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Résumé :

L objectif est de démontrer que l'utilisation de modéles d’ordre réduit basés
sur la Décomposition Orthogonale auz Valeurs Propres (POD) permet de sta-
biliser ’écoulement autour d’un cylindre circulaire en oscillation verticale et en
régime laminaire (nombre de Reynolds égal a 60). Les équations de Navier-
Stokes 2D sont d’abord résolues par éléments finis en introduisant le mouve-
ment du cylindre via la méthode ALE. Puisqu’en interaction fluide-structure, il
n’est pas possible d’appliquer directement [’algorithme POD, nous avons implé-
menté la méthode des domaines fictifs proposée par Glowinski et al. (1999) ow
le domaine solide est traité comme un domaine fluide soumis 4 une contrainte
additionnelle. Le modéle réduit POD est classiquement obtenu par projection
des équations de Navier-Stokes sur les premiers modes POD. A ce niveau, le
déplacement du cylindre est imposé dans le modéle réduit par introduction de
multiplicateurs de Lagrange. Pour déterminer la vitesse verticale optimale du
cylindre, Ualgorithme Linear Quadratic Regulator est employé. Apreés linéarisa-
tion du modéle réduit POD autour de la solution stationnaire de l’écoulement,
le gain optimal de retour d’état est obtenu comme solution d’une équation de
Riccati algébrique généralisée. Finalement, quand le contréle optimal en retour
d’état est appliqué, nous montrons que [’écoulement converge rapidement vers
la solution stationnaire. Par ailleurs, un contréle évanescent est obtenu ce qui
prouve Uefficacité de la technique de controle.

Abstract :

The objective is to demonstrate the use of reduced-order models (ROM) based
on proper orthogonal decomposition (POD) to stabilize the flow over a verti-
cally oscillating circular cylinder in the laminar regime (Reynolds number equal
to 60). The 2D Navier-Stokes equations are first solved with a finite element
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method, in which the moving cylinder is introduced via an ALE method. Since
in fluid-structure interaction, the POD algorithm cannot be applied directly, we
implemented the fictitious domain method of Glowinski et al. (1999) where the
solid domain is treated as a fluid undergoing an additional constraint. The POD-
ROM is classically obtained by projecting the Navier-Stokes equations onto the
first POD modes. At this level, the cylinder displacement is enforced in the
POD-ROM through the introduction of Lagrange multipliers. For determining
the optimal vertical velocity of the cylinder, a linear quadratic requlator frame-
work is employed. After linearization of the POD-ROM around the steady flow
state, the optimal linear feedback gain is obtained as solution of a gemeralized
algebraic Riccati equation. Finally, when the optimal feedback control is applied,
it is shown that the flow converges rapidly to the steady state. In addition, a
vanishing control is obtained proving the efficiency of the control approach.

Mots clefs : Feedback stabilization ; Oscillating vertical cylin-
der ; POD Reduced-Order Model.

1 Flow configuration

The cylinder wake is a common generic configuration to test control methods
which can be further implemented in more complex engineering applications.
The stabilization of this flow consists in targeting and maintaining the unstable
steady solution by control. Here, we consider the cylinder wake in fluid-structure
interaction and suppose that the control is introduced by vertical oscillations of
the cylinder, as sketched in figure 1.

Let u be the velocity field and u’t®®dY be the targeted steady state, the
objective is to determine the best cylinder vertical velocity V,(t), taken as control
parameter, such that we minimize

T

T T
T(Valt)) = / o — ey |2 dt 1 a / J2(t)dt 4 B / VEe)d, (1)

where 3. is the cylinder vertical position. The cost functional 7 is regularized to
avoid very large, then unphysical, controls. Indeed, the role of the parameter «
is to penalize too large cylinder displacements and then to enforce the cylinder
to stay near the central position, while 3 penalizes too strong control actions.

2 Linear control framework

The determination of the control law is done with a linear control theory ap-
proach (Tissot, 2014). This framework relies on the existence of a linear model
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Figure 1: Cylinder wake in vertical oscillation.

dz
E— = Az + Bec, where z is the state of the system and ¢ the control law to

be determined. Considering that the state of the system is fully and perfectly
known, the linear quadratic regulator (LQR) method is considered. The objec-
tive of the LQR problem is to determine the best control law ¢, such that the
cost functional

TNz e) = g [ PO [ el &)

is minimized. In (2), F is a matrix defining the objective to minimize, and R
penalizes the control ¢ through the norm || - |4 = (R-,-) where (-, -) denotes the
inner product. The feedback control law that minimizes the value of JL@F ig
¢ = Kz where the feedback gain K is found after solving a Riccati equation
related to (2). For an infinite time horizon, the minimization of (2) leads to the
generalized algebraic Riccati equation (GARE) given by

A*XE +E*XA—-E*XBR'B*XE + FF* =0, (3)

where A* is the adjoint matrix of A. The optimal feedback gain is then K =
—R7!B*XE where X is solution of (3). For large-scale problems, as the one
arising from spatial discretization of the Navier-Stokes equations with finite
element methods, the resolution of the GARE given by (3) is still unfeasible
(Benner and Saak, 2010). One way is to obtain low-rank solutions of GAREs
based on simulations of linear systems coupled with Proper Orthogonal Decom-
position (POD) (see Kramer and Singler, 2014, for instance). An alternative is
to derive a reduced-order model (ROM) for the dynamics (Ravindran, 2007).
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3 Flow modelling for optimal control in fluid-
structure interaction

