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Abstract 

The rheology of suspensions showing discontinuous shear thickening (DST) is well documented in conventional 

rheometer with rotating tools, but their study in capillary flow is still lacking. We present results obtained in a 

homemade capillary rheometer working in an imposed pressure regime. We show that the shape of the 

experimental curve giving the volume flow rate versus the wall stress in a capillary can be qualitatively 

reproduced from the curve       obtained in rotational geometry at imposed stress but instead of a sharp decrease 

of the volume flow rate observed at a critical stress, this transposition predicts a progressive decrease in flow 

rate. The Wyart-Cates theory is used to reproduce the stress-shear rate curve obtained in rotational geometry and 

then applied to predict the volume flow rate at imposed pressure. The theoretical curve predicts a total stop of the 

flow at high stress, whereas experimentally it remains constant. We propose a modification of the theory which, 

by taking into account the relaxation of the frictional contacts in the absence of shear rate, well predicts the high 

stress behavior. We also hypothesized that the DST transition propagates immediately inside the capillary, once 

the wall shear stress has reached its critical value:R=c, even if the internal shear stress (r<R) is below the 

critical one. In this way the whole experimental curve can be well reproduced by the modified W-C model.  
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Introduction 

The rheology of concentrated suspensions is quite complex since it can exhibit a broad diversity of behavior like 

a yield stress, shear thinning or shear thickening or both and even sudden jumps of viscosity. These different 

behaviors are related to structural changes when the applied stress is increased. Depending on the balance 

between hydrodynamic shear forces imposed by the applied stress and local interparticle forces (lubrication, Van 

der Waals, Debye-Huckel, hydration, entropic etc..) individual particles can gather into different types of 

aggregates whose shape and life time will depend both on the applied shear rate and on the local interactions 

between the particles. A common feature is the fact that the suspending fluid imprisoned inside these aggregates 

move as if it was a solid part of the aggregates, then increasing the effective solid volume fraction and so the 

viscosity of the suspension. Such an approach can describe several rheological behaviors of concentrated 

suspensions (Quemada and Berli 2002, Bossis and Brady,1989). In monodisperse suspensions of colloidal 

particles a sudden jump of viscosity during a ramp of stress was attributed to the transition from a low viscosity 

configuration made of a  stacking of sheets of particles sliding over each other to a disordered one (Hoffman 

1972). This transition is specific to monodisperse particles which can arrange in layers of hexagonally packed 

particles, thus increasing the average distance between sheared layers and lowering the viscosity compared to a 

disordered state. 

Nevertheless, the presence of a sudden jump of viscosity was also observed in suspensions of polydisperse 

suspensions of Latex particles (Laun et al. 1991) and it was proved, by neutron scattering (Laun et al. 1992; 

Bender and Wagner 1996) that there was no layered pattern before the transition. Also suspensions of particles 

of irregular shape like corn-starch (Fall et al. 2008) or acicular calcium carbonate (Egres and Wagner 2005) or 

gypsum (Neuville et al. 2012) show this jump of viscosity whereas their irregular shape prevents the formation 

of ordered sliding layers. This discontinuous shear thickening (DST) was studied mostly in conventional 

rotational rheometry coupled with different techniques like dichroism (d’Haene et al. 1993), magnetic resonance 

imaging MRI (Fall et al. 2010), shearing of photo-elastic beads (Bi et al. 2011) neutron scattering (Laun et al. 

1992; Bender and Wagner 1996) to obtain some information on the evolution of the structural properties during 

this transition. Both numerical simulations (Seto et al. 2013; Mari et al. 2014; Johnson et al. 2017; Singh et al. 

2018; Guy et al. 2020) and experiments have shown  that the onset of the transition was ruled by the competition 

between the shear forces and the repulsive forces which prevent the surfaces to come in contact and to 

experiment friction forces. For instance, by varying the pH in suspensions of silica or alumina at a constant salt 

concentration, Franks et al. (Franks et al. 2000) have shown that an increase of the magnitude of the repulsive 

force was correlated with an increase of the shear stress needed to obtain the transition. More recently (Clavaud 

et al. 2017), using a suspension of silica spheres in a rotating drum to measure the friction coefficient, it was 

shown that the DST could only be observe if the suspension was initially in a frictionless state. There is now a 

large consensus that, in order to experimentally observe a DST transition, the particles should initially be 

separated by a repulsive force and that this transition will occur when the shear forces dominate the repulsive 

ones allowing a frictional contact between the surfaces of the particles. It is the formation of a percolated 

network of particles in frictional contacts, as the ones observed in numerical simulations (Mari et al. 2014; 

Gameiro et al. 2020), able to support the stress through elastoplastic contacts, which explains the jump of 

viscosity (see for example reviews (Brown and Jaeger 2014; Denn et al. 2018; Morris 2020)). The correlation 
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between an increase of the normal force between particles and the one of the interparticle friction has been 

confirmed by AFM (Comtet et al. 2017; Hsu et al. 2018; Madraki et al. 2020). 

