
HAL Id: hal-03445983
https://hal.science/hal-03445983v1

Submitted on 17 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Positive measure of effective quasi-periodic motion near
a Diophantine torus

Abed Bounemoura, Gerard Farré

To cite this version:
Abed Bounemoura, Gerard Farré. Positive measure of effective quasi-periodic motion near a Dio-
phantine torus. Annales Henri Poincaré, 2023, 24 (9), pp.3289-3304. �10.1007/s00023-023-01302-4�.
�hal-03445983�

https://hal.science/hal-03445983v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr
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Positive Measure of Effective Quasi-Periodic
Motion Near a Diophantine Torus

Abed Bounemoura and Gerard Farré

Abstract. It was conjectured by Herman that an analytic Lagrangian Dio-
phantine quasi-periodic torus T0, invariant by a real-analytic Hamiltonian
system, is always accumulated by a set of positive Lebesgue measure of
other Lagrangian Diophantine quasi-periodic invariant tori. While the
conjecture is still open, we will prove the following weaker statement:
there exists an open set of positive measure (in fact, the relative mea-
sure of the complement is exponentially small) around T0 such that the
motion of all initial conditions in this set is “effectively” quasi-periodic
in the sense that they are close to being quasi-periodic for an interval of
time, which is doubly exponentially long with respect to the inverse of
the distance to T0. This open set can be thought of as a neighborhood
of a hypothetical invariant set of Lagrangian Diophantine quasi-periodic
tori, which may or may not exist.

1. Introduction

We will be considering the dynamics in a neighborhood of an analytic La-
grangian Diophantine quasi-periodic torus T0 (DQP torus for short) invariant
by a real-analytic Hamiltonian system. It is well known that without loss of
generality, one may consider a real-analytic Hamiltonian H : T

d × U → R,
with T

d := R
d/Zd and U ⊂ R

d an open set containing the origin (d ≥ 2 is an
integer), of the form

H(θ, I) = ω · I + O(|I|2) (1.1)

where ω ∈ R
d satisfies a Diophantine condition with exponent τ ≥ d − 1 and

constant γ > 0 (in short, ω ∈ DC(τ, γ)): for all k = (k1, . . . , kd) ∈ Z
d\{0},

|ω · k| ≥ γ|k|−τ , |k| := |k1| + · · · + |kd|.
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Without loss of generality, we assume |ω| = 1. A fundamental object in the
study of the dynamics near T0 = T

d × {0} is the so-called Birkhoff normal
form ([2], see also [7] for a more recent treatment). For any m ∈ N, m ≥ 2,
there exists a polynomial Nm(I) = ω · I +O(|I|2) of degree m and an analytic
symplectic transformation Ψm(θ, I) = (θ + O(|I|), I + O(|I|2)) such that

H ◦ Ψm(θ, I) = Nm(I) + O(|I|m+1). (1.2)

Moreover, these constructions have a formal limit as m → +∞; there exists
a formal power series N and a formal symplectic transformation Ψ such that
formally

H ◦ Ψ(θ, I) = N(I).

The formal power series N is unique and is called the Birkhoff normal form
(BNF for short, the formal mapping Ψ is also unique upon normalization),
and it was proved recently by Krikorian that generically it is divergent ([14],
the corresponding statement for the transformation was proved much earlier
by Siegel in [23]). Yet the existence of the truncated BNF Nm for any m ≥ 2
has several consequences.

Without further assumptions, given r > 0 small enough, choosing an
“optimal” order of truncation m = m(r) (Poincaré “summation to the least
term”), on a neighborhood of size r around the origin, the remainder in (1.2)
O(|I|m+1) can be made exponentially small with respect to (1/r)a where a =
1/(τ + 1), leading to the following estimates for all solutions (θ(t), I(t)) with
initial conditions (θ0, I0) with |I0| < r: there exist positive constants C and c
independent of r and a vector ω(I0) ∈ R

d with |ω(I0) − ω| ≤ Cr such that

|θ(t) − θ0 − tω(I0)| ≤ Cr, |I(t) − I0| ≤ Cr2 for |t| ≤ exp(cr−a).
(1.3)

We refer to the general theorem contained in [11] and references therein
for earlier results (the elementary fact that one can also control the evolution
of the angles was pointed out in [19]). Those estimates (1.3) can be understood
as an effective stability of the quasi-periodic motion for an exponentially long
interval of time. In general, those estimates cannot be improved: it follows
from a recent construction of an unstable DQP torus in [9] that the action
variables cannot be stable for a longer interval of time, but stronger results
can be obtained if one imposes non-degeneracy conditions on the BNF.