3.1 Fictitious domain approach

For the fluid-structure interaction problem, we consider a Lagrange-multiplier-
based fictitious-domains method as in Glowinski et al. (1999). For that, let
the whole computational domain Q = Q;(t) U Q(t) be constituted by the fluid
domain Q(t) and by an immersed body Q4(¢), with Q(¢)NQ(¢) = (. The prin-
ciple is to consider the whole domain as a fluid, governed by the Navier-Stokes
equations, and to treat the solid in Qg(t) as a fluid subject to an additional
constraint. The full system is then defined as

ou 1
wn + (u.V)u=-Vp+ EAU Va € Q
Vau=0 Ve (4)

w(w, ) = <Vc0(t)> Va € Qu(t).

The cylinder velocity constraint in Q(t) has still to be enforced. The system (4)
can be numerically solved by enforcing the constraint with Lagrange multipliers
(Glowinski et al., 1999). The linearization of (4) around the steady state wt¢2dy
leads to a high-fidelity model that is too large for the direct resolution of (3).
For this reason, a step of model reduction is required before searching for an
optimal control law.

3.2 Model reduction in fluid-structure interaction

For enforcing the boundary conditions, the strategy is to first derive a reduced-
order model by Galerkin projection of (4) onto the POD modes (Tissot, 2014),
and then to apply to this model the constraint of the domain motion expressed
in the POD subspace (Kalashnikova and Barone, 2012). The weak form of
(4) obtained by Galerkin projection onto the POD modes provides a drastic
reduction of the number of degrees of freedom. The Navier-Stokes equations
being satisfied on the full domain 2, (4) is projected onto the Ngq first POD
modes which are properly defined on 2 (Liberge and Hamdouni, 2010). For the
cylinder motion constraint, N, = 3 arbitrary test functions vanishing on Q(t)
are used. These functions are chosen to enforce the streamwise and transversal
mean velocities and the mean rotation in Qg (¢). Finally, it leads to a N.-
dimensional time-dependent linear system of constraints which is enforced by
the introduction of a Lagrange multiplier A(t) = (A1,...,An,)?. The reduced
system can be written as a low-order constant-linear-quadratic descriptor system
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given by:
d Ngal Nga1 Ngal
a;
g B =Cit > Lija;(t) + Y Y Qijea(t)ax(t)
j=1 j=1 k=1
N,
+ D (G (we());; Ai(t) i=11,..., Ngal (5)
j=1
Ngal
D (Gye®));; a3 (t) = hi(Ve(®),we(t)) i =[1,..., N,
j=1
where a; (i =1,---, Nga) are the time coefficients of the POD modes.
4 Results

4.1 POD Reduced-Order Model

Snapshots of the cylinder undergoing vertical oscillations have been generated
using a moving mesh implemented in COMSOL Multiphysics 4.3 through an
ALE formulation. The forced numerical simulation is initialized with the steady
state solution w2y For the cylinder, the velocity V. and the position v, are
chosen such that the system first undergoes from ¢t = 0 to ¢t = 100 a transient
regime from the steady state to an established unactuated state. Finally, the
flow is actuated from ¢ = 100 to ¢ = 200 at the natural frequency. After in-
terpolation on a regular mesh and subtraction of the steady state, the POD
analysis is performed on the data (Tissot, 2014). A Galerkin projection of the
Navier-Stokes equations onto the first 47 POD modes is performed. According to
section 3.2, we then add the constraints of mean vertical, horizontal and tangen-
tial velocities inside the solid domain. Figure 2 represents the time coefficients
obtained as solutions of (5) by comparison with the temporal POD eigenfunc-
tions. We observe that the ROM’s dynamics in the transient, established and
actuated regimes are very close to the original dynamics. In conclusion, the
constrained ROM (5) is considered to represent with a sufficient accuracy the
oscillating vertical cylinder.

4.2 Feedback control

After linearization of (5) around the steady state, the optimal feedback gain
expressed in the POD subspace is determined as solution of the low-order GARE
(3). By construction, this feedback gain is designed to stabilize the ROM (5),
and not the high-fidelity model (4). However, this feedback gain should be a
good approximation of the optimal linear feedback gain solution of the high-
order GARE (3) related to (4). To check this hypothesis, we expressed this gain
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Figure 2: POD ROM of the vertical oscillating cylinder at Re = 60. The time
coefficients obtained by projection on the POD modes are in red, whereas the
solutions of the POD ROM (5) are represented in blue.

in the high-order space and used the result to control the high-fidelity model
(4). This control design leads to a stabilization of the cylinder wake at Re = 60
as shown in figure 3.
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(a) Natural flow. (b) Flow controlled by cylinder vertical oscil-
lation.

Figure 3: Linear feedback stabilization of the wake behind a circular cylinder
at Re = 60. Contour lines of vorticity. The dashed lines correspond to negative
values.

5 Conclusion

An efficient feedback control has been developed in a moving domain config-
uration. The domain motion information has been incorporated in the POD
ROM enforcing an additional constraint by Lagrange multipliers. This strat-
egy allows the use of physical model-based control for large-scale problems in
fluid-structure interaction. We have successfully tested this control design on
the stabilization of a circular cylinder wake by vertical oscillations at Re = 60.
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