 

A model which explains qualitatively this rheological behavior was proposed by Wyart and Cates (W-C) (Wyart 

and Cates 2014) and is based on the idea that the volume fraction at which the viscosity diverges, depends on the 

imposed stress. In the W-C model, this process was characterized by a jamming fraction J() lower than the 

usual jamming fraction of a perfect hard sphere suspension at random close packing (RCP), 0, but higher than a 

volume fraction j

 able to mechanically support a stress without flowing: j


<j()<0. This last limit reached 

for     is not well defined since it depends on macroscopic properties like the stiffness of the boundaries or 

the anisotropy of the structure and of local properties like the particle friction coefficient, . At high friction 

(>1), a possible value for monodisperse spheres could be the loose random packing fraction  

    ~0.55-

0.56 (Jerkins et al. 2008; Singh et al. 2018). In this model, for volume fraction between j

 and 0, it exists a 

domain of stress above which the suspension cannot flow, called the shear jammed domain. On the other hand, 

for c << 

 where c is the volume fraction under which there is no DST transition, the DST transition takes 

place with a S-shape of the shear stress versus shear rate curve, followed at high enough stresses by a Newtonian 

regime when J() becomes constant (Bi et al. 2011; Singh et al. 2018). These predictions are quite well verified 

by numerical simulations, but large disagreements persist when the parameters of the W-C model obtained by 

numerical simulations are transposed to represent the experimental data (Lee et al. 2020) or with polydisperse 

suspensions (Guy et al. 2020). An improved version of the model where the breakdown of the percolated force 

chains are allowed in the shear jammed zone was recently proposed (Baumgarten and Kamrin 2019). Also, 

attempts to introduce adhesive contacts, responsible for the presence of a yield stress, with a similar approach as 

in the W-C model, will help to generalize this model to a larger class of suspensions (Singh et al. 2019; Richards 

et al. 2020). The aim of this work is to bring some experimental data which can help to progress in the prediction 

of the rheological behavior of these concentrated suspensions, in particular with new experiments obtained with 

capillary flows. Usually, experimental data on DST phenomena are obtained in conventional rotational 

rheometry and very few papers present results obtained in capillary rheometry. A comparison between a cone-

plate geometry and a capillary at imposed pressure on latex particles of diameter 0.3-0.4m, has shown an 

apparent critical shear rate about two times larger in capillary geometry (Laun et al. 1991) which was attributed 

to wall slip. Pressure gradient in a square microchannel with confocal microscopy was used to study the velocity 

and concentration profiles of PMMA spheres of diameter 2.6 m at =0.63; they found unexpected flow 

profiles, compared to yield stress fluids which were explained by taking into account the stress fluctuations (Isa 

et al. 2007). In situations of high confinements (R/a<30) a regime of oscillations of the flow rate was observed 

and explained by a local change of volume fraction associated with the permeation of the solvent through 

jammed domains (Isa et al. 2009). Recently, we have studied the flow of a concentrated magnetorheological 

suspension in a capillary at imposed flow rates (Bossis et al. 2020) showing that we recover the jamming 

transition but at a higher critical shear rate compared to conventional rheometry, both in the absence and 

presence of a magnetic field.  
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In the first section we shall present new experimental results for the flow of a suspension of magnetic particles in 

the regime of imposed pressure. The stress-shear rate curve obtained in conventional rheometry will be used to 

predict the volume flow rate at imposed pressure. The similarity between the predicted curve and the 

experimental one, despite the difference in flow geometry will be outlined but the reduction of the volume flow 

rate when the stress is increased is much more gradual than in experiments. In the second part we apply the W-C 

model to fit the experimental curve obtained in rotational rheometry and then we use it to predict the volume 

flow rate in the capillary configuration. As in rotational rheometry, the model predicts a total stop of the volume 

flow rate as the stress is increased contrary to what is observed experimentally. In the last section we propose a 

modification of the W-C model to explain the fact that the flow is not totally blocked above the transition, and 

we also show that it is necessary to consider a non-local rheology above the transition if we want to explain the 

abrupt transition observed in the capillary at imposed pressure.  

