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In this article, we investigate Gevrey and summability properties of the formal power series solutions of the inhomogeneous generalized Boussinesq equations. We first prove that the inhomogeneity and the formal solutions are together s-Gevrey for any s ě 1, and that the formal solutions are generically 1-Gevrey while the inhomogeneity is s-Gevrey with s ă 1. In the latter case, we give in particular an explicit example in which the formal solution is s 1 -Gevrey for no s 1 ă 1, that is exactly 1-Gevrey. Then, we give a necessary and sufficient condition under which the formal solutions are 1-summable in a given direction argptq " θ. In addition, we present some technical results on the generalized binomial and multinomial coefficients, which are needed for the proofs of our various results.

When studying such equations, one of the major challenges is the determination of exact solutions, if any exists, and the precise analysis of their properties (dynamic, asymptotic behavior, etc.) in order to have a better understanding of the mechanism of the underlying physical phenomena and dynamic processes.

Thus, for several decades, many analytical methods have been developed in this perspective. For example, in the case of real variables, that is when the variables pt, xq belong to a subset of R 2 , we can quote, among the many existing techniques, the tanh-sech method, the F-expansion method, the exp-function method, the variational iteration method, etc. More recently, in the case of complex variables, that is when the variables pt, xq belong to a subset of C 2 , the summation theory has also been used succesfullly [START_REF] Remy | Summability of the formal power series solutions of a certain class of inhomogeneous nonlinear partial differential equations with a single level[END_REF][START_REF] Remy | On the summability of the solutions of the inhomogeneous heat equation with a power-law nonlinearity and variable coefficients[END_REF][START_REF] Remy | Summability of the formal power series solutions of a certain class of inhomogeneous partial differential equations with a polynomial semilinearity and variable coefficients[END_REF]. This theory, initially developed within the framework of the meromorphic ordinary differential equation with an irregular singular point (see for instance [START_REF] Loday-Richaud | Divergent Series, Summability and Resurgence II. Simple and Multiple Summability[END_REF][START_REF] Ramis | Séries divergentes et théories asymptotiques[END_REF]), allows the construction of explicit solutions from formal solutions.

In the following, we will be more particularly interested in this theory which we shall apply to the generalized Boussinesq equation. x u ´bB 2 x u ´cB 2 x pu n q " 0 a, b, c nonzero constants n ě 2 an integer was introduced for the first time in 1872 by J. Boussinesq [START_REF] Boussinesq | Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond[END_REF] (the original equation corresponds to the values a " ´1, b " c " 1 and n " 2). It allows to model many physical problems such as, for example, the propagation of long waves in shallow water, the propagation of one-dimensional nonlinear lattice-waves, the propagation of vibrations in a nonlinear string, or the propagation of ionic sound waves in a plasma.

In the case of real variables, Eq. (1.1) has already been the subject of many investigations and many results have already been established (see for instance [START_REF] Almatrafi | Construction of the soliton solutions to the good Boussinesq equation[END_REF][START_REF] Guner | Soliton solution of the generalized modified BBM equation and the generalized Boussinesq equation[END_REF][START_REF] Vatchev | Decomposition of 2-soliton solutions for the good Boussinesq equations[END_REF] and the references therein). On the other hand, to our knowledge, it does not seem that there are known results when (at least) one of the coefficients a, b, or c is variable, or when the variables t and x are complex.

In the present paper, we are interested in the following inhomogeneous generalized Boussinesq equation

(1.2) # B 2 t u ´apt, xqB 4 
x u ´P pt, x, uqB 2 x u ´Qpt, x, uqpB x uq 2 " r f pt, xq B j t upt, xq |t"0 " φ j pxq, j " 0, 1 in two variables pt, xq P C 2 , where ' apt, xq is analytic on a polydisc D ρ0 ˆDρ1 centered at the origin p0, 0q P C 2 (D ρ denotes the disc with center 0 P C and radius ρ ą 0) and satisfies the condition ap0, 0q ‰ 0;