First, the application of Nekhoroshev theory ([17,18]) yields the stability
of the action variables for a doubly exponentially long interval of time for all
solutions with |I0| < r and r small enough:

|I(t) − I0| ≤ Cr2 for |t| ≤ exp exp(cr−a). (1.4)

This was first proved by Morbidelli and Giorgilli in [15]) under a convexity
assumption on N (that is, the quadratic part of N2 is positive definite) and
later in [3] under a generic “steepness” assumption on N (more precisely, it
applies provided Nm̄, where m̄ depends only on d, avoids a semi-algebraic
subset of positive codimension). Observe that in (1.4) only the time-scale of
stability of the action variables is improved with respect to (1.3).
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Applying classical KAM theory ([1,13,16])), provided the quadratic part
of N2 is non-degenerate (this is Kolmogorov non-degeneracy), for r > 0 small
enough there exists a set of DQP tori Kr in T

d × {|I| < r} with positive
Lebesgue measure. In fact, the relative measure of the complement of Kr is
bounded by exp(−cr−a). KAM theory extends to more general non-degeneracy
assumptions (see [22] for instance), and thus, the statement on the existence
of positive measure of DQP tori remains true, provided that for some m ≥ 2,
the truncated BNF Nm has the property that the local image of its gradient
∇Nm is not contained in any hyperplane of Rd (see [8] and also Theorem C for
a more precise statement). Observe that when KAM theory applies, one can
easily find an open set Ur in T

d × {|I| < r} “centered around” Kr such that
for solutions with initial condition (θ0, I0) ∈ U , the effective stability of the
quasi-periodic motion for an exponentially long interval of time given by (1.3)
is improved to a doubly exponentially long interval of time:

|θ(t) − θ0 − tω(I0)| ≤ Cr, |I(t) − I0| ≤ Cr2 for |t| ≤ exp exp(cr−a).
(1.5)

In [10], Herman conjectured that the conclusions of the application of KAM
theory hold true without any non-degeneracy assumptions: more precisely, for
H as in (1.1) with ω Diophantine, he asked whether there always exists, for r >
0 small enough, a set of DQP tori Kr in T

d ×{|I| < r} with positive Lebesgue
measure. In the case d = 2 this follows from general results of Rüssmann ([21])
and Bruno ([5]) (the arithmetic condition on ω can be slightly weakened), but
for d ≥ 3 this is an open problem; the only general result is due to Eliasson,
Fayad and Krikorian ([8]) who proved that T0 is always accumulated by other
DQP tori but along an analytic submanifold, so with zero Lebesgue measure
in general.

The aim of this paper is to prove that the following formal consequence
of Herman’s conjecture holds true; for r > 0 small enough, there exists an
open set Ur in T

d ×{|I| < r}, the complement of which has a relative measure
bounded by exp(−cr−a), such that for solutions with the initial condition
(θ0, I0) ∈ Ur, one has effective stability of the quasi-periodic motion for a
doubly exponentially long interval as expressed in (1.5). This is the content of
Theorem A. Of course, whether this set Ur actually contains a set of positive
measure Kr of DQP tori is still an open question.

2. Main Results

To state precisely our main results, let us introduce some notations. Given
ρ > 0 and r > 0, we consider complex domains

T
d
ρ :=

{
θ ∈ C

d/Zd | | Im θ| < ρ
}

, Br := {I ∈ C
d | |I| < r}

with Im θ := (Im θ1, . . . , Im θd), and we let Br := {I ∈ R
d | |I| < r} = Br ∩R

d.
We denote by Aρ,r the Banach space of holomorphic bounded functions f :
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T
d
ρ × Br → C, which are real-valued for real arguments, equipped with the

norm:

|f |ρ,r := sup
z∈Td

ρ×Br

|f(z)|.

Here’s our main result.

Theorem A. Assume H ∈ Aρ,r0 is as in (1.1) with ρ > 0, r0 > 0, and ω ∈
DC(τ, γ). Then, there exist positive constants r∗, c and C which depend only
on d, γ, τ , ρ, r0, |H|ρ,r0 and the BNF N such that for all 0 < r < r∗, there is
an open set Ur ⊆ T

d × Br with the measure estimate

Leb(Td × Br \ Ur) < Leb(Td × Br) exp(−cr−a) (2.1)

and such that for any (θ0, I0) ∈ Ur, there exists ω(I0) ∈ R
d and the corre-

sponding solution (θ(t), I(t)) satisfies

|θ(t) − θ0 − tω(I0)| ≤ Cr, |I(t) − I0| ≤ Cr2 for |t| ≤ exp exp(cr−a).
(2.2)

Even though we did not state it, it will be clear from the proof that not
only the vectors ω(I0) are at a distance Cr from ω ∈ DC(τ, γ) but also they
are at an exponentially small distance exp(−cr−a) from a subset of vectors in
DC(τ̄ , γ̄) for a proper choice of τ̄ > τ and γ̄ < γ. To explain the dependence
of the constants on the BNF and the strategy of the proof, recall that given
m ≥ 2, Nm is the truncated BNF up to order m, and we extend this notation
to m = 1 by setting N1(I) = ω · I. Now let Fm = ∇Nm be the gradient of Nm

for m ≥ 1, which is a polynomial map of degree m−1 and define Vm to be the
vector space spanned by the partial derivatives of Fm evaluated at the origin:

