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Single-file diffusion refers to the motion in narrow channels of particles which cannot bypass each
other, and leads to tracer subdiffusion. Most approaches to this celebrated many-body problem
were restricted to the description of the tracer only. Here, we go beyond this standard description
by introducing and providing analytical results for generalised density profiles (GDPs) in the frame
of the tracer. In addition to controlling the statistical properties of the tracer, these quantities fully
characterise the correlations between the tracer position and the bath particles density. Considering
the hydrodynamic limit of the problem, we determine the scaling form of the GDPs with space
and time, and unveil a non-monotonic dependence with the distance to the tracer despite the
absence of any asymmetry. Our analytical approach provides several exact results for the GDPs for
paradigmatic models of single-file diffusion, such as Brownian particles with hardcore repulsion, the
Symmetric Exclusion Process and the Random Average Process. The range of applicability of our
approach is further illustrated by considering (i) extensions to general interactions between particles,
(ii) the out-of-equilibrium situation of an initial step of density and (iii) beyond the hydrodynamic
limit, the GDPs at arbitrary time in the dense limit.

The key feature of single-file diffusion [1–3], which
refers to the motion of particles which cannot bypass each
other, is that a typical displacement of a tracer particle
scales as t1/4 instead of t1/2 as in regular diffusion [4–
11]. This subdiffusive scaling has been demonstrated in
a growing number of experimental realizations, in con-
texts as varied as transport in porous media [12, 13], ze-
olites [14] or confined colloidal suspensions [15, 16]. The-
oretically, it has lead to a huge number of works in the
physical and mathematical literature. Recent advances
include the determination of the large deviation functions
of the position of a tracer in a system of Brownian parti-
cles with hardcore repulsion [17–19] and in the Symmet-
ric Exclusion Process [20, 21] (see below for definitions),
which are two paradigmatic models of single-file diffusion
with hard-core interactions.

Theoretical interest in single-file diffusion originates
from the challenging many-body nature of the problem:
any large displacement of the tracer particle in one direc-
tion requires large displacements of more and more bath
particles in the same direction. However, the quantifica-
tion of the coupling between the tracer position and the
bath particles density remains a broadly open question.
Here, we develop a theoretical framework with which to
determine these correlations for single-file systems.

We introduce our formalism by considering first the
Symmetric Exclusion Process (SEP). Particles, present
at a density ρ, perform symmetric continuous-time ran-
dom walks on a one-dimensional lattice with unit jump
rate, and hard-core exclusion is enforced by allowing at
most one particle per site (Fig. 1(a)). The tracer, of po-
sition Xt at time t, is initially at the origin. The bath
particles are described by the set of occupation numbers
ηr(t) of each site r ∈ Z of the line at time t, with ηr(t) = 1
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FIG. 1. SEP. (a) The Symmetric Exclusion Process (SEP).
The position of the tracer is called Xt and the occu-
pation numbers of the sites with respect to the tracer
are denoted ηXt+r. (b) Profiles of order 1 at densities
0.1, 0.25, 0.5, 0.75, 0.9 at time t = 3000 (blue to red). Dashed
gray line: prediction from Eq. (9). Inset: rescaled variance
κ̃2 = κ2ρ/(1 − ρ) compared to known expression (gray) [7]
and retrieved by our approach. (c) Profiles of order 1, 2 and
3 at high density (ρ = 0.95, t = 1000). Dashed gray line:
prediction from Eq. (10).

if the site is occupied and ηr(t) = 0 otherwise.
To quantify the coupling between the position of

the tracer and the density of bath particles, we study
the joint process (Xt, ηXt+r), which is entirely char-
acterized by its joint cumulant generating function
ln〈eλXt+χηXt+r 〉. Since ηXt+r only takes values 0 and
1, this function takes the form

ln〈eλXt+χηXt+r 〉 = ψ(λ, t)+ln(1+(eχ−1)wr(λ, t)), (1)
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where ψ(λ, t) is the usual cumulant-generating function,
whose expansion defines the cumulants κn of the position:

ψ(λ, t) ≡ ln
〈
eλXt

〉
≡
∞∑

n=1

λn

n! κn(t). (2)

In turn, wr(λ, t) is the GDP-generating function [22] [23].

wr(λ, t) = 〈ηXt+re
λXt〉/〈eλXt〉, (3)

whose expansion gives the joint cumulants 〈ηXt+rX
n
t 〉c

of the tracer position Xt and the occupation number
ηXt+r measured in its frame of reference. For instance,
the first cumulant 〈ηXt+rXt〉c = Cov(ηXt+r, Xt) provides
a measure of the correlations between the displacement
of the tracer and the occupation of the site at a dis-
tance r of the tracer, while the second one 〈ηXt+rX

2
t 〉c =

Cov(ηXt+r, X
2
t ) (since 〈Xt〉=0) gives a measure of the

correlation between the amplitude of the fluctuations of
Xt and the occupation at a distance r of Xt. Finally,
the joint cumulant generating function ln〈eλXt+χηXt+r 〉
is given by the knowledge of ψ and wr, which are thus
key quantities, whose joint determination is the object of
this Letter.

While it is known that the cumulant-generating func-
tion ψ scales as

√
t at large time for single-file systems,

we put forward that, more generally, at large scale (large
time, large distances), the GDP-generating function ad-
mits the scaling form:

wr(λ, t)− ρ ∼
t→∞

Φ
(
λ, v = r√

2t

)
≡
∞∑

n=1

λn

n! Φn(v). (4)

We note that the symmetry of the system imposes
Φ(λ, v) = Φ(−λ,−v): in the following the results will
be stated only for v > 0. When the tracer moves, it per-
turbs the bath particles and gives birth to density profiles
which, as displayed by this scaling form, are not station-
ary but involve typical length scales growing as

√
t. In

turn, the way the bath particles readjust at the front and
behind the tracer (encoded in w±1) controls its displace-
ment, leading to (see Supplementary Material, SM [24])

dψ
dt = 1

2
[
(eλ − 1)(1− w1) + (e−λ − 1)(1− w−1)

]
. (5)

Finally, besides fully quantifying the correlations be-
tween the tracer position and the density of bath par-
ticles, the GDPs control the time evolution of the
cumulant-generating function. In particular, the scaling
ψ(λ, t) ∼

t→∞

√
t of the cumulants [20, 21] actually origi-

nates from the scaling form (4) of the GDP generating-
function. Relying on a mixed Eulerian (for the bath par-
ticles) and Lagrangian (for the tracer) master equation
and on the scaling of Φ (Eq. (4)), we show in SM that
this key observable satisfies the hydrodynamic equation

