
HAL Id: hal-03445996
https://hal.science/hal-03445996

Submitted on 24 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constraining short-range spin-dependent forces with
polarized He 3

M. Guigue, D. Jullien, A. k. Petukhov, G. Pignol

To cite this version:
M. Guigue, D. Jullien, A. k. Petukhov, G. Pignol. Constraining short-range spin-dependent forces
with polarized He 3. Physical Review D, 2015, 92, pp.114001. �10.1103/PhysRevD.92.114001�. �hal-
03445996�

https://hal.science/hal-03445996
https://hal.archives-ouvertes.fr
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We have searched for a short-range spin-dependent interaction using the spin relaxation of
hyperpolarized 3He. Such a new interaction would be mediated by a hypothetical light scalar boson
with CP-violating couplings to the neutron. The walls of the 3He cell would generate a pseudomagnetic
field and induce an extra depolarization channel. We did not see any anomalous spin relaxation, and we
report the limit for interaction ranges λ between 1 and 100 μm, gsgpλ2 ≤ 2.6 × 10−28 m2 (95% C.L.),
where gsðgpÞ are the (pseudo)scalar coupling constant, improving the previous best limit by 1 order of
magnitude.
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I. INTRODUCTION

Theories beyond the Standard Model (SM) of particle
physics generically predict the existence of new particles.
They can broadly be divided into two categories, ultraviolet
and infrared modifications of the SM.
Concerning the ultraviolet category, new particles are

expected with masses above the electroweak scale of about
100 GeV. For example, grand unified theories are asso-
ciated with an energy scale as high as 1015 GeV. In the case
of supersymmetry and similar theories, new particles could
be discovered just above the electroweak scale. These
particles are still actively searched for in high energy
proton-proton collisions at the Large Hadron Collider.
Although it is perhaps too early to reach a definitive
conclusion, as a matter of fact, no evidence for the existence
of new physics in the TeV range has been reported by Run 1
of the LHC.
Alternatively, new physics could manifest itself in the

infrared, that is, at energies much below the electroweak scale
(see Ref. [1] for a review on the low energy frontier of particle
physics). In this case, one should look for weakly interacting
slim particles (WISPs), having masses below 1 eV.
Nambu–Goldstone scalar bosons, arising from the spon-

taneous breaking of a global symmetry, establish a well-
motivated theoretical case for WISPs. These bosons are
naturally predicted to be very light, even massless if the
symmetry is not explicitly broken. The prominent example
is the hypothetical QCD axion, the boson associated
with the global Uð1Þ Peccei–Quinn symmetry introduced
to solve the strong CP problem [2]. The QCD axion is
basically a one-parameter theory: its mass and couplings to
SM particles can be derived from a single symmetry
breaking scale parameter fa, which lies presumably
between 109 and 1012 GeV. One can imagine other

Nambu–Goldstone bosons with no specific relation
between the mass, symmetry breaking scale and the
couplings to SM particles, these bosons being referred to
as axionlike particles or ALPs. It is interesting to note that,
although ALPs induce new phenomena in the infrared
(because they are very light), they are associated with a
symmetry breaking at an energy scale well above the
electroweak scale, as is the case for the QCD axion.
Other than spin-0 ALPs, there can exist new light spin-1
bosons, arising from broken hidden Uð1Þ symmetries,
which do no decouple from SM particles even in the limit
of vanishing mass [3].
The existence of dark matter provides another motivation

to search for new light particles, since it turns out that WISPs
are suitable dark matter candidates [4,5]. Experiments
aiming at detecting WISPy dark matter, called haloscopes,
are very different from detectors searching for weakly
interacting massive particles. Instead of catching hits of
single particles, one needs to detect an oscillating field. For
example, ADMX [6] uses a resonant cavity to convert these
oscillations to microwave photons, provided the WISP
couples with the photon.
Regardless of the WISPs being the dark matter, astro-

physical objects like the Sun or supernovae could be a
sizable source of WISPs via thermal production. A too big
escape channel for WISPs would contradict the observed
time scale of the evolution of stars. This “energy loss”
argument provides stringent bounds on the coupling of
WISPs with SM particles [7]. Experiments such as CAST
[8] aim at detecting the flux of WISPs emitted by the Sun,
by converting them into x-ray photons in a so-called
helioscope.
It is desirable to design laboratory experiments to search

for WISPs that do not rely on a cosmological or astro-
physical source. Only the combination of independent
results can confirm or discard the existence of exotic
bosons. One type of laboratory experiments is light shining
through a wall (see Ref. [9] for a review) probing the
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WISP-photon coupling. Another type of experiments, to
probe the couplings to fermions, consists of searching for a
fifth force. The exchange of an exotic light boson between
two fermions induces a macroscopic force which is derived
from a Yukawa potential [10],

VðxÞ ¼ g2s
4π

ℏc
x
e−x=λ; ð1Þ

with gs the coupling constants of the boson to the fermions
at the interaction vertex and x the distance between the two
fermions. The interaction range λ is given by