Vm := Vect{∂α
I Fm(0), α ∈ N

d} = Vect{∂α
I Fm(0), |α| ≤ m − 1}. (2.3)

These vector spaces form a non-decreasing sequence, Vm ⊆ Vm+1 for m ≥ 1,
and they are contained in R

d: consequently, this sequence is stationary, and
we can define m∗ ≥ 1 to be the smallest integer such that Vm = Vm∗ := V , for
all m ≥ m∗. Obviously, the polynomial map Fm∗ : Rd → V is non-degenerate
in the sense that its partial derivatives generate V , and the dependence of the
constants on the BNF in Theorem A will only depend on Nm∗ . To simplify the
notations and statements in the sequel, we shall call “constants” any positive
constant, which depends only on d, γ, τ , ρ, r0, |H|ρ,r0 and the truncated BNF
Nm∗ ; in particular, a statement valid for r > 0 small enough means that there
exists a constant r∗ for which the statement is valid for all 0 < r < r∗. As we
shall see, the main difficulty in proving Theorem A is when the dimension l of
V satisfies 2 ≤ l ≤ d − 1 (which only occurs when d ≥ 3) and the proof will
consist in the following steps:

(1) First, for r > 0 small enough, we apply a BNF normalization up to
optimal order m = m(r)

H ◦ Ψm(θ, I) = Nm(I) + Pm(θ, I)
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where the size of the remainder Pm(θ, I) = O(|I|m+1) is bounded by
μ = exp(−cr−a). We shall deduce this from a general statement taken
from [11], and this is the content of Theorem 1 in Sect. 3.

(2) For any r > 0 small enough, we have m(r) ≥ m∗ and the polynomial
mapping Fm(r) = ∇Nm(r) : R

d → Vm(r) = V is non-degenerate and
close to Fm∗ ; using this and the fact that V ∩ DC(τ, γ) is non-empty
(as it contains ω), we will show that for some sufficiently large τ̄ > τ
and sufficiently small γ̄ < γ, the set Sr of points I0 ∈ Br for which
Fm(r)(I0) ∈ DC(τ̄ , γ̄) has positive measure (more precisely, we will show
that the complement of this set has a measure bounded by a constant
times a power of γ̄). This will be stated in Proposition 1 in Sect. 4.

(3) Consider the Hamiltonian H̄r = H ◦ Ψm with m = m(r) given by the
first step, restricted to the μ1/2-neighborhood of the set T

d × Sr given
by the second step with the value γ̄ = μ1/4. On this domain, H̄r can
be considered as a μ-perturbation of an integrable Hamiltonian with fre-
quencies in DC(τ̄ , γ̄) and by classical results on integrable normal form
up to an exponentially small remainder (similar but slightly more general
than Birkhoff normalization); there exists a transformation Φ such that
H̄r ◦ Φ is integrable up to a remainder, which is exponentially small in
(1/μ)ā for some ā > 0. This will be the content of Theorem 2 in Sect. 5,
which follows from a statement taken from [20].

(4) The last step is a mere conclusion: H̄r ◦Φ = H ◦Ψm◦Φ is integrable up to
an exponentially small remainder in (1/μ)ā and thus doubly exponentially
small in (1/r)a. This will give stability estimates first for H̄r ◦Φ, and then
for H, for a time-scale which is doubly exponentially large in (1/r)a. By
the second step, the measure estimate of the solutions not covered by
these stability estimates is a power of γ̄ = μ1/4, and consequently, it is
exponentially small in (1/r)a. The corresponding details will be given
in Sect. 6.
It remains to discuss the cases where the dimension l of V satisfies l = 1

or l = d. In the first case, we do have V = Rω and the second step we described
above is valid on a whole neighborhood of the origin and not only on a proper
subset, and so are the estimates (2.2).

Theorem B. Assume H ∈ Aρ,r0 is as in (1.1) with ω ∈ DC(τ, γ), and V = Rω.
Then, there exist positive constants c and C such that for r small enough, for
any (θ0, I0) ∈ T

d × Br, there exists ω(I0) ∈ R
d and the corresponding solution

(θ(t), I(t)) satisfies

|θ(t) − θ0 − tω(I0)| ≤ Cr, |I(t) − I0| ≤ Cr2 for |t| ≤ exp exp(cr−a).

This result is in fact not surprising because it follows from a result proved
independently by Rüssmann ([21]) and Bruno ([5]) that in this case, the trans-
formation to the BNF actually converges and so H must be analytically con-
jugated to its linear part.

Now in the case l = d, we do have V = R
d; the BNF is actually non-

degenerate and using only the first step of the scheme of the proof described
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above together with an abstract result of Rüssmann ([22]) we can be sure that
the open set Ur in Theorem A actually contains a set Kr of DQP tori.

Theorem C. Assume H ∈ Aρ,r0 is as in (1.1) with ω ∈ DC(τ, γ), and V = R
d.

Then, there exists a constant c > 0 such that for r small enough, there is a set
Kr ⊆ T

d × Br of DQP tori with the measure estimate

Leb(Td × Br \ Kr) < Leb(Td × Br) exp(−cr−a). (2.4)

Again, this result is not new since the existence of a set of DQP tori
with Lebesgue density one has been already proved in this context in [8]; yet,
the extra information contained in Theorem C is the exponentially small mea-
sure (2.4), which shows that the abundance of tori is the same for Kolmogorov
non-degenerate or Rüssmann non-degenerate BNF.

To conclude, let us point out that we have decided to focus on the dy-
namics near a DQP torus, but we expect our main result in Theorem A to
be valid near a Diophantine elliptic fixed point (see [4] for results on double
exponential stability near elliptic fixed points) with few modifications; indeed,
the result we use in the first step is also known in this case (and follows again
from [11]) and after performing such a transformation, upon removing a subset
with exponentially small measure in phase space, one can use “non-singular”
analytic action-angles coordinates and the rest of the proof follows exactly in
the same way. Alternatively, one could only use elliptic coordinates but state-
ments such as Proposition 2 and Theorem 2 would have to be re-proven in this
setting. However, our proof does not extend to non-analytic Gevrey classes,
and we do not know if our main result holds true in this context; this may
be related to the fact that Herman’s conjecture is known to be false in these
classes (see [8]).

3. BNF with Exponentially Small Remainder

We first recall the existence of a truncated BNF up to an exponentially small
remainder. From now on, we denote by Πθ (resp. ΠI) the projection onto angle
components (resp. action components).

Theorem 1. Assume H ∈ Aρ,r0 is as in (1.1) with ω ∈ DC(τ, γ). Then, there
exist positive constants c and C such that for r small enough, there exists an
analytic symplectic embedding Ψr : Td

ρ/2×B3r −→ T
d
ρ ×B4r with the estimates

|ΠθΨr − Id|ρ/2,3r ≤ Cr, |ΠIΨr − Id|ρ/2,3r ≤ Cr2 (3.1)

such that

H ◦ Ψr(θ, I) = Nm(r)(I) + Pr(θ, I)

for m(r) := [cr−a] with the estimates

|Pr|ρ/2,3r ≤ exp(−cr−a) (3.2)
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and

|Nm(r) − Nm|3r ≤ Crm+1, 1 ≤ m ≤ m∗ + 1, (3.3)

where m∗ = min{m ∈ N | Vm = V }.

This result follows from the general statement of Theorem 3.8 in [11],
up to slight changes in the notation (for instance, we use r = R2 and we can
discard elliptic variables) and in the numerical constants involved, and with
the following modifications that we now describe, which follow directly from
the proof of Theorem 3.8 in [11]. In the following, we refer to the notation used
in [11] to explain the differences in Theorem 1 with respect to Theorem 3.8 in
[11].

First, in that reference, they have Nr �= Nm(r) but one can check that

Nr(I) = Nm(r)(I) + O(|I|m(r)+1),

that is the difference between Nr and Nm(r) is flat up to order m(r); however,
using this, an expansion of Nr − Nm(r) into Taylor series (by analyticity)
and Cauchy inequalities, one easily finds that Nr −Nm(r) satisfies an estimate
similar to the one for Pr given in (3.2) (assuming Nr is defined and bounded on
a slightly larger domain, which can be assumed, and restricting c if necessary)
and thus upon replacing Pr by Pr + Nr − Nm(r), we can indeed assume Nr =
Nm(r) without affecting (3.2) and (3.3).

The estimates on the distance to the identity stated in (3.1) are slightly
better than those stated in Theorem 3.8 (in that reference, r is used to absorb
the large positive constant C), but they clearly follow from the proof (indeed,
Ψr is obtained as a finite composition of transformations of the form (θ, I) 
→
(θ + O(|I|), I + O(|I|2))).

Finally, the estimate (3.3) is stated only for m = 2 in [11] but holds true
for any given “fixed” integer m such that 1 ≤ m ≤ m∗ + 1 (clearly here r is
small enough so that 2 ≤ m∗ +1 ≤ m(r)); indeed, and this is classical, such an
estimate is obtained by applying m steps of Birkhoff normalization with “large”
losses of widths of analyticity (depending on r0 and m∗ but independent of r)
and the remaining m(r) − m steps with uniformly “small” losses.

4. Measure on the Set of Diophantine Points

In this section, we consider the integrable Hamiltonian Nm(r), defined and
analytic on the real domain B3r (so in particular Nm(r) is smooth on the
closed ball B̄2r), which is the truncated BNF given by Theorem 1, and we set
Fm(r) := ∇Nm(r). We shall restrict ourselves to the case 2 ≤ l ≤ d − 1 where
l is the dimension of the space V ; observe that necessarily m∗ ≥ 2 in this
case. Using the fact that Fm(r) is analytic (indeed, it is a polynomial map)
and Fm(r)(0) = ω ∈ DC(τ, γ), we shall prove that the set of points I ∈ B2r,
with r small enough, for which Fm(r)(I) is Diophantine has a relatively large
Lebesgue measure. Such results are well known, see, for instance, [12], but we
give a proof adapted to our context following [6].
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Proposition 1. Assume that 2 ≤ l ≤ d−1. There exists a constant C such that
for r and γ̄ small enough, if we set τ̄ := (m∗ −1)(d+1)+ τ +1, then we have

Leb({I ∈ B2r | Fm(r)(I) /∈ DC(τ̄ , γ̄)}) ≤ Cγ̄1/(m∗−1)rd−1. (4.1)

We first recall that by definition of V , there exist α1, . . . , αl ∈ N
d such

that the vectors ∂α1
I Fm∗(0), . . . , ∂αl

I Fm∗(0) are linearly independent, and in
view of (2.3), we necessarily have |αi| ≤ m∗ − 1. For Fm = (Fm,1, . . . , Fm,d),
we set F l

m = (Fm,1, . . . , Fm,l); without loss of generality, we may assume that
the square matrix

Al
m∗(I) =

(
∂α1

I F l
m∗(I)� | . . . | ∂αl

I F l
m∗(I)�)

has a nonzero determinant at I = 0; hence, there exists a constant β > 0 such
that, denoting Sl = {ξ ∈ R

l | |ξ| = 1}, we have

min
ξ∈Sl

|ξ · Al
m∗(0)| ≥ 3β. (4.2)

We have the following elementary lemma, where we consider the matrix

Al
r(I) =

(
∂α1

I F l
m(r)(I)� | . . . | ∂αl

I F l
m(r)(I)�

)
.

Lemma 1. For r small enough, we have

min
(I,ξ)∈B̄2r×Sl

|ξ · Al
r(I)| ≥ β

and as a consequence, for any I ∈ B̄2r,

Vect
{

∂α1
I F l

m(r)(I), . . . , ∂αl

I F l
m(r)(I)

}
= Vect

{
∂α

I F l
m(r)(I) | α ∈ N

d
}

= V.

Proof. First, in view of (4.2), for r small enough

min
(I,ξ)∈B̄2r×Sl

|ξ · Al
m∗(I)| ≥ 2β.

Then observe that (3.3) with m = m∗ implies, for all I ∈ B̄2r and α ∈ N
d with

|α| ≤ m∗ − 1, that

|∂α
I Fm(r)(I) − ∂α

I Fm∗(I)| ≤ Cr

for some positive constant C and consequently

min
(I,ξ)∈B̄2r×Sl

|ξ · Al
r(I)| ≥ β

for r small enough. This proves the first part of the statement. For the second
part of the statement, we have the inclusions:

Vect
{
∂α1

I Fm(r)(I), . . . , ∂αl

I Fm(r)(I)} ⊆ Vect{∂α
I Fm(r)(I) | α ∈ N

d
}

⊆ V.

Indeed, the first one is obvious, while the second one follows from the fact that
Fm(r) is analytic at I = 0 together with the fact Vm(r) = V since we are assum-
ing r small enough. We have just shown that the vectors ∂α1

I Fm(r)(I), . . . , ∂αl

I

Fm(r)(I) are linearly independent for I ∈ B̄2r, and hence, they generate V and
the subspaces above are all equal. �
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Proposition 1 will follow from the above lemma together with the follow-
ing Pyartli-type inequality (the precise proposition below follows from Theo-
rem 17.1 in [22]).

Proposition 2. Let g : B̄2r → R be a function of class Cn+1 satisfying

min
I∈B̄2r

max
0≤j≤n

|Djg(I)| ≥ β

for some integer n ≥ 1 and β > 0. Then, there exists r′ > 0 which depends
only on d such that for any 0 < r < r′ and any 0 < ε ≤ β(2n+ 2)−1, we have

Leb({I ∈ B2r | |g(I)| ≤ ε}) ≤ C|g|n+1ε
1/nrd−1 (4.3)

where |g|n+1 is the Cn+1 norm of g and C > 0 is a constant depending only
on d, n and β.