Materials and methods 

We are using suspensions of carbonyl iron particles, grade HQ, from BASF, supplied by Imhoff & Stahl Gmbh; 

their density is p=7.8g/cm
3
 and their average diameter d=2a=0.6m. They are suspended in a mixture of 85% 

ethylene-glycol and 15% water which is used to minimize the evaporation at room temperature. The viscosity of 

the suspending fluid is 0=0.011Pa.s. The additive used to prevent the aggregation between the particles is a 

plasticizer used in cement industry called Optima100 and sold by the company Chryso. The Reynold number 

based on the size of the particles is            . For a typical shear rate of 10 s
-1

 and the minimum viscosity 

of the suspension we have used: =1Pa.s, the particle Reynold number is of order 10
-8

, so inertial effects at the 

level of the particle are totally negligible in these suspensions. The sedimentation velocity of a particle   

          
 /9η is of order 0.01m/s so we can also neglect sedimentation effects in the capillary. Practically, 

all the commercial capillary rheometers impose the volumetric flow rate through the motion of a piston. In this 

case the DST transition results in a jump of pressure at a critical shear rate (Bossis et al. 2020) but more 

information on the physics of the transition can be obtained by driving the pressure since in this case, it is 

possible to observe the decrease of the shear rate and its subsequent behavior. For these experiments, we have 

used a homemade capillary rheometer described in Fig. (1).  
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Fig.1 Sketch of the equipment for capillary flow at imposed pressure. 

 

It is composed of a tank with a pressure regulating valve (MDG-3 from Seflid) and a piezoelectric manometer 

(LEO 2 from Serv’instrumentation; resolution 10
-3

 bar, maximum pressure 3 bars) connected to a 3-way ball 

valve (SS-43GXS4 from Swagelok). For the gas, we use dry compressed air. The vertical output of the 3-way 

valve is connected to the liquid tank in plexiglass, itself connected to the capillary through an interchangeable 

flange whose output is a part of the capillary. This part can be prolongated through a tube fitting union (for 

instance SS-400-6 for a tube of ¼ in external diameter) to easily change the length of the capillary. The third 

way of the valve is connected to a water vacuum pump through a 2-way valve and a vacuum manometer. The 

suspension is first pumped from a container placed on a balance (STX from Ohaus) into the liquid tank at a 

known negative pressure and the change of weight recorded each second. Then the path of the 3-way valve is 

turned towards the pressurized gas tank, which is regulated at a given pressure, for instance during 60s, then the 

pressure is changed to another value and so on until emptying of the liquid tank; the change of weight is 

recorded during this time for typically ten different pressures. The procedure can be repeated several times until 

enough different pressure points have been recorded. The internal diameter of the tank is 2.5cm and its height 

10cm. The radius of the capillary was R=1.5mm. The imposed pressure was corrected to consider the change of 

height of the column of fluid in the tank which was deduced from the change of mass. The mass flow rate Q(P) 

at a given pressure P, was obtained from the fit by a straight line of the mass versus time. The integration time of 

a mass measurement  was 1s, still we did not observe a decrease of flow rate at constant pressure which could 
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have been attributed to clogging effects at the entrance of the capillary as predicted for small values of R/a 

(Koivisto and Durian 2017)  since we have R/a~5000. The wall shear stress is related to the pressure by: 

     
 

  
 where L is the length of the capillary. In these experiments we have used two different lengths L= 36 

cm and L= 18cm of a stainless-steel tube for the capillary and there was no difference between the data recorded 

for these two lengths. 

On the other hand, the measurement of the viscosity was made with an imposed stress rheometer MCR 502 from 

Anton Paar. We used a cylindrical geometry with a small gap to minimize the change of shear rate inside the gap 

and to avoid particle migration.  

 

Experimental results. 

 

The rheograms are represented in Fig. 2 for three volume fractions: =0.6; =0.64; =0.65. For the two highest 

volume fractions, we have a strong signature of the DST transition with an abrupt decrease of the shear rate 

followed by strong oscillations around an average value which remains approximatively constant during the 

increase of stress. 

 

Fig.2 Rheograms in cylindrical Couette cell for three volume fractions: =0.6; =0.64; =0.65. The dashed 

black lines are a polynomial fit of the experimental curve. 