λ ¼ ℏc
m0c2

; ð2Þ

with m0 the mass of the light boson. While the range of
the interaction induced by a heavy boson like the W
(mW ¼ 80 GeV) is as short as 10−15 m, a boson lighter
than 0.1 eV will generate macroscopic effects between
objects separated by 2 μm. Numerous experiments search-
ing for this fifth force have been realized for a wide range of
boson masses (see Ref. [11] for a review of this topic).
The potential (1) corresponds to the most simple version

with a scalar coupling gs to a fermion, resulting in a
monopole-monopole interaction. Now, in the presence of a
pseudoscalar coupling igpγ5, the interaction becomes spin
dependent and cannot be discovered by fifth force experi-
ments using macroscopic bodies. In this paper, we report on
a search for a spin-dependent interaction of the type

VðxÞ ¼ gsgp
nλℏ2

4m
σze−x=λ; ð3Þ

generated by a macroscopic source of unpolarized nucleons
with volumic density n acting on a polarized probe with
spin σz and mass m. The nucleons occupy an infinite thick
plate, and the probe is situated outside of the plate at a
distance x from the surface. The constant gs is the scalar
coupling of the source nucleon to the boson, and gp is the
pseudoscalar coupling constant between the probe and the
boson. The potential (3) corresponds to the sum of two
monopole-dipole potentials V9;10 presented in Dobrescu
and Mocioiu ’s classification [12].
As a practical realization, we considered a 3He polarized

gas contained in a glass cell. The source of the interaction
acting on the 3He spins is the nucleons in the walls of the
cell. The helium spins then probe a short-range pseudo-
magnetic field,

bðxÞ ¼ gsgp
λℏ
2mγ

e−x=λ; ð4Þ

with γ=2π ¼ 32.4 Hz=μT [13] the gyromagnetic ratio of
the 3He atoms. The motion of the spins in this pseudo-
magnetic field will induce an anomalous longitudinal

depolarization of the gas, in addition to the usual depo-
larization mechanisms. By studying the longitudinal relax-
ation rate of the 3He gas as a function of the applied
magnetic field, this effect can be separated from the other
standard contributions.
In the case of the QCD axion, when taking into account

the bound on the QCD CP-violating phase θ < 10−10

derived from the most recent measurement of the neutron
electric dipole moment (nEDM) [14], the product of the
coupling constants gsgp is predicted to be typically smaller
than 10−26 for a 1 μm range [10], which is more than 10
orders of magnitude below the current sensitivity. However,
in the generic case of ALPs, no such prediction exists.
In 2010, a preliminary experiment [15] performed at the

Institut Laue-Langevin (ILL) measured the depolarization
rate of a hyperpolarized 3He gas and set a competitive
constraint on the gsgp coupling. To improve our sensitivity,
we built a dedicated setup at the ILL. The enhancement of
sensitivity, as compared to other techniques, comes from
the very long relaxation time (several days under certain
conditions) of the polarized gas.
In Sec. II, we will review the theory of depolarization of

particles moving in an inhomogeneous field. The expres-
sion of the anomalous depolarization induced by the
pseudomagnetic field will be also derived. The experimen-
tal apparatus will be presented in details in Sec. III. Finally,
the results of data analysis and the obtained constraints will
be shown in Sec. IV.

II. THEORY OF STANDARD AND EXOTIC
SPIN RELAXATION OF 3He

We consider the case of an assembly of spin-1=2
particles with a gyromagnetic ratio γ contained in a glass
cell of volume V and immersed in a holding magnetic field
~B0 ¼ B0~ez. The magnetic inhomogeneities are quantified
by ~b ¼ ðbx; by; bzÞ. The Larmor precession frequency of
the spins is ω0 ¼ γB0. The cell walls of thickness d act as a
source of a pseudomagnetic field felt by a polarized
particle,

~baðxÞ ¼ bae−x=λ~ex; ð5Þ
orthogonal to the wall surface with ba ¼ gsgp

nλℏ
2mγð1 − e−d=λÞ. The distance between the wall and the polar-

ized particle is given by x. The density of nucleons in the
glass (typically 1.6 × 1030 nucleons=m3) is denoted n. The
field components which are transverse to the holding field
direction will induce a longitudinal relaxation of the
particles polarization. The contribution to the relaxation
induced by this short-range pseudomagnetic field (5) has a
very peticular dependence on the holding magnetic field
B0: in certain conditions, the relaxation rate is proportional
to 1=

ffiffiffiffiffiffi
B0

p
, as we will show later on. In fact, the other

depolarization channels one can expect behave as powers
of 1=B0. In this section, we will discuss the expected
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contributions to the depolarization. We will then use
Redfield’s theory of relaxation to calculate the relaxation
rate associated with the magnetic inhomogeneities and by
the sought short-range pseudomagnetic field.

A. Standard sources of relaxation

Since the 3He gas polarization P is much larger than the
polarization at the thermal equilibrium (Pðt ¼ 0Þ ≈ 70%),
the gas will depolarize as

PðtÞ ¼ Pðt ¼ 0Þ expð−Γ1tÞ; ð6Þ
with Γ1 the longitudinal relaxation rate. Three main
phenomena contribute to the relaxation: collisions with
the cell walls, collisions between 3He atoms and particles
motion in an inhomogeneous magnetic field. It is com-
monly known that the first contribution, quantified by Γw,
does not depend on the gas polarization, its pressure and the
holding field value [16,17]. The second contribution Γdd
depends on the frequency of atomic collisions and thus is
proportional to the pressure of the gas [18]. The last
contribution is denoted Γm and corresponds to a perturba-
tion of spins induced by their motion in an inhomogeneous
magnetic field. Each atom effectively sees a fluctuating
magnetic field, of which the transverse components fluc-
tuations at the Larmor frequency induce spins inversions.
This contribution has been discussed for decades in the
literature. The calculation of the corresponding rate is
presented in the next section.

B. Redfield theory and standard magnetic relaxation

To express the spin relaxation rate Γm of a polarized gas
in slightly inhomogeneous magnetic fields, the Redfield
theory [19] can be applied when the resulting relaxation
time T1 is much longer than the decay time of the magnetic
field correlation functions. This condition is satisfied for a
large variety of systems, such as a 3He polarized gas at
atmospheric pressure and immersed in a several μT
holding field.
The relaxation rate of the gas can then be expressed as

the Fourier transform of the transverse components corre-
lation functions at the Larmor frequency of the spins,

Γm ¼ 1

T1

¼ γ2
Z

∞

0

hbxð0ÞbxðτÞ þ byð0ÞbyðτÞi cosðiωτÞdτ:
ð7Þ

The ensemble average (over the articles in the cell) is
denoted h� � �i. The correlation function is the magnetic
components bi and bj are expressed as

hbið0ÞbjðτÞi ¼
1

V

Z
V
d~r0

Z
V
d~rbið~r0Þbjð~rÞπð~r; τj~r0Þ: ð8Þ

The function πð~r; τj~r0Þ corresponds to the conditional
probability (also called the propagator) for a particle, being

at τ ¼ 0 at ~r0, to be at τ at ~r. In a general way, πð~r; τj~r0Þ
satisfies the initial condition

πð~r; τ ¼ 0j~r0Þ ¼ δð~r − ~r0Þ ð9Þ

and the boundary condition

~∇πð~r; τj~r0Þ · ~n ¼ 0: ð10Þ

In the case of gases at several bars, the gas is in the
“diffusive regime,” and the propagator is governed by the
diffusion equation

∂π
∂τ ¼ DΔπ; ð11Þ

with D the diffusion coefficient of the gas. In the case of
3He gas at a pressure of 1 bar, D ≈ 1.84 cm2=s [20,21].
For gases in the diffusive regime immersed in holding

magnetic fields of several μT, there are several sources of
magnetic inhomogeneities. For a given cell filled with a
helium gas at a pressure p and a polarization P, the
magnetic inhomogeneities are the sum of three terms:

~b ¼ ~bext þ ~bcoilðB0Þ þ ~bcellðP; pÞ: ð12Þ

The term ~bext corresponds to magnetic inhomogeneities

induced by the apparatus environment, and ~bcoilðB0Þ
corresponds to the one created by the holding field
generator and so is proportional to B0. The last contribution
~bcellðP; pÞ is due to the fact that at high pressure and
polarization the 3He gas behaves as a magnet and generates
an inhomogeneous magnetic field proportional to p and P.
For an arbitrary geometry cell immersed in a magnetic

field with an arbitrary spatial profile, the relaxation rate can
be estimated [22] with the relation

Γm ¼ D
hð ~∇b⊥Þ2i

B2
0

; ð13Þ

where hð ~∇b⊥Þ2i corresponds to the average over the cell
volume of the squared transverse gradients. Using (12), we
can write the total longitudinal relaxation rate for a given
pressure as

Γ1 ¼ aþ b
B0

þ c
B2
0

þ dP
B0

þ eP
B2
0

þ fP2

B2
0

; ð14Þ

with a, b, c, d, e and f real coefficients. For a given pressure
in a given cell, the parameter a in (14) corresponds to the
sum of the relaxation rates induced by atomic Γdd and walls
Γw collisions, the spin-flip induced relaxation and the
magnetic depolarization generated by the solenoid gradients.
The third term c in (14) corresponds to the relaxation
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induced by the environmental magnetic inhomogeneities
~bext. The last term f in this equation corresponds to the
depolarization induced by the field gradient generated by the
polarized gas. The other coefficients b, d and e correspond to
interference terms of magnetic gradients which have very
different origins. For example, the coefficient b corresponds
to the average value of the product of the solenoid magnetic
gradients (which therefore depends on B0) and the magnetic
gradients induced by the environment (which does not
depend on B0). Coefficients a, c and f which have a clear
physical meaning will be discussed in details in Sec. IV B.

C. Relaxation rate induced by a short-range
spin-dependent interaction

If one assumes an exotic interaction (3) between the 3He
spins and the cell walls induced by a light boson, a new
depolarization channel will be added to the standard relax-
ation (14). For simplicity, let us consider a one-dimensional
problem: the source of the short-range pseudomagnetic field
(5) is a glass plane of surface S and thickness d, placed in
x ¼ 0. The polarized particles evolve at the right side of the
source for x positive. In this case, the constant ba corre-
sponds to the amplitude of the pseudomagnetic field (5)
generated by the wall felt by the probe particle,

ba ¼ gsgp
ℏnλ
2mγ

ð1 − e−d=λÞ; ð15Þ

with n the density of nucleons in the glass (typically
1.6 × 1030 nucleons=m3). In the case of a polarized gas at
atmospheric pressure and magnetic inhomogeneities larger
than the mean free path of the probe particles, the diffusion
equation (11) describes correctly the particle motion. The
particle propagator can be expressed as a continuous sum of
cosines,

πð~r; τj~r0Þ ¼
1

Sπ

Z
∞

−∞
dk cosðkxÞ cosðkx0Þe−τDk2 : ð16Þ

This expression assumes that the system is invariant under
translations along ~ey and ~ez. One can calculate the corre-
lation function hbð0ÞbðτÞi with b the pseudomagnetic
component orthogonal to the surface,

hbð0ÞbðτÞi¼ b2a
VπS

×
Z

∞

−∞
dk

�Z
S
dydz

Z
L

0

dxe−x=λcosðkxÞ
�

2

e−τDk2 ;

ð17Þ

where L is defined as the ratio V=S. The length L
corresponds to the characteristic distance between the walls
of the cell. If the interaction range λ is much smaller than L,
we can write

hbð0ÞbðτÞi ¼ b2aS
Vπ

Z
∞

−∞
dk

�
λ

1þ k2λ2

�
2

e−τDk2 : ð18Þ

The relaxation rate (7) induced by a wall acting as a
pseudomagnetic field source on a polarized particle is the
Fourier transform of the correlation function (18) at the
frequency ω0,

ΓNF ¼ γ2

2

b2aS
Vπ

Z
∞

0

dτ cosðω0τÞ
Z

∞

−∞
dk

�
λ

1þ k2λ2

�
2

e−τDk2

¼ ðγbaÞ2
S
V

λ3

2D
1

ð1þ ϕ2
λÞ2

×

 ffiffiffiffiffi
2

ϕλ

s
ð1 − ϕλðϕλ − 2ÞÞ þ ϕ2

λ − 3

!
; ð19Þ

with ϕλ ¼ ω0
λ2

D. The general solution of the one-dimension
case of a polarized gas in the diffusive regime contained
between two plates was treated in Ref. [15], using the
Redfield theory and a propagator expansion with sines
and cosines. Our result (19) is only valid in the limit
ω0L2=D ≫ 1.
In practice, polarized gases are contained in cubic,

cylindrical or spherical cells with a wall thickness d.
The longitudinal relaxation rate (19) can be adapted for
any shape of cell with a typical size L ¼ V=S, much larger
than the interaction range λ. With this assumption, one can
assume that the walls surface is flat: the relaxation rate
induced by a short-range field for a cell is proportional to
the calculated rate (19), valid for a flat surface. We can
define the apparent surface Sa, corresponding to the cell
surface which effectively contributes to the short-range
relaxation

Sa ¼
Z
S
dS½ð~ex · ~nÞ2 þ ð~ey · ~nÞ2�; ð20Þ

with ~n the unitary vector orthogonal to the surface. For
example, the apparent surface of a sphere with radius R
is 8πR2=3. Finally, the longitudinal relaxation rate of a
polarized gas contained in a cell with a volume V and a
typical size L larger than λ can be written, using the
apparent surface Sa, as

ΓNF ¼ ðγbaÞ2
Sa
V

λ3

2D
1

ð1þ ϕ2
λÞ2

×

 ffiffiffiffiffi
2

ϕλ

s
ð1 − ϕλðϕλ − 2ÞÞ þ ϕ2

λ − 3

!
: ð21Þ

In the case of a scalar-pseudoscalar interaction between a
3He polarized gas and the nucleons in the cell walls, the
relaxation rate is thus proportional to ðgsgpÞ2. Moreover,
for ϕλ ≪ 1 ≪ ω0L2=D, Eq. (22) simplifies into
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ΓNF ¼ ðγbaÞ2
Sa
2V

ffiffiffiffiffiffiffiffiffi
2λ2

Dω0

s
; ð22Þ

which is valid for any shape of cell. In this regime, the
behavior of the relaxation rate with respect to the holding
field is very different from what could be expected (14).
From Eq. (22) immediately follows that the behavior of the
relaxations due to short-range forces in spherical and cubic
cells are exactly the same since the factor Sa=V is equal to
2=R for a sphere with a radius R and 4=s for a cube with s
the length of its edge.
The search of an exotic short-range interaction can be

performed using polarized 3He by measuring the relaxation
of the gas as a function of the holding field and the
polarization. If a deviation of the behavior of this rate is
observed and corresponds to the induced short-range
contribution (22), the existence of a new boson will be
revealed.

III. EXPERIMENTAL SETUP AND PROCEDURE

The experimental method is rather straightforward in
principle; it simply consists of measuring the relaxation rate
of 3He cells for different values of the holding magnetic
field (and also for different values of the polarization of
the cell). To polarize cells we have used the “Tyrex”
Metastability Exchange Optical Pumping (MEOP) instal-
lation, described in details elsewhere [23]. The installation
can provide up to 4 bars of polarized 3He in a valved glass
cell, at an initial polarization of up to 75%. The cell is then
transferred to the apparatus dedicated to the measurement
of the decay of the polarization, situated in the same
building at the ILL. This apparatus is designed to operate a
large range of possible holding magnetic fields B0 ranging
from 3 to 300 μT. In this section we present in detail
the setup.

A. Magnetic environment

To decrease the magnetic depolarization contributions,
the measurement of the gas polarization is performed in a
very well-controlled magnetic environment. This apparatus
is composed of a cylindrical mumetal magnetic shield and a
solenoid.
A part of the mumetal tube, formerly used for the

neutron-antineutron oscillations experiment at the ILL
[24], was refurbished. This large tube [25] (1 m diameter,
4.5 m long and 0.8 mm thick) acts as a magnetic screen to
shield the ambient magnetic field.
The 5 m long and 80 cm diameter solenoid is composed

of 2363 spires around a 5 mm aluminum tube. It was
installed inside the magnetic shield to provide a tunable,
stable and homogeneous magnetic field in a large enough
volume. Figure 1 shows the solenoid and the magnetic
shield. For 1 A circulating current, the longitudinal mag-
netic field generated in the center of the solenoid is 590 μT.

We performed several field maps (in a volume of
20 × 20 × 20 cm3) using a three-axis fluxgate magnetom-
eter for various values of the holding field B0. The maps
were analyzed with a second-order 3D polynomial fit to
extract the value of the transverse gradients g⊥. The results
are presented in Table I: typically, g⊥ is about 2.4 to
4.2 nT=cm for a magnetic field from 2 to 80 μT. These
weak magnetic gradients will give very long relaxation
times T1: a calculation from Eq. (13) gives times longer
than 110 h for magnetic fields higher than 2 μT. Our
magnetic apparatus can therefore be used to maintain 3He
cells polarized for several days.

B. Direct polarimetry

The spin relaxation rate is extracted by periodically
measuring the polarization of a 3He cell. We chose to use a
direct polarimetry technique, first presented by Cohen
Tannoudji [26]. It consists of recording the magnetic field
generated by the magnetized cell itself, which is propor-
tional to the polarization P. This is possible using com-
mercial magnetometers since a fully polarized cell filled
with 1 atm of 3He generates a dipolar field of tens of nT.
Two Bartington low noise fluxgate magnetometers are

placed where the dipolar field induced by the polarized gas
is transverse relative to the B0 field, as represented on
Fig. 2. This configuration with two fluxgates allows one to

FIG. 1 (color online). Solenoid inserted into the mumetal
magnetic shield.

TABLE I. Results of the magnetic field mapping. The relax-
ation rates are calculated for a spherical 5 cm radius cell filled
with 1 bar of 3He.

B0 (μT)
ffiffiffiffiffiffi
g2⊥

p
(nT/cm) Γ1m;calculated (h−1)

2.05 2.42 9.2 × 10−3

10.47 2.47 3.7 × 10−4

21.20 2.63 1.0 × 10−4

83.81 4.21 1.7 × 10−5
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compensate for the random fluctuations of the environ-
mental transverse fields by taking the difference between
the two magnetometer readings, as the dipolar fields
created by the polarized 3He gas at positions 1 and 2
are opposite. The performances of the setup in terms of the
time stability are quantified by the Allan Standard
Deviation shown in Fig. 3 for a holding field value of
80 μT: the difference reduces the long-time correlated
fluctuations of the two fluxgates.
Applying spin flips with a transverse oscillating mag-

netic field to reverse the polarization, one can remove all
magnetic contributions which are independent of the gas
polarization, such as fluxgates offsets or a misalignment
of the magnetometers’ axes with B0. This well-known
technique, called “adiabatic fast passage” [27], requires a
spin-flip coil and a RC circuit resonating at the Larmor
frequency, corresponding to a 80 μT holding field.

An extension of this method to spin-flip polarized 3He
confined in a cell may be found in Ref. [28]. Our spin-flip
coil is a solenoid of 50 cm long and 25 cm diameter with 50
turns of copper wires. Eleven additional turns at each end
allow us to have a more homogeneous magnetic field in the
spin-flip coil. The total resistance of the device is
21.8 Ohms. The spin-flip signal we used is an oscillating
magnetic field bSF directed orthogonally to the main
field B0. During the spin-flip signal, the frequency of this
signal is swept through the Larmor frequency
f0 ¼ γB0=2π ≈ 2.6 kHz, and the signal envelop is modu-
lated using a fourth-order polynomial shape,