' P pt, x, Xq and Qpt, x, Xq are two polynomials in X with analytic coefficients on D ρ0 ˆDρ1 and with degree less than or equal to a positive integer d ě 1: ' the inhomogeneity r f pt, xq is a formal power series in t with analytic coefficients in D ρ1 (we denote this by r f pt, xq P OpD ρ1 qrrtss) which may be smooth, or not 1 ; ' the initial conditions φ 0 pxq and φ 1 pxq are analytic on D ρ1 . Observe that Eq. (1.2) coincides with Eq. (1.1) for apt, xq " a P C ˚, P pt, x, Xq " b `cnX n´1 , Qpt, x, Xq " cnpn ´1qX n´2 and r f pt, xq " 0. Observe also that, in the special case where P and Q are both zero, Eq. (1.2) is reduced to the inhomogeneous linear Euler-Lagrange equation

P pt, x,
(1.3) # B 2 t u ´apt, xqB 4 x u " r f pt, xq
B j t upt, xq |t"0 " φ j pxq, j " 0, 1 which allows to model a dynamic inhomogeneous beam with a transverse load.

Considering t as the variable and x as a parameter, we have the following. u j,˚p xq t j j! with u j,˚p xq P OpD ρ1 q for all j ě 0, one easily checks that its coefficients u j,˚p xq are uniquely determined for all j ě 0 by the recurrence relations

(1.4) u j`2,˚p xq " f j,˚p xq `ÿ j0`j1"j ˆj j 0 , j 1 ˙aj0,˚p xqB 4 x u j1,˚p xq `d ÿ m"0 ÿ j0`...`jm`1"j ˆj j 0 , ..., j m`1
˙TP,m,j0,...,jm`1 pxq `d ÿ m"0 ÿ j0`...`jm`2"j ˆj j 0 , ..., j m`2 ˙TQ,m,j0,...,jm`2 pxq, 1 We denote r f with a tilde to emphasize the possible divergence of the series r f .

where T P,m,j0,...,jm`1 pxq and T Q,m,j0,...,jm`2 pxq are the analytic functions on D ρ1 respectively defined by 

T Q,m,j0,...,jm`2 pxq " # b Q,0;j0,˚p xqB x u j1,˚p xqB x u j2,˚p xq if m " 0 b Q,m;j0,˚p xqu j1,˚p xq...u jm,˚p xqB x u jm`1,˚p xqB x u jm`2,˚p xq if m ě 1 ,
together with the two initial conditions u j,˚p xq " φ j pxq for j " 0, 1. As usual, the notation ˆa a 0 , ..., a p ˙, for any nonnegative real numbers a, a 0 , ..., a p such that a 0 `... `ap " a, stands for the multinomial coefficients (see Section 4). □ 1.3. Known results and aim of the article. In the two previous articles [START_REF] Remy | Gevrey regularity of the solutions of some inhomogeneous semilinear partial differential equations with variable coefficients[END_REF][START_REF] Remy | Summability of the formal power series solutions of a certain class of inhomogeneous partial differential equations with a polynomial semilinearity and variable coefficients[END_REF] (see also [START_REF] Remy | Gevrey order and summability of formal series solutions of some classes of inhomogeneous linear partial differential equations with variable coefficients[END_REF], and [START_REF] Remy | Gevrey regularity of the solutions of some inhomogeneous nonlinear partial differential equations[END_REF][START_REF] Remy | Summability of the formal power series solutions of a certain class of inhomogeneous nonlinear partial differential equations with a single level[END_REF][START_REF] Remy | Gevrey regularity of the solutions of the inhomogeneous partial differential equations with a polynomial semilinearity[END_REF] for more general equations), the author studied, in the framework of the Euler-Lagrange equation (1.3), the Gevrey regularity and the 1-summability of the formal solution r upt, xq. More precisely, he proved the two following.