 

The behavior is different at =0.6 where the transition is still accompanied by oscillations of the shear rate but 

without a sudden decrease of its value. In a forthcoming paper focused on the rheology of MR suspensions at 

high volume fractions, we shall see that the volume fraction of 0.60 is approaching the one corresponding to the 

random loose packing of this suspension which is estimated to be rlp=0.58 whereas the close packing is 

0=0.681. The critical shear rate strongly decreases with the increase of volume fraction passing from 200s
-1

 at 
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=0.6 to 10 s
-1

 at =0.65 whereas the critical stress decreases slightly. Above rlp, the Wyart-Cates (W-C) 

model predicts that at high enough stress the suspension will be completely jammed and will stop. Actually, we 

rather observe, as many other authors (d’Haene et al. 1993; Laun 1994; Frith et al. 1996; Fagan and Zukoski 

1997; Fall et al. 2015; Hermes et al. 2016), that above the transition, the shear rate remains approximately 

constant whatever the value of the stress. In practice at high stresses, it ends up by an expulsion of the 

suspension in plate-plate or cone-plate geometry or by foaming in cylindrical Couette geometry. We shall come 

back to the analysis of the W-C model in the context of the capillary flow in the next sections. The results 

obtained in capillaries for the wall shear stress as a function of the volume flow rates are presented in the three 

following figures (Figs 3-5). On these figures we have also plotted the predicted curve obtained from the fitted 

curve of the experimental rheogram       (cf Fig. (2)) through the equation: 

          
 

 
        

   

  
    

  
 

         (1) 

This equation is always valid whatever the rheological law since it just comes from the definition of the volume 

flow rate as the integral from r =0 to r=R of the velocity field vz(r) and of the change of variable r=R.(r)/R, 

where R is the wall shear stress. 

 

Fig.3 Volume fraction =0.6. Red dots are the flow rates measured at different imposed pressures. The solid line 

is obtained from Eq. (1) with       given by the dashed curve of Fig. (2) for =0.6. 
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Fig.4 Volume fraction =0.64. Red dots are the flow rates measured at different imposed pressures. The solid 

line is obtained from Eq. (1) with       given by the dashed curve of Fig. (2) for =0.64. 

 

 

Fig.5 Volume fraction =0.65. Red dots are the flow rates measured at different imposed pressures. The solid 

line is obtained from Eq. (1) with       given by the dashed curve of Fig. (2) for =0.65. 
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The previous figures show that , qualitatively, the predicted result from the use of rheometry through Eq.(1) is in 

agreement with the experimental points showing a decrease of the flow rate above a critical flow rate whose 

value is nevertheless smaller than the experimental one for =0.64 and =0.65. At =0.60, where the 

rheometry does not show a sudden decrease of the shear rate (Fig. (2)), the predicted curve has the same aspect 

as the experimental one with a rounded part at the transition. This is quite different for =0.64 and =0.65 (Figs 

4 and 5) because the predicted curves do not reflect the sudden decrease of the flow rate 

 

We have seen that both in rotational rheometry and in capillary flow we have a sharp transition but that, if we 

introduce the experimental curve    (τ) obtained from rheometry in Eq. (1), the predicted transition for the 

capillary flow is a soft one; (cf. Figs. (4)-(5)). Still Eq.(1) is general and applies whatever the rheological law. 

We will see what the reason is for this contradiction in the last section, but first let us see how the W-C model 

applies to a capillary flow. 

 

Application of the Wyart-Cates model 

In the W-C model the volume fraction where the viscosity diverges, depends on the applied stress in the 

following way: 

                             (2) 

As explained in the introduction RLP can be approximated by the random loose packing which is 0.58 for our 

suspension and the frictionless packing is 0=0.681. The function f represents the proportion of frictional 

contacts in the suspension and increases from 0 to 1 while increasing the stress. Different expressions have been 

proposed for the function f; we shall take the following one (Guy et al. 2020): 

        )=   
 

  
 
 

 with τ*
=τ/τc  (3) 

The parameters  and q are taken to fit the experimental curve obtained in conventional rheometry and c is the 

critical stress at the transition. 

The viscosity and the shear rate dependence are given by the usual relation for concentrated suspensions, with 

the only difference that 0 has been replaced by J(). The yield stress in Eq. (4) is the dynamic yield stress of a 

Bingham law which fits quite well the beginning of the stress-shear rate curve:  

   τ  
    

      
                   



    
    (4) 
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Fig.6 Fit of the rheometric curve (blue solid line) by the Wyart-Cates model (solid black line). The shear rate for 

the results at imposed pressure (red squares) is deduced from the flow rate by:          ) 

 

The values of   and y are obtained from the fit by Eq. (4) of the first part of the curve for <c and   and q are 

obtained by the condition that the fitted curve should have a zero slope for 
   

  
 at the experimental turning point 

      . The result is represented in Fig. (6) by the solid black line with the following values: 

y= 19.4 Pa,  =0.02,  =1.29, q=6.08 

We see that the W-C model predicts a zero shear rate when the jamming fraction J() becomes equal to the 

actual value, , whereas as already pointed out, the experimental shear rate does not cancel and remains 

approximatively constant (solid blue line). It is also interesting to note that on this figure, the shear rate for the 

results at imposed pressure is the Newtonian shear rate             . This shear rate is not the real wall shear 

rate which is obtained by the derivative of Eq. (1): 