B1ðtÞ ¼ B1;max

�
2t
τSF

�
2
�
2 −

2t
τSF

�
2

; ð23Þ

with τSF the duration of the spin flip (in our case,
τSF ¼ 100 ms). The frequency-sweep range is equal to
the spin Larmor frequency. This signal is generated by an
NI-PCI6251 Multifunction Acquisition Card with an ampli-
tude of 5.5 V. A voltage amplifier with a gain of 1.86
generates the oscillating current in the resonating circuit. To
avoid maser effects which correspond to a strong coupling
between the highly polarized gas and the spin-flip circuit
[29], we used a rather low quality factor (Q ¼ 0.989) and
inserted in the resonating circuit a pair of diodes with low
threshold (≈0.4 V) which decouples the spin-flip coil from
the rest of the circuit between the spin-flip signals. Figure 4
presents a scheme of the spin-flip electronic device.
A polarization measurement sequence consists therefore

of measuring the transverse magnetic field bð↑Þ with the
two fluxgates during 1 s, applying a spin flip, measuring
twice the magnetic field bð↓Þ, applying a second spin flip
and measuring the magnetic field bð↑Þ (þ − −þ
sequence). Figure 5 shows typical sequences of þ − −þ
measurements of the magnetic field induced by a spherical
cell at 1 bar with the two magnetometers. The difference
between the four measurements allows us to access directly
to the magnetic field generated by the cell gas. Since this
magnetic field is proportional to the gas polarization, one
can deduce the polarization value at any time if given the

FIG. 2 (color online). Scheme of the spin-flipping and meas-
urement apparatus. The spherical cell is positioned in contact
with the two magnetometers inside the spin-flip coil which
generates an oscillating magnetic field bSF transversely to the
holding magnetic field B0.

1 10 210 310 410
-210

-110

1

10

X,1
Fluxgate 1, b

Y,1
Fluxgate 1, b

X,2
Fluxgate 2, b

Y,2
Fluxgate 2, b

/2X,2-bX,1b
/2Y,2-bY,1b

A
lla

n 
S

ta
nd

ar
d 

D
ev

ia
tio

n 
[n

T
]

Time [s]

FIG. 3 (color online). Allan Standard Deviation (ASD) of the
magnetic components transverse to the holding field direction for
B0 ¼ 80 μT. The dashed lines correspond to the X component
and the continuous lines to the Y component (X and Y are two
directions orthogonal to B0). In black, the ASD of fluxgate 1; in
red, the ASD of fluxgate 2; in blue, the difference between the
two fluxgates divided by 2.

FIG. 4 (color online). Scheme of the spin-flip electronic device.
It includes a NI-PCI6251 Multifunction Acquisition Card, an
amplifier, a pair of diodes, a resistor, the spin-flip coil and a
capacitor.
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initial polarization value. The polarization is expressed in
nT; for example, a 5 cm radius spherical cell filled with
1 bar 70%-polarized gas cell generates a 30 nT magnetic
field which is measured by the magnetometers at the glass
surface. The statistical precision of one polarization meas-
urement sequence, described above, is 0.16 nT. Repeating
eight times this sequence will give a 60 pT precision and
thus a signal to noise ratio of about 1000.
To determine the loss of polarization induced by a spin

flip, we measured the loss of polarization induced by a large
number of spin flips (about 104) during a short period (1 h).
We conclude that each spin flip induces a loss of polarization
of 3 × 10−6. No dependence of these losses with the pressure
or the polarization of the gas has been observed.

C. Structure of a measurement run

In the experiment, we measure the relaxation rate of
spin-polarized 3He gas as a function of the strength of the
applied holding magnetic field B0. In a given holding field
value, the polarization measurement is done every 20 min.
When the polarization relative loss is sufficient to precisely
estimate the relaxation rate (≈10%), a new cycle begins,
and the holding field value is changed. This procedure is
repeated for holding fields between 3 and 90 μT: eight
cycles correspond to a set of measurement. These sets are
repeated until the polarization reaches a few nT. The
combination of all the measured sets of one cell is called
a run. The upper plot on Fig. 6 gives the result of Run 32
for a spherical cell, named “Axion01” of 6 cm radius filled
with 1 bar of 70%-polarized 3He. This cell possesses 3 mm
thick aluminosilicate walls with a caesium coating and a
cylindrical appendix, used to fill the cell with the helium
gas. The typical relaxation time induced by the walls of this
cell is about 400 h (see Sec. IV B 1). Because of this long
T1, a run using this cell lasts typically between 2 and 3
weeks. A smaller cell named CCT12 was also used for this
experiment.

IV. ANALYSIS AND RESULTS

Runs have been performed for different spherical cells at
different pressures. These characteristics are presented in
Table II. For each run, the polarization as a function of time
and holding field value is measured. Next, the gas relax-
ation is studied in order to find a deviation from the
expected behavior (14).
In this section, the reconstruction method of the polari-

zation as a function of time is presented. The extraction of
the relaxation parameters for every run and the constraint
on scalar-pseudoscalar coupling constants are then dis-
cussed in details.