Proof of Proposition 1. Recall that we are assuming 2 ≤ l ≤ d − 1. For r
small enough, Lemma 1 applies and since {∂α1

I F l
m(r)(I), . . . , ∂αl

I F l
m(r)(I)} are

linearly independent and generate V for all I ∈ B̄2r, there exist bi,j for l +1 ≤
i ≤ d and 1 ≤ j ≤ l such that for all I ∈ B̄2r,

Fm(r),l+1(I) =
l∑

j=1

bl+1,jFm(r),j(I), . . . , Fm(r),d(I) =
l∑

j=1

bd,jFm(r),j(I).

(4.4)

We can also write ω = (ω1, . . . , ωl,
∑l

j=1 bl+1,jωj , . . . ,
∑l

j=1 bd,jωj), since ω ∈
V , and using the fact that ω ∈ DC(τ, γ) with |ω| = 1, we obtain, for all
k ∈ Z

d \ {0},
l∑

j=1

∣
∣
∣
∣

d∑

i=l+1

(bi,jki + kj)
∣
∣
∣
∣ ≥ γ|k|−τ . (4.5)

Now for any k ∈ Z
d \{0}, consider the vector ξk := (ξk,1, . . . , ξk,l) ∈ Sl defined

by

ξk,j :=
∑d

i=l+1 bi,jki + kj(∑l
j=1 |

∑d
i=l+1 (bi,jki + kj)|

) , 1 ≤ j ≤ l,

and consider also the map gr,k : B̄2r → R defined by

gr,k(I) = ξk · F l
m(r)(I) =

l∑

j=1

ξk,jFm(r),j(I).

It follows from (4.4) and (4.5) that for all I ∈ B̄2r

|k · Fm(r)(I)| ≥ γ|k|−τ |gr,k(I)|

and thus, if we define, for all k ∈ Z
d \ {0} and some γ̄ > 0 and τ̄ > 0,

Uk :=
{
I ∈ B2r | |k · Fm(r)(I)| < γ̄|k|−τ̄

}
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and

Vk :=
{
I ∈ B2r | |gr,k(I)| < εk := γ̄γ−1|k|−τ̄+τ

}

we have the inclusion Uk ⊆ Vk and consequently

Leb({I ∈ B2r | Fm(r)(I) /∈ DC(τ , γ)}) ≤
∑

k∈Zd\{0}
Leb(Uk)

≤
∑

k∈Zd\{0}
Leb(Vk). (4.6)

It remains to estimate the Lebesgue measure of Vk. Clearly, the function gr,k

is of class Cm∗
with a Cm∗

-norm bounded due to the estimate in (3.3) with
m = m∗, and from Lemma 1, we have

min
I∈B̄2r

max
0≤j≤m∗−1

|Djgr,k(I)| ≥ min
I∈B̄2r

max
j=1,...,l

|∂αj

I gr,k(I)|

≥ min
(I,ξ)∈B̄2r×Sl

|ξ · Al
r(I)| ≥ β.

For r small enough, and choosing γ̄ small enough so that εk = γ̄γ−1|k|−τ̄+τ ≤
β(2m∗)−1 for all k ∈ Z

d\{0}, Proposition 2 applies to g = gr,k (and n =
m∗ − 1 ≥ 1) and yields the estimate

Leb(Vk) ≤ Cε
1/(m∗−1)
k rd−1 ≤ Cγ̄1/(m∗−1)|k|(−τ̄+τ)/(m∗−1)rd−1

which, together with (4.6), yields the wanted estimate because of our choice
of τ̄ = (m∗ − 1)(d + 1) + τ + 1.

5. Integrable Normal Forms Near a Set of Diophantine Points

In this section, we shall state the fact that a general μ-perturbation of some in-
tegrable analytic Hamiltonian is restricted to some neighborhood of Diophan-
tine points, conjugated (symplectically and analytically) to some integrable
normal form up to a remainder, which is exponentially small with respect to
1/μ. Later on, this will be applied to the Hamiltonian H ◦ Ψr given by The-
orem 1; thus, with μ exponentially small with respect to 1/r, on the set of
Diophantine points given by Proposition 1 for some proper choice of γ̄, even-
tually leading to a stability result which is doubly exponentially small with
respect to 1/r.

To state this result precisely, we consider, for some positive parameters
r̄, ρ̄, M and μ:

{
H̄(θ, I) = N(I) + P (θ, I) ∈ Aρ̄,r̄,

|∇2N |r̄ ≤ M, |P |ρ̄,r̄ ≤ μ
(5.1)

and given 0 < γ̄ < r̄, τ̄ ≥ d − 1, we consider the set

S = {I ∈ Br̄−γ̄ | ∇N(I) ∈ DC(τ̄ , γ̄)} (5.2)

which is assumed to be non-empty: this is the set of (τ̄ , γ̄)-Diophantine points
in Br̄, which are at a distance γ̄ from the boundary of Br̄. In the terminology of
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[20], the set S is completely α, K-non-resonant, for any K ≥ 1 and α = γ̄K−τ̄ .
Given δ > 0, we let

VδS := {I ∈ C
d | d(I, S) < δ}

be the complex δ-neighborhood of S: we shall have δ < γ̄ below so that VδS∩Rd

will be indeed included in Br̄. By a slight abuse of notation, we simply denote
by ‖·‖ρ,δ the uniform norm for functions, which are analytic and bounded on
T

d
ρ × VδS. The following statement follows from the normal form lemma of

[20].

Theorem 2. Assume H̄ is as in (5.1) with S �= ∅ as in (5.2). Then, there exist
positive constants c̄ and C̄, which depend only on d, τ , ρ and M such that
setting

δ := μ1/2, ν :=
(
c̄−1γ̄−1δ

)ā
, ā := 1/(τ̄ + 1)

and assuming that

ν < 1 (5.3)

there exists a symplectic embedding

Φ : Td
ρ̄/6 × Vδ/2S −→ T

d
ρ̄ × VδS

with the estimates

‖ΠθΦ − Id‖ρ̄/6,δ/2 ≤ ν, ‖ΠIΦ − Id‖ρ̄/6,δ/2 ≤ νδ (5.4)

such that

H̄ ◦ Φ = N(I) + G(I) + R(θ, I)

with the estimates

‖G‖δ/2 ≤ Cμ, ‖R‖ρ̄/6,δ/2 ≤ Cμ exp(−1/ν). (5.5)

6. Proofs of the Main Results

We are now ready to conclude the proof of Theorem A, as a consequence of
Theorem 1, Proposition 1 and Theorem 2.

Proof of Theorem A. It is sufficient to prove the statement when the dimen-
sion l of the space V satisfies 2 ≤ l ≤ d − 1; the cases l = 1 and l = d will be
consequences of, respectively, Theorem B and Theorem C. We shall assume
r small enough finitely many times in the sequel, without explicitly mention-
ing it, and we shall denote by c and C positive constants, which may vary
from line to line. First, Theorem 1 applies and yields a symplectic embedding
Ψr : Td

ρ/2 × B3r −→ T
d
ρ × B4r with the estimates (3.1) such that

H ◦ Ψr(θ, I) = Nm(r)(I) + Pr(θ, I)

with the estimates (3.2) on Pr and (3.3) on Nm(r). We set

r̄ := 2r, ρ̄ := ρ/2, μ := exp(−cr−a),

γ̄ := μ1/4, τ̄ := (m∗ − 1)(d + 1) + τ + 1.
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Observe that any fixed positive power of μ, even multiplied by a large positive
constant or a fixed negative power of r, is bounded by exp(−cr−a) for some
appropriate constant c, provided r is small enough. Then, Proposition 1 applies
and gives the estimate

Leb({I ∈ Br̄ = B2r | Fm(r)(I) /∈ DC(τ̄ , γ̄)}) ≤ Cγ̄1/(m∗−1)rd−1

and consequently, the set

Sr = {I ∈ Br̄−γ̄ | ∇Nm(r)(I) = Fm(r)(I) ∈ DC(τ̄ , γ̄)}
is non-empty and we have the measure estimate

Leb(B2r \ Sr) ≤ Cγ̄1/(m∗−1)rd−1 + Cγ̄rd−1 ≤ C exp(−cr−a)rd−1. (6.1)

Next we want to apply Theorem 2 to

H̄ := H ◦ Ψr, N := Nm(r), P := Pr

and it follows from (3.3) with m = 2 that |∇2Nm(r)|r̄ is indeed bounded by a
constant, and so there are positive constants c̄ and C̄ such that setting

δ = μ1/2, ν =
(
c̄−1γ̄−1δ

)ā
, ā = 1/(τ̄ + 1)

we do have

ν =
(
c̄−1μ1/4

)ā

≤ exp(−cr−a)

and since we have the inclusion T
d
ρ̄ ×VδSr ⊆ T

d
ρ/2×B3r and the condition (5.3)

holds true, Theorem 2 applies and yields a symplectic embedding

Φ = Φr : Td
ρ̄/6 × Vδ/2Sr −→ T

d
ρ̄ × VδSr

with the estimates (5.4) such that

H̃r := H̄ ◦ Φr = H ◦ Ψr ◦ Φr = Nm(r)(I) + Gr(I) + Rr(θ, I)

with the estimates

‖Gr‖δ/2 ≤ Cμ, ‖Rr‖ρ̄/6,δ/2 ≤ Cμ exp(−1/ν). (6.2)

From now on, we shall only consider real domains and the transformations
restricted to these domains. We define

Ṽr := T
d × (Vδ/4Sr ∩ R

d), Vr := Ψr(Φr(Ṽr))

and we shall prove first that the stability estimates hold true for any solution
(θ(t), I(t)) of H with the initial condition (θ0, I0) ∈ Vr. To do so, we consider
the corresponding solution (θ̃(t), Ĩ(t)) of H̃r = H ◦ Ψr ◦ Φr with the initial
condition (θ̃0, Ĩ0) ∈ Ṽr, and we define

ω(I0) := ∇Nm(r)(Ĩ0) + ∇Gr(Ĩ0) ∈ R
d.