   =
 

   
   

      

   
         (5) 

The derivative of the volume flow rate relatively to the stress is not well defined experimentally, especially 

during the transition; this is the reason why we have decided to compare in Figs. (3-5), the wall stress versus 

volume flow rate rather than versus the shear rate. The quite large difference between the critical shear rate in 

conventional rheometry and in capillary flow in Fig. (6) is partly due to the use of the Newtonian shear rate 
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instead of the real one, and we can see in Fig. (4) that the agreement is better if we consider the volume flow rate 

instead of the Newtonian shear rate. 

Since, the Eq. (4) represents the W-C model for the function        in rotational rheometry, we can use this 

analytical equation in Eq.(1) to compare the prediction of this model with the experiment in the case of a 

capillary flow. This is the solid blue line in Fig. (7). 

 

Fig 7 Prediction of the stress versus flow rate in the frame of the W-C model. The experimental points for the 

capillary flow are the red dots at =0.64. 

 

As this model predicts a complete jamming above a given stress (m=233Pa for =0.64), the predicted volume 

flow rate will also progressively stop when the stress rises. In this model, since the stress remains low at the 

center of the capillary, the central part will continue to flow even if a solid zone has begun to form on the wall 

where the stress is larger than the jamming stress m. This zone will progressively extend towards the center until 

it fills all the section of the capillary when the flow stops. There are two striking differences between the 

prediction of the W-C model and the experiment. The first concerns the soft transition instead of the abrupt one 

and was expected since it was already observed with the fitted experimental rheometric curve that the W-C 

theory try to represent. The second is that the volume flow rate decreases towards zero while experimentally it 

remains constant above the transition.  

A possible reason for the soft transition could be related to shear induced migration which would gradually 

modify the volume fraction profile and could then be responsible for this behavior. Actually, shear induced 

migration above DST was  observed in a Couette cell of large gap by magnetic resonance imaging with 

cornstarch particles (Fall et al. 2010) so we have to analyze its possible role on the stress-volume flow rate curve. 
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In the appendix we develop an analysis of shear induced migration in the presence of aggregates based on the 

work of Mills and Snabre (Mills and Snabre 1995). The predicted effect of migration on the wall stress versus 

flow rate curve is shown to increase the volume flow rate between 50% and 100% at the vicinity of the critical 

stress compared to the experimental values which on the other hand, are well predicted in the absence of 

migration (cf Appendix, Fig 11). The lack of migration could be surprising at first glance given that it was 

observed with cornflake particles by magnetic resonance imaging in a large gap Couette cell where the shear rate 

is also inhomogeneous. In fact, our particles are more than an order of magnitude smaller and the diffusion 

coefficient being proportional to the square of the radius of the particles we expect a much smaller migration as 

long as the particles are not aggregated.  On the other hand, above the transition, in the presence of a percolated 

network of frictional contacts, the transverse motion of particles during the deformation and rearrangement of 

this network is probably a rarer event than when particles do not stick to each other. This analysis shows that 

shear induced migration can’t explain why the use of the rheometric data obtained in rotational geometry, as well 

as the W-C model based on these data, fail to reproduce the sharp change of volume flow rate in capillary flow. 

In the last section we will propose an explanation of this disagreement, but first we need to investigate why the 

volume flow rate does not stop above the transition as predicted by the W-C model.  

Modification of the W-C model to get a constant flow rate above the transition 

If the flow stops, we expect that the normal force will relax either through remaining Brownian motion or 

lubricated contacts still present in the percolated network or because the polymer molecules which were strained 

or removed from the surface by the local flow will come back to their initial position. In this case, the percolated 

structure will be momentaneously isotropized and destroyed, but the high applied stress will make the 

suspension to flow again and the cycle between arrested flow and flowing states will start again. This qualitative 

explanation is based on an equilibrium between forces which on one hand tend to destroy the percolated network 

of frictional contacts and on another hand to reinforce it. This approach is generally used to describe the 

evolution of a structural parameter like for instance, the sizes of the aggregates in the presence of shear and of 

attractive or Brownian forces and to predict the rheological law related to this structural parameter (Quemada 

and Berli 2002). In this kind of approach, the flowing state observed above the transition can be the result of an 

average of unstable flows which depends on the ratio between the measurement time and inertial time tm/tI. 

Another way to describe this phenomenon is to say that the structure at the jamming volume fraction J(f) 

(which is smaller than the RCP one, 0), can still deform and yield so, depending on the difference between the 

applied stress and the yield stress generated by the percolation of frictional contacts, the suspension can still flow 

through rupture and reformation of frictional bonds. In a recent paper (Baumgarten and Kamrin 2019), a similar 

reasoning was applied to the fraction, f, of frictional contacts (here defined by Eq. (3)). A constant shear rate in 

the limit of high stress was obtained thanks to the introduction of a “hardening function” H() scaling as 
3/2

. A 

simpler way to obtain a constant shear rate when the jamming fraction approaches the actual volume fraction is 

to introduce a divergence of the viscosity at a given non-zero shear rate. As already said, the fraction of frictional 

contact must tend to zero with time when the suspension no longer flows and that, whatever the value of the 

initial stress. Let us then write the fraction of frictional contact as: 

   (                      (6) 
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Here f(*) is the function already defined by Eq. (63) and L(x) is a function which tends to zero when x tends to 

zero and which saturates to unity like for instance the Langevin function: L(x)=coth(x)-1/x. The parameter tL is 

related to the relaxation time of the stress during the blockage phase: the larger, the closer we approach a 

complete stop of the flow. We call fjam the value of f for which we have J(fjam)=here using Eq. (2) and (3) 

give fjam=0.44 for =0.64). Since at high stresses        , the equation               will give the limiting 

shear rate,    , for which the viscosity       diverges; in our example for =0.64 and tL=0.18,              . 

Due to this divergence, the shear rate              
      approaches quickly its asymptote. We have added 

here the presence of a dynamic yield stress which is present in our case and the viscosity is the one given by Eq. 

(4) with f’ instead of f. The resulting curve is shown in Fig. (8) with the relaxation time tL=0.18s together with 

the original prediction of the W-C model. We see that this simple modification allows to well represent the 

experimental data.  

 

Fig.8 Comparison of the prediction of the W-C model (green line) with the modified value of f: Eq. (6) and 

tL=0.18s (red line). The solid blue line is the experimental result in Couette geometry at =0.64. 

 

As it is not the scope of this paper we did not try to reproduce the oscillations of the shear rate which can be 

obtained by including the inertia of the rotating part of the rheometer in the equation of motion of the tool 

(Bossis et al. 2017, 2019; Richards et al. 2019). We do not see any fluctuations of the flow rate at imposed 

pressure although they could appear due to the inertia of the fluid itself (Nakanishi et al. 2012) but the averaging 

time of 1s for the mass measurement is too large to observe them if any, because the inertia time:   =ρ      

,which rules the relaxation of a shear rate fluctuation, is typically smaller than 1ms in our experimental 

conditions. It should also be noted that, for the analytical curve   (τ) derived from the rotational rheometry data, 
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we have used an average value of the fluctuating shear rate, implicitly assuming that this average was the 

equilibrium curve in the absence of inertia and that it is the right value to introduce in Eq. (1) since, in the 

capillary flow, the inertia is negligible and its effect is not observed. Now that we have an equilibrium curve 

from the modified W-C model we could also use the theoretical curve   (τ) of fig. (8) instead of the fitted curve 

in Eq. (1) but the result would be very close from the one obtained with the fitted rheometric curve: there will be 

no sharp transition of the volume flow rate as observed experimentally. So, the modification of the W-C theory 

does not help to explain this discrepancy. 

On the other hand, Eq. (1) is always valid, but we have done the hypothesis that the rheological law inside the 

capillary was the same as in the cylindrical shear cell, or in other words that the law    (τ) fitted from the 

rheometry applies locally inside the capillary with          . This is not very realistic: as soon as the 

transition takes place close to the wall where the shear stress is maximum, the radial stress will provoke the 

propagation of the percolation towards the center of the cell. We can assume that above the transition, we 

suddenly move towards a regime where we have a uniform viscosity given by the modified W-C model. Said 

differently, the jamming volume fraction is the one at the wall J(R) and does not depend on the radial 

coordinate. Assuming a constant viscosity independent of the radial coordinate means that we have now in Eq. 

(1): 

      
 

      
              

   

  
       (7) 

Above the transition, even if the percolated structure extends to the center of the capillary, it is likely that the 

contact forces between the particles will be lower at the center and consequently that the viscosity will also be 

lower; nevertheless, as it can be seen in Fig. (9), this approximation represented by Eq. (7) well reflects the 

experimental behavior.  
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Fig.9 Different models used to predict the volume flow rate at imposed pressure. Solid black line: Eq. (1) with 

fitted value of        (cf. Fig. (2)). Green solid line: Eq. (7) with        from the modified W-C model. Blue solid 

line: Eq. (7) with the fitted values of          Red dots: experimental points at =0.64. 