Proposition 1.2 (Gevrey regularity [START_REF] Remy | Gevrey regularity of the solutions of some inhomogeneous semilinear partial differential equations with variable coefficients[END_REF]). Let r upt, xq be the formal solution in OpD ρ1 qrrtss of Eq. (1.3). Then, Proposition 1.3 (Summability [START_REF] Remy | Summability of the formal power series solutions of a certain class of inhomogeneous partial differential equations with a polynomial semilinearity and variable coefficients[END_REF]). Let r upt, xq be the formal solution in OpD ρ1 qrrtss of Eq. (1.3). Let argptq " θ P R{2πZ be a direction issuing from 0. Then,

(1) r upt, xq is 1-summable in the direction θ if and only if the inhomogeneity r f pt, xq and the formal series B n x r upt, xq |x"0 P Crrtss for n " 0, 1, 2, 3 are 1-summable in the direction θ.

(2) Moreover, the 1-sum upt, xq, if any exists, satisfies Eq. (1.3) in which r f pt, xq is replaced by its 1-sum f pt, xq in the direction θ.

In this article, we propose to prove that these two results remain true in the case of the generalized Boussinesq equation (1.2). To do this, we shall use an approach similar to those already developed by the author in [START_REF] Remy | Gevrey regularity of the solutions of some inhomogeneous nonlinear partial differential equations[END_REF][START_REF] Remy | Gevrey regularity of the solutions of some inhomogeneous semilinear partial differential equations with variable coefficients[END_REF][START_REF] Remy | Summability of the formal power series solutions of a certain class of inhomogeneous nonlinear partial differential equations with a single level[END_REF][START_REF] Remy | Gevrey index theorem for the inhomogeneous n-dimensional heat equation with a power-law nonlinearity and variable coefficients[END_REF][START_REF] Remy | Gevrey regularity of the solutions of the inhomogeneous partial differential equations with a polynomial semilinearity[END_REF][START_REF] Remy | On the summability of the solutions of the inhomogeneous heat equation with a power-law nonlinearity and variable coefficients[END_REF][START_REF] Remy | Summability of the formal power series solutions of a certain class of inhomogeneous partial differential equations with a polynomial semilinearity and variable coefficients[END_REF] for some nonlinear partial differential equations (see also [START_REF] Balser | Summability of solutions of the heat equation with inhomogeneous thermal conductivity in two variables[END_REF][START_REF] Remy | Gevrey order and summability of formal series solutions of some classes of inhomogeneous linear partial differential equations with variable coefficients[END_REF][START_REF] Remy | Gevrey order and summability of formal series solutions of certain classes of inhomogeneous linear integro-differential equations with variable coefficients[END_REF][START_REF] Remy | Gevrey properties and summability of formal power series solutions of some inhomogeneous linear Cauchy-Goursat problems[END_REF] for an approach in the linear case). Let us point out here that, as we shall see below, the terms u m pB x uq 2 of Eq. (1.2), which have never been considered in the previous articles, shall make the calculations much more complicated by revealing new computational and combinatorial situations, which require some technical results on the generalized binomial and multinomial coefficients, that is on the binomial and multinomial coefficients with nonnegative real terms.

The organization of the article is as follows. Section 2 is devoted to the study of the Gevrey regularity of the formal solution r upt, xq of Eq. (1.2). After briefly recalling the definition and some basic properties of the s-Gevrey formal power series in OpD ρ1 qrrtss which are needed, we prove that r upt, xq and the inhomogeneity r f pt, xq of Eq. (1.2) are together s-Gevrey for any s ě 1, and that r upt, xq is generically 1-Gevrey while r f pt, xq is s-Gevrey with s ă 1 (Theorem 2.3). In the latter case, we give in particular an explicit example in which r upt, xq is s 1 -Gevrey for no s 1 ă 1, that is r upt, xq is exactly 1-Gevrey. In Section 3, we investigate the 1-summability of r upt, xq and we give a necessary and sufficient condition under which the formal solution r upt, xq is 1-summable in a given direction argptq " θ. We prove in particular that the statement of Proposition 1.3 above remains true (Theorem 3.5). In the last Section 4, we present all the technical results on the generalized binomial and multinomial coefficients which are needed for the proofs of our two main results. This section can also be read independently of the rest of the article, so as not to burden the main proofs.