Since the transformations are symplectic, Ψr(Φr(θ̃(t), Ĩ(t))) = (θ(t), I(t)) as
long as the solutions are defined, and from (3.1) and (5.4), we have

|Ĩ(t) − I(t)| ≤ Cr2 + δν ≤ Cr2, |θ̃(t) − θ(t)| ≤ Cr + ν ≤ Cr.
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From the estimates (3.3) (again with m = 2) and (6.2), together with Cauchy
inequalities, we have

|∇2Nm(r)|2r ≤ C, ‖∇2Gr‖δ/3 ≤ C (6.3)

and if we set

T := exp(1/ν) ≥ exp
(
exp(cr−a)

)

then

‖∂IRr‖ρ̄/6,δ/3 ≤ T−1, ‖∂θRr‖ρ̄/7,δ/2 ≤ T−1. (6.4)

From the Hamiltonian equations associated with H̃ and the second inequality
of (6.4), we have

|Ĩ(t) − Ĩ0| ≤ T−2/3 for |t| ≤ T 1/3 (6.5)

and therefore

|I(t) − I0| ≤ T−2/3 + 2Cr2 ≤ Cr2 for |t| ≤ T 1/3.

Then, using (6.3), (6.5) and the definition ω(I0), we have

|∇Nm(r)(Ĩ(t)) + ∇Gr(Ĩ(t)) − ω(I0)| ≤ CT−2/3 for |t| ≤ T 1/3,

and from the Hamiltonian equations and the first inequality of (6.4), we also
have

| ˙̃θ(t) − ∇Nm(r)(Ĩ(t)) − ∇Gr(Ĩ(t))| ≤ T−2/3 for |t| ≤ T 1/3.

Thus,

| ˙̃θ(t) − ω(I0)| ≤ CT−2/3 for |t| ≤ T 1/3.

This last inequality implies

|θ̃(t) − θ̃0 − tω(I0)| ≤ CT−1/3 for |t| ≤ T 1/3,

which gives

|θ(t) − θ0 − tω(I0)| ≤ CT−1/3 + 2Cr ≤ Cr for |t| ≤ T 1/3.

Since T 1/3 ≥ exp (exp(cr−a)), this concludes the proof of the stability esti-
mates, and now it remains to prove that Vr contains an open set Ur with the
wanted relative measure estimate. To do so, we first observe that Φr(Ṽr) is
contained in T

d × (VδSr ∩ R
d); hence, it is contained in T

d × B2r but also,
in view of (5.4), Φr(Ṽr) contains (for instance) T

d × (Vδ/5Sr ∩ R
d); hence, it

contains T
d × Sr, and thus, from (6.1) we get

Leb(Td × B2r \ Φr(Ṽr)) ≤ Leb(Td × B2r \ T
d × Sr) ≤ C exp(−cr−a)rd−1.

Then, from (3.1), Ψr is a Lipeomorphism of Td × B2r onto its image, which
contains T

d × Br, so that if we define

Ur := Vr ∩ (Td × Br) = Ψr(Φr(Ṽr)) ∩ (Td × Br),

we finally get

Leb(Td × Br \ Ur) ≤ C exp(−cr−a)rd−1 ≤ exp(−cr−a)Leb(Td × Br)

and this concludes the proof.
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Proof of Theorem B. The proof follows the same lines as in the proof of The-
orem A, the only difference being that since we are assuming V = Rω, then
Fm(r)(I) = ∇Nm(r)(I) = λr(I)ω with λr(0) = 1, and from (3.3) with m = 2,
it follows that the real-valued function λr is close to 1 for r small enough. We
can therefore choose τ̄ = τ and, for instance, γ̄ = γ/2 so that Proposition 1
becomes useless since in this case, one can choose Sr = B2r and consequently
Ur = T

d × Br.

Proof of Theorem C. The proof follows directly from Theorem 1 and a general
KAM theorem proved by Rüssmann. Indeed, as we already pointed out, the
assumption that V = R

d means that Nm∗ , and consequently, Nm(r) for r
small enough, is Rüssmann non-degenerate; the main result of [22] applies
to a perturbation of size μ = exp(−cr−a), and the set not covered by DQP
tori is estimated by a constant times μ1/(2(m∗−1)), which is still bounded by a
quantity of the form exp(−cr−a).
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