 

The green curve is the result of Eq. (7) applied to the prediction of        by the W-C model modified with the 

help of Eq. (6) and the blue curve is the same Eq. (7) applied to        fitted from the rheometry cf. (Fig. (2)). 

Even if this approach is an “oversimplification”, the important point to underline is that the comparison between 

the data obtained in the capillary at imposed pressure and those obtained in Couette cell geometry can’t be 

explained above the transition without abandoning the hypothesis of a local rheology represented by the solid 

black line in Fig. (9). This point would be quite trivial for small value of R/a but here we have R/a ~5000 

proving the long-range effect of the transmission of normal forces above the DST transition.  

 

Conclusion 

We have presented new experiments based on capillary flow at imposed pressure of a suspension in the regime 

of discontinuous shear thickening. The rheological law       of the same suspension was measured in 

conventional rheometry using a cylindrical Couette cell. At high enough volume fraction, we well recover the 

DST transition in this capillary flow with a strong and abrupt decrease of the volume flow rate for a critical 

stress. The experimental curves Q(R) of the volume flow rate as a function of the wall stress were compared 

with the ones predicted using the rheological law from Eq. (1). The agreement was qualitative but did not reflect 
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the abrupt transition observed experimentally. A possible reason could have been the migration of particles 

towards the center, but an analysis of shear induced migration shows that it would give a volume flow rate much 

larger than the experimental one. The use of the Wyart-Cates model to predict the volume flow rate does not 

help and furthermore predicts a flow stop above the critical stress which is not observed experimentally. On the 

contrary, as in conventional rheometry for the shear rate, the volume flow rate remains approximatively constant 

when the stress is increased. It is possible to explain this behavior considering that, if the flow stops for a given 

stress, the absence of shear flow will allow to reactivate the interparticle repulsive forces and will lead to a 

deformation of the percolated structure and a new start of the flow. Allowing the fraction, f, of frictional contacts 

to cancel at low shear rate independently of the value of the applied stress (cf. Eq. (6)) allows us to well 

reproduce the zone of constant flow rate at high stress. The other discrepancy stands in the fact that, the use of 

the curve       obtained in a Couette cell to predict the one observed in the capillary shows a gradual decrease of 

the volume flow rate above the DST transition rather than the abrupt one observed experimentally. If we 

consider that, in the presence of a percolated network of contacts, the viscosity does not depend on the radial 

position  and is equal to the one on the wall: (R), (or in other words that the frictional network has extended 

over the entire section of the capillary), then it is possible to recover the volume flow rate obtained at imposed 

pressure from the rheometry in a Couette cell.  

Acknowledgment  

The authors want to thank the CENTRE NATIONAL D'ETUDES SPATIALES (CNES, the French Space 

Agency) for having supported this research 

Appendix: Effect of Shear induced migration on the volume flow rate 

 
Shear induced migration in a gradient of shear rate is related to the gradient of the number of collisions between 

particles since each collision induces a random transverse motion of order of magnitude a, relatively to the 

average velocity direction which induces a migration from the higher rate of collision domain (high   ) to the 

lower one. This migration was first observed by NMR in concentric cylinders (Abbott et al. 1991; Graham et al. 

1991; Chow et al. 1994) and in Poiseuille flow (Hampton et al. 1997). The shear induced diffusion coefficient is 

proportional to      with a coefficient which depends on the volume fraction and of the interparticle force but 

that remains usually smaller than unity for reasonable values of the range of roughness (Leighton and Acrivos 

1987; Da Cunha and Hinch 1996; Zarraga and Leighton Jr 2001) or of the interparticle forces (Meunier and 

Bossis 2008). In our case with an average radius of 0.3m the typical time for a migration of 1mm - the 

characteristic value of the radius of the capillary- would be    
 

  
 
 

 
 
 

       for a typical wall shear rate of 

10s
-1

. The time needed for the transfer of the suspension from the input to the output of the capillary is 

Ttr=R
2
L/Q then, with a radius of 1.5mm and the maximum length used of 36cm and a minimum flow rate of 

0.01cm
3
/s, we get Ttr=250s which is more than two orders of magnitude smaller than the migration time. 