Φ′′(v) + 2(v + bµ)Φ′(v) + C(v) = 0 (6)

completed by the boundary conditions

Φ′(0±) + 2b±[ρ+ Φ(0±)] = 0 (7)
1− ρ− Φ(0−) = eλ(1− ρ− Φ(0+)) (8)

in front and past the tracer, with µ the sign of v,
bµ(λ) ≡ limt→∞ ψ(λ, t)/[

√
2t(eµλ − 1)] and the depen-

dence on λ omitted for simplicity. Equation (8) comes
from the cancellation of dψ

dt at large times (see Eq. (5)).
The function C(v) involves higher order correlations, and
is a priori unknown. However, as we report below (see
SM for details), explicit exact expressions of the GDPs
can be obtained in several important situations.
First, we show that the function C(v) is strictly equal

to zero at first order in λ, making the equation (6) closed
at this order, and leading to

Φ1(v > 0) = 1− ρ
2 erfc(v). (9)

This expression provides the exact large-time behavior
of the correlation function 〈ηXt+rXt〉c = Cov(ηXt+r, Xt)
of the SEP at any density. The fact that it is positive
for v > 0 indicates that, if Xt > 0, the sites to the
right of the tracer have higher occupation numbers, which
shows that there is an accumulation of particles in front
of the tracer. Note that it decays monotonically to zero
with the distance to the tracer (Fig. 1(b)). We finally
stress that (9) together with (8) allows one to recover in
a straightforward way the well known expression of the
second cumulant κ2(t) = (1− ρ)/ρ

√
2t/π [4].

Second, in the dense limit ρ→ 1, it is shown that the
function C(v), which involves a product of occupation
numbers of bath particles, vanishes, which leads to the
full GDP-generating function

lim
ρ→1

Φ(λ, v > 0)
1− ρ = 1− e−λ

2 erfc(v), (10)

where the dependencies on λ and v factorise. This ex-
pression gives the GDPs of arbitrary order, which, up
to a sign, assume all the same value, and again decay
monotonically to zero (Fig. 1(c)).
Third we investigate the dilute limit ρ→ 0 of the SEP.

We stress that the results in this case cannot be deduced
from the dense limit discussed above, since the particle-
hole symmetry of the SEP is explicitly broken by choos-
ing to follow the motion of one particle. Actually, this
limits exhibits a richer phenomenology. In fact, it corre-
sponds to the model of interacting point-like particles on
a line [17–19], and needs to be taken at constant x = ρr
and τ = ρ2t. The density field ηXt+r(t) 7→ η(x, τ) be-
comes continuous in space and the diffusive scaling for
the GDPs reads v = r/

√
2t = x/

√
2τ , leading to the

definition Φ̂(λ̂, v) = limρ→0[Φ(λ = ρλ̂, v)/ρ]. In this
case, the function C(v) is not negligible, but we put for-
ward self-consistently, in order to retrieve the known



3

0 1 2 3 4

0

0.25

0.5

v = x/
√
2τ

〈η
(x
,τ
)(
X
τ
)n
〉 c

100 102 104
1

100

τ

ρ
2
κ
2

n = 1

0 1 2 3 4

−0.3
−0.2
−0.1
0

0.1

v = x/
√
2τ

n = 2

0 1 2 3 4

0

0.1

0.2

0.3

v = x/
√
2τ

100 102 104
1

100

τ

ρ
4
κ
4

n = 3

FIG. 2. Pointlike interacting particles. Rescaled orders 1, 2 and 3 (left to right) of the GDPs at times τ =
100, 200, 500, 1000, 2000, 5000 (green to black). The dashed gray lines are the predictions from Eqs. (9), (15), (16). The
insets show the second and fourth cumulants with the solid lines corresponding to the simulations and the dashed gray line to
the solution from Eq. (14).
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FIG. 3. GDPs of single-file systems. (a-d) Profiles at order 1 for various models. The dashed gray lines correspond to the
prediction of Eq. (17). The insets show the rescaled variance κ̃2 = κ2ρ/S(ρ) with the prediction in gray. (a) Hard-rod gas
at density ρ = 1 and time t = 1000. The length of a rod is a = 0.1, 0.25, 0.5, 0.75, 0.9 (blue to red). The parameters are
S(ρ) = (1 − aρ)2, D(ρ) = (1 − aρ)−2 [16]. (b) Random-average process [25, 26] at density ρ = 1 at times t = 1000 and 5000
(light blue and blue): at exponential times, each particle performs a symmetric jump whose length is a random fraction of
the distance to the nearest particle. S(ρ) and D(ρ) are given in Ref. [26]. (c) Point-like Brownian particles interacting by a
Weeks-Chandler-Andersen potential (V (r) ∝ ( 1

r12 − 1
r6 ) for r < 21/6 and 0 otherwise). Density ρ = 0.2, 0.3, 0.4, 0.5 (blue to

red) at time t = 100. S(ρ) is the structure factor at vanishing wave-number, and D(ρ) = D0/S(ρ) [16, 27]. (d) Point-like
Brownian particles interacting with long-range dipole-dipole interactions V (r) ∝ 1

r3 at density ρ = 0.2 and 0.4 (blue and red)
at time t = 100. (e-f) Profiles of order 2 for the same models as (c-d) at density ρ = 0.05 and times 5 · 103 and 1 · 104 (light
blue and blue). The dashed gray line is the low-density prediction from Eq. (15).

cumulants κn (see point (i) below), the closure relation

lim
ρ→0

[C(λ = ρλ̂, v)/ρ] = 2λ̂dβ
dλ̂

Φ̂′(v), (11)

where we defined β = limt→∞ 1√
2t
ψ̂

λ̂
, with ψ̂(λ̂) =

limρ→0[ψ(λ = ρλ̂)/ρ]. This leads to the key and strik-

ingly simple closed equation for the full GDP-generating
function

Φ̂′′(v) + 2(v + ξ)Φ̂′(v) = 0, (12)
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which is the main result of this Letter. It yields

Φ̂(λ̂, v > 0) = β erfc(v + ξ)
π−1/2e−ξ2 − β erfc(ξ) . (13)

where ξ = limt→∞ 1√
2t
dψ̂

dλ̂
. The quantities β and ξ =

d
dλ̂

(λ̂β) are then determined from Eq. (8), which becomes

β
∑

µ=±1

erfc(µξ)
π−1/2e−ξ2 − µβ erfc(µξ) = λ̂. (14)

Several comments are in order. (i) Eq. (14) is an implicit
equation that allows one to retrieve the exact cumulants
κn obtained in previous studies [17–19] (see SM [24] for
detailed correspondence). This validates self-consistently
the closure relation (11). (ii) Then, Eq. (13) provides
the GDPs of interacting point-like particles at arbitrary
order; for instance (Fig. 2),

Φ2(v) = 1
ρ

[
1
2 erfc v − 2e

−v2

π

]
, (15)

Φ3(v) = 3
π3/2ρ2

[
(2v −√π)e−v

2
+
√
π erfc v

]
. (16)

(iii) The sign of these GDPs is non trivial. For in-
stance, Φ2(v) = Cov(ηXt+r, X

2
t ) is negative (see Fig. 2 for

n = 2), which implies that X2
t and ηXt+r fluctuate in op-

posite directions: a larger fluctuation of X2
t is associated

with a smaller value of the occupation. Furthermore,
even if there is no asymmetry in the dynamics, these
GDPs display a surprising non-monotonic behavior with
the distance to the tracer (see Fig. 2 for n ≥ 2), which
indicates that this effect is more pronounced at a cer-
tain distance of the tracer (which is non stationary, and
grows as

√
t). (iv) It is demonstrated in SM [24] that the

GDPs actually coincide with the saddle-point solution in
the formalism of Macroscopic Fluctuation Theory [28],
evaluated at a specific point. In turn, it sheds new light
on this saddle-point solution. This, after (i), is a further
validation of the exactness of the closure relation (11).
A key result of our approach is that the GDPs satisfy
the very simple closed equation (12). (v) We stress that
our approach can be generalized to the important out-of-
equilibrium situation of an initial step of density [21, 29].
The main equation (12) remains valid in this case, and
only the boundary conditions (7,8) must be straightfor-
wardly adapted. The modified equations, and explicit
expressions of the cumulants and the GDPs are given in
SM [24] (Eqs. (S55-S62)).

These analytical results can also be extended to a gen-
eral single-file system of interacting particles with av-
erage density ρ. Such a system can be described at
large scale by two quantities: the collective diffusion
coefficient D(ρ) and the static structure factor at van-
ishing wavenumber S(ρ) [16, 27, 30]. The case of the
SEP considered above corresponds to D(ρ) = 1/2 and

S(ρ) = 1−ρ. We conjecture that the first-order GDP of
a general single-file system can be obtained by adapting
the main equation (12) into D(ρ)Φ′′1(v) + vΦ′1(v) = 0,
with the boundary conditions 2D(ρ)Φ′1(0±) + ρκ̃2 = 0
and Φ1(0+) − Φ1(0−) = S(ρ). This leads to the general
expression

Φ1(v ≥ 0) = S(ρ)
2 erfc

(
v√

2D(ρ)

)
. (17)

Note that the known expression of the variance of the
tracer κ2(t) = (S(ρ)/ρ)

√
4D(ρ)t/π [27, 30] is recovered

from the particular value Φ1(0). The analytical result
(17) can be retrieved by a MFT computation provided
in SM [24]. Furthermore, it is supported by numerical
simulations (Fig. 3) of several paradigmatic examples
of single-file systems (see SM [24] for definitions) with
hard-core interactions (the Brownian hard-rods model,
Fig. 3(a), as involved in the experimental realisation of
the quasi-1D colloidal suspension from [16], and the ran-
dom average process, Fig. 3(b) [25, 26, 31, 32]) and more
general pairwise interactions (Brownian point-like par-
ticles with Weeks-Chandler-Anderson (WCA) potential
Fig. 3(c), and dipole-dipole interactions, Fig. 3(d), as in-
volved in the experimental realisation of paramagnetic
colloids confined in a 1D channel from [15]).
Higher order GDPs can also be obtained in the dilute

limit. Indeed, in the limit ρ → 0 of a generic single-file
system, the collective diffusion coefficient and the struc-
ture factor should respectively satisfy D(ρ) → D0 and
S(ρ) → 1 where D0 is the diffusion constant of an indi-
vidual particle and 1 is the structure factor of the ideal
gas. Equations (13)-(16) are therefore valid for such a
system at low enough density, as confirmed by numerical
simulations (Fig. 3(e)-(f)).
Although we mostly focused on the hydrodynamic

limit, we stress that our approach also provides a frame-
work to analyse the GDP-generating function (3) at all
times. Starting from the microscopic equation satisfied
by wr (see Eq.(S66)-(S68) in SM), the dense limit of the
GDP-generating function w̌r = limρ→1(wr − ρ)/(1 − ρ)
in the Laplace domain reads

w̃r(u) =
∫ ∞

0
e−utw̌r(t)dt = 1

u

1− e−νλ
1 + α

α|r|, (18)

where ν = sign r and α = 1 + u −
√

(1 + u)2 − 1, and
the dense limit of the cumulant generating function at
all times ψ̌(λ, t) = limρ→1 ψ/(1 − ρ) = te−t(I0(t) +
I1(t))[coshλ− 1], where In is a modified Bessel function
of order n.
All together, the theoretical framework developed in

this Letter allows one to quantify the correlations be-
tween the tracer and the bath of particles in single-file
diffusion with the help of generalized density profiles.
We emphasize the main merits of this method. First,
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it is based on a master equation, which is a natural tool
for physicists. Second, in the limits considered here, it
reduces to a simple first order linear differential equa-
tion. In views of the complexity of available methods to
study tracer diffusion in single-file systems, such as cou-
pled nonlinear partial differential equation for the Macro-
scopic Fluctuation Theory [17, 28] or integrable proba-
bilities and Bethe ansatz [21], this is an important sim-
plification. Furthermore, we discover a closure relation
which allows to break the infinite hierarchy in a many-
body model of point-like particles with hardcore repul-
sion. Beyond these technical aspects, the impact of the
present results is further demonstrated by considering
extensions to general interactions between particles, the
out-of-equilibrium situation of an initial step of density
and, beyond the hydrodynamic limit, the GDPs at arbi-
trary time in the dense limit. Finally, our method opens
the way to the resolution at arbitrary density, which is a
long-standing and challenging question. As a first step in
this direction, we emphasize that the boundary equation
(7) remarkably holds at any density.
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I. EQUATIONS

A. Master equation of the SEP

We consider the symmetric exclusion process (SEP) with a tracer. The position of the tracer is denoted X and
the configuration of the system is denoted η = {ηr}r∈Z where ηr ∈ {0, 1} is the occupation of site r (1 if the site is
occupied, 0 if it is empty). At time t, the system is characterized by a probability law P (X, η, t).