A. Analysis procedure

At any time, for a given polarization value and magnetic
field, the expected standard relaxation rate Γ1ðP;B0Þ is
given by Eq. (14). If a new interaction between two
nucleons mediated by a pseudoscalar boson exists, a
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FIG. 5. Typical sequence of measurement of the transverse
magnetic field generated by a cylindrical cell at 4 bars with two
fluxgate magnetometers. The upper (lower) points correspond to
the spin-up (-down) state of the gas.
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FIG. 6 (color online). Result of the χ2 minimization method for
Run 32. Up: the raw data (in black) and the best fit (in red) as a
function of time and the holding field. The blue curve corre-
sponds to the holding magnetic field value as a function of time.
Down: residuals between the data and the polarization
reconstruction. The red points correspond to the last measure-
ment point of each T1 measurement.
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new depolarization channel (22) will add to the standard
one. Therefore, the analysis procedure consists of recon-
structing the polarization evolution as a function of time
and holding field for a given boson mass or interaction
range and compare it with the data. In the case of a
polarization evolving slowly compared with the time
between two polarization measurements, this step-by-step
reconstruction is given by

Pmod
iþ1 ¼ Pmod

i exp ð−Γ1ðPmod
i ; BiÞ × ðtiþ1 − tiÞÞ; ð24Þ

where Pmod
i denotes to the polarization at the time ti.

First, only standard contributions to the relaxation rate
(14) are taken into account. For a given set of parameters
fa;…; f; P0g with P0 the initial polarization value
(expressed in nT), the polarization reconstruction can be
compared with the obtained measurements, using a χ2

method. The minimization of such a quantity gives the most
likely set of parameters. The result of this method is shown
on Fig. 6. For each run, this reconstruction and analysis
procedure is applied; plots analogue to Fig. 6 representing
the raw data and the best fit are presented in the
Supplemental Material [30]. Since the reduced χ2 is close
to 1, we can conclude no deviation in the data is observed;
the standard contributions given by (14) explain the
observed evolution of the polarization of each run.

B. Behavior of the fit parameters

For every run presented in Table II, we extracted the
parameters of the standard depolarization (14) in the
Axion01 cell for the different values of pressure. Among
them, the parameters a, c and f have explicit physical
meanings. Let us present their behavior with respect to the
pressure.

1. Atomic and walls collisions depolarization

For a given pressure in a given cell, the a parameter in
(14) corresponds to the sum of atomic Γdd and walls Γw
collisions relaxations, the spin-flip induced relaxation and

the magnetic depolarization generated by the solenoid
gradients. The first contribution is proportional to the
pressure. The depolarization induced by the spin flips
(typically 6 × 10−6 h−1) is independent of the gas polari-
zation and the holding field value and contributes weakly to
the parameter a compared with the atomic and walls
collisions depolarization. The last contribution is inversely
proportional to the pressure, but it is also expected to be
very small compared with the two first ones.
Figure 7 presents the parameters a obtained in Runs 32,

33, 36, 37 and 39 as a function of the pressure in the
Axion01 cell. A linear fit was performed in order to extract
the relaxation times induced by the atomic and walls
collisions. The measured atomic collisions relaxation time
is 400 h for 1 bar of 3He gas. A theoretical calculation of
this contribution for gaseous 3He predicts a lifetime of
798 h · bar [18]. This value does not correspond to the one
extracted from our measurements. However, the presence
of a few ppm of contaminants such as oxygen in the helium
gas can explain this difference. Indeed, collisions between
oxygen and helium can cause a new source of polarization
relaxation with the same dependence on the pressure as He-
He collisions depolarization.
Notice that the statistical error due to the measurement

procedure is smaller than the point size on Fig. 7, while the
data points present a significant spread. This can be
understood taking into account that each measurement at
a new pressure value required a new run of the Tyrex filling
station to prepare a new filling with polarized gas. This
complex procedure cannot guarantee the same T1 due to the
unavoidable contamination during the gas compression
from mbar (the pressure at which the gas is optically
polarized in Tyrex) to the desired pressure in a few bar
range.
The walls induce a depolarization time of 460 h for the

Axion01 cell. This long time is due to the high quality of
the rubidium coating on the cell surface; an improvement of
the walls quality by a factor of 2 will no longer make walls
collisions relaxation a limiting contribution.

TABLE II. Main characteristics of the nine runs obtained with
the apparatus. The value of the indicated initial polarization was
measured on the Tyrex installation using an optical method [23].

Run Cell
Radius
(cm)

Pressure
(bar) Coating

Initial
polarization

32 Axion01 6 1 Caesium 70%
33 Axion01 6 4 Caesium 70%
34 CCT12 4 4 Rubidium 70%
35 CCT12 4 1 Rubidium 70%
36 Axion01 6 2 Rubidium 70%
37 Axion01 6 3 Rubidium 70%
38 BufferAspec 6 1 None 70%
39 Axion01 6 0.3 Rubidium 70%
41 Axion01 6 3 Rubidium 70%
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FIG. 7. Parameter a in (14) as a function of the pressure in the
Axion01 cell.
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2. Environment magnetic gradients depolarization

The third term c=B2
0 in (14) corresponds to relaxation

induced by the environmental magnetic inhomogeneities
~bext. Figure 8 presents the transverse gradients

ffiffiffiffiffiffiffiffiffi
hg2⊥i

p
extracted from c using (13) as a function of the pressure for
the Axion01 cell. The relative external magnetic gradients
are typically smaller than 10−3 cm−1, which corresponds to
a relaxation time of 100 h at 3 μT. The difference of a few
nT/cm between the mapping results presented in Table I
and this gradients extraction is mainly due to the addition of
material surrounding the cell, such as the spin-flip coil
support.

3. Gaseous magnetic gradients depolarization

The relaxation rate (14) contains contributions which
depend on the gas polarization P. The last term in this

equation corresponds to the depolarization induced by the
cell gradients. Figure 9 presents the equivalent transverse
gradients

ffiffiffiffiffiffiffiffiffi
hg2⊥i

p
generated by a 100%-polarized gas using

(13) as a function of the pressure in the cell. The magnetic
gradients generated by 1 bar gas inside the Axion01 cell are
about 13 nT=cm. These gradients limit the sensitivity of
our experiment at a low magnetic field and high polariza-
tion. To improve the gradients generated by the gas
polarization and improve the sensitivity of the method at
high polarization, a dedicated study has been initiated.

C. Extraction of constraints on a
new interaction

To confirm the absence of a new short-range spin-
dependent force which is derived from (3), a Bayesian
approach is employed to extract the a posteriori probability
density function of the parameters λ and gsgp. The relaxation
rate induced by a short-range interaction is added to the
standard depolarization contributions. The likelihood func-
tion Lðdataja;…; f; P0; λ; gsgpÞ is built, assuming a
Gaussian distribution of the data around the reconstruction
model. Considering flat priors, the probability density
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FIG. 8 (color online). Magnetic fields gradients extracted from
the runs involving the Axion01 cell as a function of the pressure,
corresponding to the parameter c in (14). The blue line corre-
sponds to the gradient induced by the magnetic environment
extracted from the magnetic maps.
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FIG. 9 (color online). Gaseous magnetic fields gradients
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and the CCT12 cell (red squares) as a function of the pressure,
corresponding to the parameter f in (14).

TABLE III. Constraints on gsgp obtained with the nine runs.
These constraints are valid for ranges between 1 and 100 μm.

Run Cell gsgpλ (m2Þ (95% C.L.)

32 Axion 01 @ 1 bar 11 × 10−28

33 Axion 01 @ 4 bars 6.7 × 10−28

34 CCT12 @ 4 bars 21 × 10−28

35 CCT12 @1 bar 11 × 10−28

36 Axion 01 @ 2 bars 11 × 10−28

37 Axion 01 @ 3 bars 5.0 × 10−28

38 BufferAspec @ 1 bar 60 × 10−28

39 Axion 01 @ 0.3 bars 11 × 10−28

41 Axion 01 @ 3 bars 4.4 × 10−28
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FIG. 10 (color online). A posteriori density function of the gsgp
parameter for λ ¼ 13 μm obtained from Run 32. The integral to
the left of the vertical red line corresponds to a 95% confidence
level.
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function pðλ; gsgpjdataÞ is obtained by marginalizing the
likelihood function over the nuisance parameters a;…; f
and P0 and normalizing it to 1. For each range value λ
between 1 and 100 μm, the a posteriori function is con-
structed as represented on Fig. 10. The maximum of this
function is for gsgp ¼ 0, which confirms that there is no
evidence of a short-range interaction for the considered
range of λ. To extract an upper limit on gsgp for each λ with
95% C.L., an integration of the density function is per-
formed. The upper limit gsgp;lim is defined by

Z
gsgp;lim

0

pðλ; gsgpjdataÞdgsgp ¼ 95%: ð25Þ

Using Eq. (22) and the data obtained with Run 32, we put a
constraint on the product gsgpλ2 for ranges λ between 1
and 100 μm:

gsgpλ2 ≤ 1.1 × 10−27 m2 ð95% C:L:Þ: ð26Þ

For each run presented in Table II, this analysis pro-
cedure is applied, and no evidence of an exotic depolari-
zation channel has been observed. Table III presents the
constraints obtained on gsgpλ2 for each run. A combination
of these limits allows us to set a better constraint on the gsgp
product

gsgpλ2 ≤ 2.6 × 10−28 m2 ð95% C:L:Þ: ð27Þ
Figure 11 shows this constraint for ranges between 1
and 100 μm.

V. CONCLUSION

Measuring 3He hyperpolarized gas relaxation as a
function of the holding field is a sensitive method to
search for short-range spin-dependent exotic interactions.
To fully explore the potential of such a technique, a
dedicated experimental setup was built with a particular
effort on the reduction of magnetic inhomogeneities and
the improvement of the polarization measurement. A more
stringent constraint on the scalar-pseudoscalar coupling of
an exotic boson to nucleons has been extracted from these
measurements. Compared with the 2010 experiment [15],
a factor 20 of improvement in terms of sensitivity has been
obtained.
A significant improvement of more than 1 order of

magnitude in sensitivity on gsgp (corresponding to 2
orders of magnitude in terms of relaxation rate measure-
ment) seems quite difficult to achieve, even in a better
magnetic shield. Since our sensitivity is limited by the
magnetic gradients generated by the polarized gas, sig-
nificant efforts must be done in understanding the origin
of the gas self-relaxation in order to overcome this
limiting obstacle.
The obtained limit is better by a factor 8 than the

previous best constraint obtained by the nEDM apparatus
[36] and a factor 20 compared with the previous experiment
performed in 2010 at ILL measuring 3He longitudinal
relaxation [15].
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