Nevertheless, if below the transition we can neglect the migration, this not so obvious anymore above the 

transition since it is related to the formation of aggregates of particles in frictional contact which are supposed to 

percolate between the walls of the capillary. Instead of the radius of the particles which determines the transverse 

change of trajectory, it is rather a typical size of the aggregates, which means that now the migration time 
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becomes just proportional to      which in turns, is now much smaller than the transfer time of the suspension. 

Of course, this analysis is only indicative because the collision between big aggregates will mainly result in their 

deformation rather than in a global change of trajectory. As already underlined, the size of the aggregates formed 

during the transition can play a major role in shear induced migration. We shall use the work of P. Mills and P. 

Snabre (Mills and Snabre 1995) who have introduced in a simple way a correlation length ,, in order to estimate 

its influence on the migration. They obtain the following result for the volume fraction (r) in a circular 

capillary: 

   

       
  

 

 
 
  

     
     (8) 

Where   is the closed-packed volume fraction,R=(R) and L an exponent which is equal to 2 for 0<r< and 1 

for <r<R. The correlation length  is the one over which the stress is transmitted from one particle to the other 

inside a chain through frictional or lubricated contacts. The factor 2 comes from the integral of the stress along a 

chain of length . Note that the value L=1 gives a density profile with a cusp at the center (Phillips et al. 1992). 

In the frame of the W-C model Eq. (8) can be re-written as: 

   

 
  

 

 
 
 

 
    

    
     (9) 

With           
   

    
      (10) 

In Eq. (10) the jamming volume fraction now will depend on r since in the capillary the stress:(r)=R (r/R) 

varies from zero at the center to R on the wall so the jamming volume fraction will depend on r*=r/R : 

   
             

              (11) 

Combining Eq. (9) and (10) gives the variation of the volume fraction: 

        
 

       
 
  

  
 

   
  

     (12) 

Due to the divergence of the viscosity for         , the volume fraction in Eq. (12) remains bounded by 

    . The unknown in Eq. (12) is R the volume fraction at r=R. It is derived from the condition of recovering 

the average volume fraction: 

            
    

 

 
       (13) 

In Fig. (10) we have represented the volume fraction profile deduced from Eq. (12), (13) for four different 

stresses. These are equilibrium profiles when the migration is ended. For R=100 we are well below the critical 

stress and the maximum volume fraction at the center (r*=0) is equal to 0 and decreases almost linearly from 

the center to the wall. For R =200, even if we are slightly above the transition, the profile is rather the same as 

for R =100 except close to the wall where the volume fraction is slightly lower. The change is important at R 

=275 Pa and still more important at R =340, both values being above the jamming stress in the W-C model in 

the absence of migration. It is only at this last stress that the profile becomes blunted with, at the center of the 
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capillary the maximum volume fraction =0. This kind of profile was experimentally observed on suspensions 

of non-Brownian spheres with R/a ~40 at =0.55 by magnetic resonance imaging (Oh et al. 2015). 

 

 

Fig. (10)) Predicted volume fraction profiles (r*) for four different wall stresses: =100Pa, =200Pa, 

=275Pa, =340Pa at an average volume fraction of =0.64 

 

 

Fig. (11) Prediction of the stress versus flow rate in the frame of the W-C model. In blue without migration; in 
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green with an exponent 1<L<2 (cf. Eq. (8)) depending on the value of the stress; in red with L=2 whatever the 

value of the stress. The experimental points are the red dots at =0.64 

 

The wall stress versus volume flow rate for different profiles of volume fraction, including the case of a constant 

volume fraction already presented in Fig. (7) in the absence of migration, is represented in Fig. (11)). In the 

presence of migration we use, instead of Eq. (4), the following one:  

     τ   
       

      
                   

   

    
         

where r= r*R and (r ) the solution of Eqs.(12),(13).  

 

When the stress has exceeded the transition value, c, the jamming fraction J decreases with the stress until it 

reaches everywhere the local volume fraction (r) making the flow to stop due to the divergence of the 

viscosity. We have taken in Eq. (8) a value of the exponent L=1+fe(r
*
.R, q)) which changes from 1 to 2 with 

the value of the stress to consider the progressive increase of the correlation length,, with the stress. This 

correlation length is related to the presence of clusters of particles which transport the particles during their 

rotation on a length equivalent to the diameter of the cluster. Since, even in the absence of friction, the 

hydroclusters can also play this role, we can use L=2 also below the transition. In this case, we obtain the red 

curve which is still more different from the experimental results. It appears that, whatever the migration model, 

the increase in volume fraction at the center of the capillary will result in an important increase of the volume 

flow rate which is not compatible with the experimental data especially concerning the maximum volume flow 

rate. From this comparison between the models without and with migration and the experimental values we can 

conclude that we do not have migration. 
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