Gevrey regularity of r upt, xq

As said at the beginning of Section 1.2, we consider the time t as the variable and the space x as a parameter. Thereby, to define the notion of Gevrey formal power series in OpD ρ1 qrrtss, one extends the classical notion of Gevrey formal power series in Crrtss to families parametrized by x in requiring similar conditions, the estimates being however uniform with respect to x. Doing that, any formal power series of OpD ρ1 qrrtss can be seen as a formal power series in t with coefficients in a convenient Banach space defined as the space of functions that are holomorphic on a convenient disc D ρ and continuous up to its boundary, equipped with the usual supremum norm. For a general study of the formal power series with coefficients in a Banach space, we refer for instance to [START_REF] Balser | Formal power series and linear systems of meromorphic ordinary differential equations[END_REF].

2.1. Main result. Before stating our main result on the Gevrey regularity of the formal solution r upt, xq of Eq. (1.2), let us first recall for the convenience of the reader some definitions and basic properties about the Gevrey formal power series in OpD ρ1 qrrtss, which are needed in the sequel. hold for all j ě 0. We denote by OpD ρ1 qrrtss s the set of all the formal series in OpD ρ1 qrrtss which are s-Gevrey.

In other words, Definition 2.1 means that r upt, xq is s-Gevrey in t, uniformly in x on a neighborhood of x " 0 P C.

Observe that the set Ctt, xu of germs of analytic functions at the origin of C 2 coincides with the union Ť ρ1ą0 OpD ρ1 qrrtss 0 ; in particular, any element of OpD ρ1 qrrtss 0 is convergent and Ctt, xu X OpD ρ1 qrrtss " OpD ρ1 qrrtss 0 .

Observe also that the sets OpD ρ1 qrrtss s are filtered as follows:

OpD ρ1 qrrtss 0 Ă OpD ρ1 qrrtss s Ă OpD ρ1 qrrtss s 1 Ă OpD ρ1 qrrtss for all s and s 1 satisfying 0 ă s ă s 1 ă `8.

Proposition 2.2 ([2, 20]).

Let s ě 0 be. Then, the set pOpD ρ1 qrrtss s , B t , B x q is a C-differential algebra.

Let us now state the result in view in this section. Corollary 2.4 will be improved later for some special values of its coefficients (see Proposition 2.13). The proof of Theorem 2.3 is detailed in the next two sections. The first point is the most technical and the most complicated. Its proof is based on the Nagumo norms, a technique of majorant series and a fixed point procedure (see Section 2.2). As for the second point, it stems both from the first one and from Proposition 2.13 that gives an explicit example for which r upt, xq is s 1 -Gevrey for no s 1 ă 1 while r f pt, xq is s-Gevrey with s ă 1 (see Section 2.3). Reciprocally, let us fix s ě 1 and let us suppose that the inhomogeneity r f pt, xq of Eq. (1.2) is s-Gevrey. By assumption, its coefficients f j,˚p xq P OpD ρ1 q satisfy the following condition (see Definition 2.1): there exist three positive constants 0 ă ρ ă ρ 1 , C ą 0 and K ą 0 such that the inequalities

Proof of

(2.1) |f j,˚p xq| ď CK j Γp1 `ps `1qjq
hold for all j ě 0 and all |x| ď ρ.

We must prove that the coefficients u j,˚p xq P OpD ρ1 q of the formal solution r upt, xq satisfy similar inequalities. The approach we present below is analoguous to the ones already developed in [START_REF] Balser | Summability of solutions of the heat equation with inhomogeneous thermal conductivity in two variables[END_REF][START_REF] Remy | Gevrey order and summability of formal series solutions of some classes of inhomogeneous linear partial differential equations with variable coefficients[END_REF][START_REF] Remy | Gevrey order and summability of formal series solutions of certain classes of inhomogeneous linear integro-differential equations with variable coefficients[END_REF][START_REF] Remy | Gevrey properties and summability of formal power series solutions of some inhomogeneous linear Cauchy-Goursat problems[END_REF] in the framework of linear partial and integro-differential equations, and in [START_REF] Remy | Gevrey regularity of the solutions of some inhomogeneous nonlinear partial differential equations[END_REF][START_REF] Remy | Gevrey regularity of the solutions of some inhomogeneous semilinear partial differential equations with variable coefficients[END_REF][START_REF] