

d'une séquence de données une base orthonormale qui capture de manière opti-

male l'énergie de l'écoulement. Malheureusement, le niveau d'énergie n'est pas

nécessairement le critère correct en termes de modélisation dynamique, et le

développement d'un système dynamique sur les modes POD conduit parfois à

des modèles non pertinents. Ici, la Décomposition en Mode Dynamique (DMD)

telle que proposée récemment par Schmid (2010) est utilisée pour déterminer les

modes DMD. Un modèle réduit basé sur les modes DMD est alors déterminé par

projection de Galerkin des équations de Navier-Stokes sur un ensemble choisi

de modes DMD optimisés. Finalement, une approche d'assimilation variation-

nelle dite 4D-Var est employée pour identi�er les coe�cients du modèle réduit

DMD. Essentiellement, la 4D-Var combine des observations imparfaites, une

solution d'ébauche et les équations dynamiques gouvernant le système observé

pour déterminer une estimation optimale de l'état vrai du système. L'approche

est illustrée sur des données expérimentales obtenues pour un écoulement de

sillage de cylindre à Re=13000.

Abstract :

A reduced-order modelling (ROM) strategy is crucial to achieve model-based

control in a wide class of �ow con�gurations. In turbulence, ROMs are mostly

derived by Galerkin projection of �rst principles equations onto the proper or-

thogonal decomposition (POD) modes. POD is widely used since it extracts

from a sequence of data an orthonormal basis which captures optimally the �ow



22ème Congrès Français de Mécanique Lyon, 24 au 28 Août 2015

energy. Unfortunately, energy level is not necessarily the correct criterion in

terms of dynamical modelling and deriving a dynamical system based on POD

modes leads sometimes to irrelevant models. Here, the Dynamic Mode Decom-

position (DMD) as recently proposed by Schmid (2010) is used to determine

the DMD modes. A DMD ROM is then derived by Galerkin projection of the

Navier-Stokes equations onto a selected set of optimized-DMD modes. Finally,

a four-dimensional variational assimilation approach (4D-Var) is employed to

identify the coe�cients of the DMD ROM. Essentially, 4D-Var combines imper-

fect observations, a background solution and the underlying dynamical principles

governing the system under observation to determine an optimal estimation of

the true state of the system. The methodology is illustrated for a cylinder wake

�ow studied experimentally at Re=13000.

Mots clefs : Data assimilation ; 4D-Var ; DMD Reduced-Order
Models.

1 Introduction

For a turbulent �ow, the number of active degrees of freedom is so impor-

tant that a preliminary step of model reduction is often necessary for hav-

ing a chance to understand the �ow physics or to derive a control strategy.

Reduced-order models (ROMs) are well adapted for developing an e�cient con-

trol strategy. However, �nding the appropriate basis for representing the �ow

in a low-dimensional space is strongly related to a given objective. Indeed, it

is somewhat different for a �ow to understand the instability mechanisms, to

educe the coherent structures mainly responsible for the energy or to represent

the non-linear dynamics.

Reduced-order models based on proper orthogonal decomposition (POD)

are the most commonly used as the POD modes are optimal in terms of energy

content. Despite this property, POD-based ROM is well known to be inaccurate,

essentially due to truncation errors, if the model is not improved (Cordier et al.,

2013). Since the energy content is important but is not su�cient in general to

catch the dynamical behaviour, we are focusing in this paper on a procedure

called optimized DMD recently introduced by Chen et al. (2012). It is a variant

of the dynamic mode decomposition (Schmid, 2010) which extracts dynamically

relevant �ow features from time-resolved experimental or numerical data. Our

objective is to derive a ROM which will inherit the dynamical properties of the

projection basis.

In Sec. 2, the optimized DMD algorithm is introduced and an improvement of

the original algorithm based on the use of a gradient method is shortly described.

Section 3 then presents two ways of predicting the temporal behaviour of the
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�ow outside the time horizon of the snapshots, and ends with the introduction

of a data assimilation formalism for combining the two approaches. Finally, in

Sec. 4, we present results obtained on PIV data for a cylinder wake in turbulent

regime.

2 Optimized DMD

In the classical DMD algorithm (Schmid, 2010), the extraction of a reduced

basis by modes' selection is not trivial. Indeed, the non orthogonality of the

DMD modes may raise the projection error while increasing the order of the

DMD basis. To address these issues, we propose to use the optimized DMD

as recently introduced by Chen et al. (2012). Let us consider N snapshots vk
(k = 1, . . . , N) sampled at a constant time step ∆t, the optimized DMD consists

in seeking No < N complex scalars {λ̂j}No

j=1 and vectors {Φ̂j}No

j=1 such that

vk =

No∑
j=1

Φ̂j λ̂
k−1
j + rk k = 1, . . . , N (1)

and Γ =

N∑
k=1

‖rk‖22 is minimized. In optimized DMD, the number of modes

that is searched is also a parameter of the method leading by construction to

a reduced-order model of desirable size. In the original algorithm presented

in Chen et al. (2012), the modes were determined with a global optimization

technique combining simulated annealing and the Nelder-Mead simplex method.

Here, we improved the original algorithm and determined analytically the gradi-

ent of Γ with respect to the variation of the eigenvalues λ̂j (Tissot, 2014). Two

advantages of this technique are that all the optimization is done in a space

of size No and that we can use a descent method for increasing the speed of

convergence.

3 DMD-based Reduced-Order Model

In the classical DMD algorithm or in optimized DMD, the assumption of lin-

ear dynamics leads jointly to the extraction of a basis for the �ow and to the

introduction of a time propagator. We present in this section how to use these

informations for deriving a reduced-order model based on DMD.

3.1 DMD time propagator

By de�nition, DMD identi�es the linear operator which represents at best a

sequence of snapshots. A direct consequence of the linear assumption is that

each DMD mode contains only a single frequency while POD, which captures
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the most energetic structures, gives modes that contain several frequencies. The

e�ect of that on the time stepping operator is clearly visible in the reconstruction

equation (1). Indeed, the contribution of each DMD mode is weighted by the

corresponding eigenvalue raised to the index of the time step. Hence, if the linear

assumption corresponds really to the physical phenomenon (linear or weakly

non-linear systems, data lying on a limit cycle) then it has a sense to propagate

the state using this operator. The validity of the DMD time propagator is then

strongly dependent on the data used for determining the DMD modes, and

especially on the linearity assumption.

3.2 Galerkin projection

In (1), the temporal coe�cients of the states are only depending on the DMD

eigenvalues and on the time index k. This equation can be considered as a

pure kinematic description of the �ow since the dynamics is arti�cially intro-

duced through the linear assumption at the heart of DMD. For increasing the

probability to derive a model which can represent the long-term �ow dynamics,

the information that the snapshots are governed by some underlying dynami-

cal principles (Navier-Stokes equations in our case) should be incorporated in

the modelling step. This is particularly true when the linearity assumption is

questionable.

In model reduction, projection methods are very often used for deriving

reduced-order models. The projection of the Navier-Stokes equations onto the

optimized DMD modes Φ̂j , leads to a quadratic dynamical system for the time

coe�cients νj (j = 1, · · · , NGal) given by:

NGal∑
j=1

Gij
dνj
dt

(t) = Ci +

NGal∑
j=1

Lijνj(t) +

NGal∑
j=1

NGal∑
k=1

Qijkνj(t)νk(t) (2)

where NGal ≤ No is the number of modes kept in the expansion. Since the

optimized DMD modes are not orthonormal, G is a full hermitian matrix, called

Gram matrix, and has to be inverted once for integrating in time (2). Finally,

the coe�cients Ci associated to the pressure term are neglected assuming that

the integral of the pressure around the boundaries of the domain is very small.

3.3 Data assimilation

In the previous subsections, two di�erent approaches were presented for deter-

mining a reduced-order model based on DMD. The �rst method (see Sec. 3.1)

comes directly from the DMD algorithm and as such is purely kinematic while

the second method (see Sec. 3.2) does not incorporate all the dynamical infor-

mations coming from DMD. The objective of this section is to combine the two

sources of informations for deriving a more representative dynamical system.
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Data assimilation (Cordier et al., 2013) is the right framework for combining

heterogeneous observations with the underlying dynamical principles governing

the system under observation to estimate at best physical quantities. Here, we

apply the four-dimensional variational approach of data assimilation (4D-Var).

More precisely, we seek for the initial condition perturbation η and the time

coe�cients c = {Ci, Lij , Qijk} of (2) such that the solutions of the dynamical

model tend to the time coe�cients obtained directly by optimized DMD. For

improving the numerical convergence of the optimization problem, background

errors which penalize the variations between the background states (0, cb) and

the estimated values are introduced. The corresponding cost functional reads:

J(η, c) =
1

2

Nt∑
k=1

NGal∑
j=1

(
νj(tk; η, c)− λ̂k−1

j

)2
+
ση
2
‖η‖2 +

σc
2
‖c− cb‖2 (3)

where Nt is the number of time steps for the time horizon of the reduced-

order model, and where ση and σc are penalization terms which give more or

less weight in the background solutions. The background states are found by

application of the Galerkin projection onto the optimized DMD modes.

4 Results

In this paper, 2D-2C PIV data are considered for a cylinder wake at Re =

13000. The database contains Ns = 1000 snapshots sampled at the frequency

fs = 1 kHz. First, the classical DMD algorithm was applied for N = Ns. In

the case of experimental data, modes' selection becomes extremely hard, and

considering too many DMD modes Φj in the reconstruction of snapshots may

lead to high level of errors due to the non-orthogonality of the basis. Optimized

DMD has then been performed on the �rst 256 snapshots (T = 32). The

optimization problem linked to the optimized DMD is solved through a gradient

descent algorithm. The initial conditions are DMD modes selected with the

energetic criterion Ej = ‖Φj‖2 e
2σjT−1
2σjT

(Tissot, 2014), where σj = ln(|λj |)/∆t
is the growth rate of the DMD modes. We reconstructed the original snapshots

from 7 modes obtained by classical DMD (modes's selection based on Ej) and

optimized DMD (see Fig. 1 for the �fth snapshot). As expected, the L2-norm

error of reconstruction is lower for the optimized DMD than for the classical

algorithm. For the optimized DMD, we obtain very good �ltered approximations

of the original snapshots. Finally, a 4D-Var approach has been performed in

the optimized DMD subspace for ση = σc = 1. This assimilation was made

in a time window of size T = 32 and then, the optimal solution was forecast

over a time length equal to 3T . In Fig. 2, we compare the temporal coe�cients

νj obtained by optimized DMD and 4D-Var to the projection of the snapshots

on the optimized DMD modes. For the long-term horizon, the 4D-Var solution
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outperforms the optimized DMD as illustrated by the time evolution of the

relative error (Fig. 3).

5 Conclusion

The classical and optimized DMD algorithms were applied with the objective to

derive reduced-order models. In the classical DMD algorithm, modes' selection

may become arduous since most of the time we do not know if we should priv-

ilege mode's energy, frequency behaviour or growth rate. An alternative is to

use directly the optimized DMD algorithm as proposed recently by Chen et al.

(2012) since the number of modes is also a parameter of the method. In the

DMD framework, the time propagation is included in the approach. Hence, we

have guaranty that the temporal evolution of the system can be well reproduced

over the time window of the snapshots where the linear approximation should

hold. To improve this result, we �rst derive a reduced-order model obtained

by Galerkin projection of the Navier-Stokes equations onto the optimized DMD

modes. We then introduce, a 4D-Var approach to combine the informations

coming from the optimized DMD, and those coming from the Galerkin projec-

tion. We showed that 4D-Var solution clearly outperforms the optimized DMD

for a long-term prediction.
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(a) Original �eld.
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(b) Reconstruction using �classical� DMD modes.
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(c) Reconstruction using optimized DMD modes.

Figure 1: Reconstruction of the snapshot v5 with 7 modes obtained by classi-
cal DMD (modes' selection based on the energetic criterion Ej) and optimized
DMD. Streamwise velocity are represented on the left column and transversal
velocity on the right column. The corresponding L2-norm errors are 45.6%
(classical DMD) and 15.6% (optimized DMD).
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Figure 2: Comparison of temporal coe�cients νj (real parts) obtained by op-

timized DMD (λ̂k−1
j ), by 4D-Var and by projection onto the optimized DMD

modes. 4D-Var is solved in the 7th order optimized DMD space over the assim-
ilation window [0, 32]. The optimal solution is then used to forecast the �ow
state.
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Figure 3: Instantaneous relative errors of the projection onto the 7 optimized
DMD modes (black), of the reconstruction of the propagated linear dynamics
(red) and of the reconstruction of the dynamics analyzed by 4D-Var (blue). The
green arrow represents the decrease of error when the 4D-Var is applied instead
of the linear propagation. The vertical dashed line corresponds to the end of
the assimilation time horizon and the beginning of the forecast horizon.