The initial conditions are given by the equilibrium probability law for the occupations with the tracer at position
0,

P (X, η, 0) = δX,0δη0,1

∏

r∈Z∗

δηr,γr . (S1)

where γr are independent Bernouilli variables with parameter ρ (density of the system).
One checks that the time-evolution of the tracer and the bath is given by the following master equation,

∂tP (X, η, t) =
1

2

∑

r 6=X,X−1

[
P (X, ηr,+, t)− P (X, η, t)

]

+
1

2

∑

µ=±1

{
(1− ηX)P (X − µ, η, t)− (1− ηX+µ)P (X, η, t)

}
. (S2)
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The first term corresponds to the jumps of the bath particles while the second one takes into account the jumps of
the tracer. We call ηr,+ the configuration η in which the occupations of sites r and r + 1 are exchanged.

If one considers an observable O(X, η), its average at time t is defined as

〈O〉(t) ≡
∑

X,η

O(X, η)P (X, η, t). (S3)

The time evolution of this average can be computed using the master equation (S2).

B. Observables and large-times scalings

The first observable that we compute is the cumulant-generating function of the displacement of the tracer,

ψ(λ, t) ≡ ln
〈
eλX

〉
. (S4)

Its expansion in powers of λ generates the cumulants of the tracer. At large time t, it scales as
√
t,

ψ(λ, t) ∼
t→∞

A(λ)
√

2t. (S5)

The second observable corresponds to the generalized profiles,

wr(λ, t) ≡
〈ηX+re

λX〉
〈eλX〉 . (S6)

The expansion in powers of λ gives the cross-cumulants between the occupations and the displacement of the tracer.
At large time, they satisfy a diffusive scaling r/

√
t,

wr(λ, t)− ρ ∼
t→∞

Φ

(
v =

r√
2t
, λ

)
(S7)

Finally, we consider the “modified centered correlations”,

fµ,r(λ, t) ≡
〈
(1− ηX+µ)ηX+re

λX
〉

〈eλX〉 −
{

(1− wµ)wr−µ if µr > 0

(1− wµ)wr if µr < 0
. (S8)

At large time, the leading term is in t−1/2 and the sub-leading term in t−1 with the same diffusive scaling as for the
profiles,

fµ,r(λ, t) =
1√
2t
Fµ

(
v =

r√
2t
, λ

)
+

1

2t
Gµ

(
v =

r√
2t
, λ

)
+O(t−3/2). (S9)

C. Equations at arbitrary time

Using Eqs. (S2) and (S3), one obtains the following equations for the time-evolution of the cumulant-generating
function and of the generalized profiles.

∂tψ =
1

2

{
(eλ − 1)(1− w1) + (e−λ − 1)(1− w−1)

}
, (S10)

∂twr =
1

2
∆wr −Bν∇−νwr +

1

2

∑

µ=±1

(
eµλfµ,r+µ − fµ,r

)
(r 6= ±1) (S11)

∂tw±1 =
1

2
∇±w±1 +B±w±1 +

1

2

(
e±λf±1,±2 − f∓1,±1

)
(S12)

ν is the sign of r, the gradients are ∇µur = ur+µ − ur, and

B± =
∂tψ

e±λ − 1
. (S13)

In addition to that, the generalized profiles at large distance are equal to the density limr→±∞ wr = ρ.
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D. Hydrodynamic equations at large time

Using the time scalings of subsection I B into the equations of subsection I C, we first obtain two “symmetry”
relations

1− ρ− Φ(0−) = eλ(1− ρ− Φ(0+)), (S14)

F−1(v) = eλF1(v). (S15)

Then, we obtain the following hydrodynamic equations for the generalized profiles,

Φ′′(v) + 2(v + bν)Φ′(v) + C(v) = 0, (S16)

C(v) = (eλ − 1)F ′1(v) +
∑

µ=±1
(eµλ − 1)Gµ(v) (S17)

Φ′(0±) + 2b±[ρ+ Φ(0±)] = 0, (S18)

Φ(v) −−−−−→
v→±∞

0, (S19)

with ν the sign of v and b±(λ) =
√

2tB±(λ) = ±A(λ)/(e±λ − 1).

II. RESULTS

A. First order

At order 1 in λ, Φ(λ, v) = λΦ1(v) +O(λ2) and b± = λκ̃2/2 +O(λ2) with κ̂2 = [〈X2(t)〉 − 〈X(t)〉2]/
√

2t. Equations
(S14), (S16), (S18) and (S19) lead to

Φ′′1(v) + 2vΦ′1(v) = 0, (S20)

Φ′1(0±) + ρκ̃2 = 0, (S21)

Φ1(0+)− Φ1(0−) = 1− ρ, (S22)

Φ1(v) −−−→
v±∞

0. (S23)

This set of equations is closed. Its resolution gives the generalized profiles at order 1 and the rescaled variance of
the tracer,

Φ1(v ≷ 0) = ±1− ρ
2

erfc |v|, (S24)

κ̃2 =
1− ρ
ρ

1√
π
. (S25)

The result for the variance is the well-known one [1].

B. High density

We now turn to the high density limit ρ → 1. We define the following quantities (that no longer depend on the
density),

Φ̌(v) = lim
ρ→1

Φ(v)

1− ρ , b̌± = lim
ρ→1

b±
1− ρ . (S26)

Equations (S14), (S16), (S18) and (S19) simplify into

Φ̌′′(v) + 2vΦ̌′(v) = 0, (S27)

Φ̌′1(0±) + 2b̌± = 0, (S28)

eλ[1− Φ̌(0+)] = 1− Φ̌(0−), (S29)

Φ̌(v) −−−→
v±∞

0. (S30)
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The set of equations is closed and leads to

Φ̌(v ≷ 0) =
1

2
(1− e∓λ) erfc |v|, (S31)

ψ̌(λ) ∼
t→∞

√
2t

π
[coshλ− 1] . (S32)

We recover the cumulant-generating function of Ref. [6].

C. Low density

The opposite limit of low density, ρ → 0, is trickier to define. One should consider it keeping z = ρr and τ = ρ2t
constant. With these scalings, one realizes that the correct limits are

Φ̂(v, λ̂) = lim
ρ→0

Φ(v, λ = ρλ̂)

ρ
, β(λ̂) = lim

ρ→0

±b±(λ = ρλ̂)

ρ
= lim
ρ→0

A(λ = ρλ̂)

ρλ̂
, (S33)

F̂µ(v, λ̂) = lim
ρ→0

Fµ(v, λ = ρλ̂)

ρ
, Ĝµ(v, λ̂) = lim

ρ→0
Gµ(v, λ = ρλ̂). (S34)

(S35)

The bulk equation (S16) gives

Φ̂′′(v) + 2(v + β)Φ̂′(v) + λ̂
[
Ĝ1(v)− Ĝ−1(v)

]
= 0. (S36)

This time the equation is not closed. We put forward the following closure relation,

Ĝ1(λ̂, v)− Ĝ−1(λ̂, v) = 2
dβ

dλ̂
Φ̂′(v), (S37)

which leads us to

Φ̂′′(v) + 2(v + ξ)Φ̂′(v) = 0, (S38)

with ξ the (rescaled) derivative of the cumulant-generating function with respect to its parameter,

ξ ≡ β + λ̂
dβ

dλ̂
=

d

dλ̂
(λ̂β) =

dÂ(λ̂, τ)

dλ̂
. (S39)

The low density limit of Equations (S14), (S18) and (S19) is readily taken and the set of equations we need to solve
is

Φ̂′′(v) + 2(v + ξ)Φ̂′(v) = 0, (S40)

Φ̂′(0ν) + 2β
[
1 + Φ̂(0ν)

]
= 0, (S41)

Φ̂(0+)− Φ̂(0−) = λ̂, (S42)

Φ̂(±∞) = 0. (S43)

The computation leads to

Φ̂(v ≷ 0) =
±β

π−1/2e−ξ2 ∓ β erfc(±ξ) erfc(±(v + ξ)) (S44)

Therefore Eq. (S42) yields an implicit equation for β and ξ,

β

(
erfc(ξ)

π−1/2e−ξ2 − β erfc(ξ)
+

erfc(−ξ)
π−1/2e−ξ2 + β erfc(−ξ)

)
= λ̂. (S45)
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The coefficients κ̂1, κ̂2, . . . involved in the cumulants are defined by

Ψ̂(λ̂, t) ≡
∞∑

n=1

λ̂n

n!
κ̂n
√

2t, β =

∞∑

n=0

λ̂n

(n+ 1)!
κ̂n+1, ξ =

∞∑

n=0

λ̂n

n!
κ̂n+1. (S46)

These expressions can be injected into Eq (S45) to obtain the cumulants order by order,

κ̂2 =
1√
π
, κ̂4 =

3(4− π)

π3/2
, (S47)

κ̂6 =
15(68− 30π + 3π2)

π5/2
, κ̂8 =

21(10912− 6840π + 1320π2 − 75π3)

π7/2
. (S48)

The cumulants are κn(t) = ρ1−nκ̂n
√

2t. These are exactly the coefficients known in the literature for interacting
point-like particles on a line [5, 9, 15], a model which is equivalent to the low density SEP. Furthermore, we are able
to give the generalized profiles at all orders in λ,

Φ̂(1)(v) =
1

2
erfc v, (S49)

Φ̂(2)(v) =
1

2
erfc v − 2

e−v
2

π
, (S50)

Φ̂(3)(v) =
3

π3/2

[
(2v −√π)e−v

2

+
√
π erfc v

]
, (S51)

Φ̂(4)(v) = − 1

2π2

[
(128− 24π + 24

√
πv + 32v2)e−v

2

+ 3π(π − 8) erfc v
]
. (S52)

D. Initial step density in the dilute limit

Our formalism can be applied to the case of an initial step density with ρ− for r < 0 and ρ+ for r > 0. At large
times, the GDPs take the form

wr(λ, t)− ρν ∼
t→∞

Φ

(
v =

r√
2t
, λ

)
, (S53)

with ν = sign(r). We denote ρ = (ρ+ + ρ−)/2 the mean density and ρ̂± = ρ±/ρ. In the dilute limit ρ→ 0, we obtain
the following set of equations

Φ̂′′(v) + 2(v + ξ)Φ̂′(v) = 0, (S54)

Φ̂′(0ν) + 2β
[
ρ̂ν + Φ̂(0ν)

]
= 0, (S55)

Φ̂(0+)− Φ̂(0−) + ρ̂+ − ρ̂− = λ̂, (S56)

Φ̂(±∞) = 0. (S57)

where Φ̂, β and ξ are defined by Equations (S33) and (S39). This leads to

Φ̂(v ≷ 0) = ρ̂±
±β

π−1/2e−ξ2 ∓ β erfc(±ξ) erfc(±(v + ξ)) . (S58)

Therefore Eq. (S56) yields the following implicit equation for β and ξ,

β

(
ρ̂+

erfc(ξ)

π−1/2e−ξ2 − β erfc(ξ)
+ ρ̂−

erfc(−ξ)
π−1/2e−ξ2 + β erfc(−ξ)

)
+ ρ̂+ − ρ̂− = λ̂ . (S59)

We can deduce the coefficients κ̂1, κ̂2, . . . involved in the cumulants by using the expansions of ξ and β (S46). We
obtain that κ̂1 is solution of

ρ̂+

1−√πeκ̂
2
1 erfc(κ̂1)

=
ρ̂−

1 +
√
πeκ̂

2
1 erfc(−κ̂1)

. (S60)
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The higher cumulants can be expressed in terms of κ̂1. For instance,

κ̂2 =
2(1−√πeκ̂

2
1 erfc(κ̂1))(1 +

√
πeκ̂

2
1 erfc(−κ̂1))

ρ̂+(4κ̂1 +
√
π(1 + 4κ̂21)eκ̂

2
1 erfc(−κ̂1))− ρ̂−(4κ̂1 −

√
π(1 + 4κ̂21)eκ̂

2
1 erfc(κ̂1))

. (S61)

The expressions of κ̂1 and κ̂2 are identical to the exact ones obtained previously [7, 13] in the dilute limit. In addition

to the cumulants, we obtain the expressions of the density profiles at any order, by expanding (S58) in powers of λ̂.
For instance, for v > 0,

Φ̂(1)(v) =
κ̂2ρ̂+

√
πeκ̂

2
1

2(1−√πeκ̂
2
1 κ̂1 erfc(κ̂1))2

erfc(v + κ̂1)− 2κ̂1κ̂2ρ̂+

1−√πeκ̂
2
1 κ̂1 erfc(κ̂1)

e−v(v+κ̂1) . (S62)

E. Solution at all times in the high density limit

In the high density limit ρ→ 1, the cumulant-generating function is expected to scale as (1− ρ). We write

ψ(λ, t) ∼
ρ→1

(1− ρ)ψ̌(λ, t), Bµ(λ, t) ∼
ρ→1

(1− ρ)B̌µ(λ, t) = (1− ρ)
∂tψ̌(λ, t)

eµλ − 1
, (S63)

with ψ̌ and B̌µ independent of the density ρ.
The fluctuations of occupation δηr = ηr−〈ηr〉 also scale as (1−ρ). Thus, the generalized profiles wr scale as (1−ρ)

while the correlations fµ,r (between ηX+µ and ηX+r) scale as (1− ρ)2.

wr ∼
ρ→1

ρ+ (1− ρ)w̌r = 1 + (1− ρ)(w̌r − 1), (S64)

fµ,r = O[(1− ρ)2]. (S65)

When all the scalings are written, the microscopic equations (S10)-(S12) become a closed system independent of ρ,

∂tw̌r =
1

2
∆w̌r (S66)

∂tw̌µ =
1

2
∇µw̌µ + B̌ν(t) (S67)

lim
r→±∞

w̌r = 0 (S68)

∂tψ̌ =
1

2

[
(eλ − 1)(1− w̌1) + (e−λ − 1)(1− w̌−1)

]
(S69)

We define the Laplace transform

w̃r(u) =

∫ ∞

0

e−utw̌r(t). (S70)

The bulk and boundary equations become,

1

2
[w̃r+1(u) + w̃r−1(u)]− (1 + u)w̃r(u) = 0 (S71)

1

2
w̃2ν(u)−

(
1

2
+ u

)
w̃ν(s) + νB̃ν(u) = 0. (S72)

The equation α2 − 2(1 + u)α + 1 = 0 has two solutions, but only one satisfies the condition αr →
r→∞

0 imposed by

Eq. (S68). The solution of Eq. (S71) is

w̃r(u) = γµ(u)α|r|, (S73)

α = 1 + u−
√

(1 + u)2 − 1, (S74)

where µ is the sign of r. Injecting this expression into the boundary equation (S72), we obtain (recall that α2− 2(1 +
u)α+ 1 = 0)

γµ(u) =
2B̃µ(u)

(1 + 2u)α− α2
=

2B̃µ(u)

1− α =
2

1− α
(∂tψ̃)(u)

eµλ − 1
. (S75)
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We finally use the velocity equation (S69) and obtain

(∂tψ̃)(u) =
1

2u

(
eλ + e−λ − 2

)
− 2α

1− α (∂tψ̃)(u), (S76)

(∂tψ̃)(u) =
1

u

1− α
1 + α

[coshλ− 1] =
1√

u(2 + u)
[coshλ− 1] . (S77)

This expression can be inverted into

∂tψ̌(t) = e−tI0(t) [coshλ− 1] . (S78)

The large time limit is given by

∂tψ̌(t) ∼
t→∞

1√
2πt

[coshλ− 1] . (S79)

We also obtain the full solution for the generalized profiles w̃r,

w̃r(u) =
1

u

1

1 + α

[
1− e−µλ

]
α|r|. (S80)

The small u behavior at constant r
√
u gives the large time behavior at constant r/

√
t,

w̃r(u) ∼
u→0

[
1− e−µλ

] e−|r|
√
2u

2u
(S81)

w̌r(t) ∼
t→∞

1

2

[
1− e−µλ

]
erfc

( |r|√
2t

)
. (S82)

III. GENERIC SINGLE-FILE SYSTEMS

A. Description of single-file systems in terms of two quantities

Two descriptions of single-file systems at large distance and large time have been put forward. They both involve
two quantities.

The first description comes from fluctuating hydrodynamics [16]. The system considered is a lattice model. It is
described at large distance and large time by a fluctuating density field ρ(x, t) that is shown to obey the following
equation,

∂tρ(x, t) = ∂x

[
D(ρ(x, t))∂xρ(x, t) +

√
σ(ρ(x, t))η(x, t)

]
. (S83)

The quantities D(ρ) and σ(ρ) were first defined from the microscopic details of a lattice gas [16]. It is nevertheless
more intuitive to consider a system of size L between two reservoirs at densities ρa and ρb [2]. The number of particles
transferred from left to right at time t is denoted Qt and is shown to satisfy

lim
t→∞

〈Qt〉
t

=
D(ρ)

L
(ρa − ρb) if (ρa − ρb) is small, lim

t→∞
〈Qt〉
t

=
σ(ρ)

L
if ρa = ρb = ρ. (S84)

This can be used as a definition of D(ρ) and σ(ρ). Using macroscopic fluctuation theory (MFT), it has been shown [10]
that the variance κ2 of the displacement of a tagged particle in the system satisfies

κ2 ∼
t→∞

σ(ρ)

ρ2

√
t

πD(ρ)
. (S85)

The second description has been developed by Kollmann [8]. The system consists of identical Brownian particles
with pairwise interactions. Denoting the fluctuating density field ρ(x, t), one defines the dynamical structure factor
S(q, t) as

S(q, t) =
1

N
〈δρ(q, t)δρ(q, 0)〉 , δρ(q, t) =

∫
dx eiqx [ρ(x, t)− ρ̄] , (S86)
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where N is the number of particles and ρ̄ the average density. The structure factor decays exponentially with time:
S(q, t) ∼ S(q, 0)e−D(q)t. The behavior of the system is shown to be dominated by the large wavelengths (q → 0). The
two important quantities (with their dependence on ρ̄ written explicitly) are

D(ρ̄) = lim
q→0

D(q), S(ρ̄) = S(q = 0, t = 0). (S87)

Kollmann shows that the mean square displacement of a tagged particle in the system satisfies

κ2 ∼
t→∞

2S(ρ)

ρ

√
D(ρ)t

π
. (S88)

Ref. [10] provides the link between the two approaches (Eq. (95)). D(ρ) is the same quantity and σ(ρ) and S(ρ)
are linked by σ(ρ) = 2ρD(ρ)S(ρ). Eqs. (S85) and (S88) are thus identical.

In the main text, we chose the description of Kollmann in terms of D(ρ) and S(ρ). We now list the values of these
two quantities for the systems that we consider.

Model D(ρ) S(ρ)

Symmetric exclusion process [10] D0 1− ρ

Point-like hard core particles [10] D0 1

Pairwise interacting particles
without hydrodynamic interactions [8,
14]

D0

S(ρ)
S(ρ)

Hard rod gas [14]
D0

(1− aρ)2
(1− aρ)2

Random average process [12]
µ1

2ρ2
µ2

µ1 − µ2

D0 is the diffusion coefficient of an individual particle, a is the length of the hard rods, and µk are the moments of the
probability law of the jumps in the RAP [12]. In the case of pairwise interacting particles, the structure factor S(ρ) can
either be determined directly from the positions, or indirectly from the pair correlations g(r) via the compressibility
relation [4],

S(ρ) = lim
q→0

1

N

〈∑

i,j

eiq(Xi−Xj)
〉

= 1 +

∫ ∞

−∞
dr [g(r)− 1] . (S89)

B. Extension of our approach

In light of the description in terms of the two quantities D(ρ) and S(ρ), we extend Eqs. (S20)-(S23) to generic
single-file systems.

D(ρ)Φ′′1(v) + vΦ′1(v) = 0, (S90)

D(ρ)Φ′1(0±) +
1

2
ρκ̃2 = 0, (S91)

Φ1(0+)− Φ1(0−) = S(ρ), (S92)

Φ1(v) −−−→
v±∞

0, (S93)

with ρ the average density of the system. We recall that for the SEP, we had D(ρ) = 1/2 and S(ρ) = 1− ρ.
The solution is readily obtained:

Φ1(v ≷ 0) = ±S(ρ)

2
erfc

(
|v|√

2D(ρ)

)
, (S94)

κ̃2 =
S(ρ)

ρ

√
2D(ρ)

π
. (S95)
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We stress that this solution is exact, as confirmed by the alternative derivation provided in Section III C.
If we call η(x, t) the density field at x at time t and Xt the position of the tracer at time t, this means

〈η(Xt + x, t)Xt〉 ∼
t→∞

sign(x)
S(ρ)

2
erfc

(
|x|√

4D(ρ)t

)
(S96)

〈
X2
t

〉
∼

t→∞
S(ρ)

ρ

√
4D(ρ)t

π
. (S97)

The result for the variance is the one given in Refs [8, 10].

C. MFT

In the formalism of Macroscopic Fluctuation Theory (MFT), the main object is the density ρ(x, τ) which is the

continuous equivalent of the occupation ηi(t) at time t = τT , τ ∈ [0, 1] with x = i/
√
T . The probability to start from

a density ρ0 at t = 0 and end up with a density ρ(x, 1) at t = T is given by [3]:

P(ρ0(x) −→ ρ(x, 1)) =

∫
D[ρ(x, τ)]D[H(x, τ)] e−

√
T S[ρ,H] , (S98)

where the action S reads

S[ρ,H] =

∫
dx

∫ 1

0

dτ

(
H∂τρ+

1

2
∂xρ∂xH −

ρ(1− ρ)

2
(∂xH)2

)
. (S99)

The distribution of the initial condition ρ0 takes the form

P[ρ0] ' e−
√
T F [ρ0] , (S100)

where

F [ρ(x, 0)] =

∫
dx

∫ ρ(x,0)

ρ

dz
ρ(x, 0)− z
z(1− z) . (S101)

The cumulant generating function for the position of the tracer can be written as [11]

〈
eλXT

〉
'
∫
Dρ0

∫
D[ρ(x, τ)]D[H(x, τ)] e−

√
T (S[ρ,H]+F [ρ0]−λY [ρ]) , (S102)

where Y [ρ] = XT /
√
T is the position of the tracer. It is deduced from ρ(x, τ) from the conservation of the number of

particles to the right of the tracer:

∫ Y [ρ]

0

ρ(x, 1)dx =

∫ ∞

0

(ρ(x, 1)− ρ(x, 0)) dx . (S103)

For large T , the integral in (S102) is dominated by the minimum of S + F − λY , taken as a function of (ρ,H). We
denote this minimum (q, p). These functions satisfy the equations [11]

∂τq = ∂x[D(q)∂xq]− ∂x[σ(q)∂xp] , (S104)

∂τp = −D(q)∂2xp−
1

2
σ′(q)(∂xp)

2 , (S105)

with the terminal condition for p

p(x, τ = 1) = BΘ(x− Y ) , B =
λ

q(Y, 1)
, (S106)

and the initial condition for q, expressed in terms of p(x, 0):

p(x, 0) = BΘ(x) +

∫ q(x,0)

ρ

dr
2D(r)

σ(r)
. (S107)
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This approach has been used to compute the first four cumulants of the position of the tracer [11].
We can make a connection between this approach and the generalized profiles, since the latter can be expressed as

wr(λ, T ) =

〈
ηXT+r(T )eλXT

〉

〈eλXT 〉 '

∫
Dρ0

∫
D[ρ(x, τ)]D[H(x, τ)] ρ(r/

√
T + Y [ρ], 1) e−

√
T (S[ρ,H]+F [ρ0]−λYT [ρ])

∫
Dρ0

∫
D[ρ(x, τ)]D[H(x, τ)] e−

√
T (S[ρ,H]+F [ρ0]−λYT [ρ])

. (S108)

The two integrals can be evaluated via a saddle point method. The saddle point is the same for the numerator and
the denominator and is given by (q, p) solution of (S104,S105). Therefore, for large T ,

wr(λ, T ) ' q
(

r√
T

+ Y [q], τ = 1

)
. (S109)

In our formalism we have v = r/
√

2T , thus,

Φ(v) = q(v
√

2 + Y [q], τ = 1)− ρ , (S110)

which relates our generalized profiles to the MFT solution.
The MFT equations (S104,S105) can be solved perturbatively at first order in λ. Let us denote

q(x, τ) = ρ+ λ q1(x, τ) + · · · , (S111)

p(x, τ) = λ p1(x, τ) + · · · . (S112)

We also write the expansion of Y [q]:

Y = Y0 + λ Y1 + · · · . (S113)

The coefficients can be determined via the condition (S103) which yields

ρY0 = 0 , (S114)

ρY1 =

∫ ∞

0

(q1(x, 1)− q1(x, 0)) dx . (S115)

The boundary conditions (S106,S107) give a series of conditions for the pi’s and qi’s. At first order, we get

p1(x, 1) =
1

ρ
Θ(x) , (S116)

q1(x, 0) =
σ(ρ)

2D(ρ)
(p1(x, 0)− ρ−1Θ(x)) , (S117)

and the MFT equations (S104,S105) become

∂τq1 = D(ρ)∂2xq1 − σ(ρ)∂2xp1 . (S118)

∂τp1 = −D(ρ)∂2xp1 , (S119)

We first solve the equation for p1 and then use the result to solve the equation for q1. This gives, at τ = 1:

q1(x, τ = 1) =
σ(ρ)

4ρD(ρ)
sign(x) erfc

(
|x|√
4D(ρ)

)
. (S120)

From (S110), we deduce

Φ1(v) =
σ(ρ)

4ρD(ρ)
sign(v) erfc

(
|v|√

2D(ρ)

)
, (S121)

which is exactly (S94).
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IV. NUMERICAL SIMULATIONS

A. Symmetric exclusion principle

Simulations of the SEP are performed on a periodic ring of size N = 1000. The average density is set to ρ and
M = ρN particles are initially placed uniformly at random on the ring. The successive jumps of the particles are
implemented as follow: one chooses a particle uniformly at random and one of the two possible directions (left and
right) with equal probabilities. If the chosen particle has no neighbor in the chosen direction, the jump is performed,
else it is rejected. In both cases, the time of the simulation is incremented by a random number drawn according to
an exponential distribution of rate N .

We keep track of one particle (the tracer) and compute its moments and the generalized profiles at the times that
we want. The average is taken over 108 repetitions of the simulation.

B. Point-like hard-core diffusive particles

We consider particle that diffuse on a line, with hard-core exclusions. One notes that the dependence in the density
is trivial since at density ρ the space x and the time τ can be rescaled as x← ρx and τ ← ρ2τ . We thus consider only
ρ = 1. Initially (τ = 0), M = 20001 particles are placed uniformly at random on the interval [0,M ]. The tracer is
particle number (M + 1)/2. We consider that the particles diffuse independently of one another, then we implement
the hard core interactions by restoring the order. Practically, between time 0 and τ , particle k moves by ∆xi drawn
according to the Gaussian probability law

P (∆xk, τ) =
1√
2πτ

e−
(∆xk)2

2τ . (S122)

The tracer is still particle number (M + 1)/2 from the left. Its displacement and the density field in its reference
frame are easily computed. To compute the observables, the average is performed over 4 · 108 repetitions.

C. Hard-rod gas

We consider a gas of diffusive hard rods of size a < 1 at density ρ = 1. The position of rod k at time t is denoted
yk(t). We may substract the rod sizes from the positions and define xk(t) = yk(t) − ka. One realizes that the set
{xk(t)} correspond to point-like hard-core diffusive particles. Using the mapping yk(t) = xk(t)+ka at both the initial
and final times, one can compute the observables of the hard-rod gas from simulations of the point-like particles
described above.

The low-density limit of the model correspond exactly to the point-like hard-core diffusive particles. In this case,
the profiles at order 2 and 3 are given in Fig. 3 of the article.

D. Random-average process

We consider the random-average process (RAP) defined in particular in Ref. [12]. Particles are placed on the infinite
one-dimensional line. They are all embedded with exponential clocks of characteristic time 1. When its clock ticks a
particle jumps choose a direction, left or right, with equal probability. It then jumps in this direction at a distance
which corresponds to a fraction η of the distance to its nearest neighbor. η is a random variable following a probability
law on [0, 1]. In our simulations, we choose the uniform probability law.

By construction of the RAP, if the density of the particles is denoted ρ and if x and t are respectively the spatial
and temporal coordinates, the observables depend only on the two rescaled coordinates z = ρx and τ = ρt. For this
reason, we only consider the RAP at density ρ = 1.

In our simulations, we consider N = 500 particles on a periodic line (of length L = 500). The steady state of the
RAP is non-trivial [12] and can hardly be implemented as an initial condition. We thus first let the system evolve
for a time tini = 2 · 104 before starting to record the observables. These observables are then averaged over 2 · 106

simulations.
Note that the low-density limit of the RAP is peculiar since S(ρ) ∼ ρ−1. It does not correspond to the ideal gas

(S(ρ) = 1). Therefore, the profiles at order 2 cannot be checked against our low-density prediction.
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FIG. S1. Structure factor S(q) and measured value of S(ρ) = S(q = 0). Left: WCA potential. Right: dipole-dipole potential.

E. Point-like particles interacting by a pairwise potential

We consider N particles (N = 500 for WCA potential, N = 200 for dipole-dipole potential) on a ring of length
L = N/ρ where ρ is the density. The particles diffuse with a diffusion coefficient D0 = 1. In addition, they interact
by a pair potential V (r). Two kinds of interactions are considered: a short-range WCA potential VWCA(r) and a
long-range dipole-dipole potential Vdip(r),

VWCA(r) =

{
4AWCA

(
1
r12 − 1

r6

)
r < 21/6

0 r > 21/6
, Vdip(r) =

Adip

r3
, (S123)

with AWCA = Adip = 1. In the case of the dipole-dipole interaction, we consider that the ring is a circle of radius
L/(2π) embedded in 2d space: the distance r between two particle is the distance between the points of the circles so
that the 1d force is the tangential component of the 2d force.

The time-step for the Brownian dynamics is set to ∆t = 2 · 10−4. Starting from random initial positions, we let
the system equilibrate during a time t0 = 104 before recording the observables. At each iteration, we check that
the particles are ordered and if they are not, we restart the simulation (< 1% of simulations in the worst case). To
regularize the diverging potentials at small distance, we ensure a maximum displacement of a particle during a time
iteration (0.1 units ; only a frequency ∼ 10−7 of the moves need this regularization). We average the results over
50000 simulations (WCA potential) or 2500 simulations (dipole-dipole potential).

The structure factor S(q) used in Fig. 4 of the article is computed by the two methods of Eq. (S89) (we check that
they are consistent). The graphics and the table of values are given in Fig. S1.
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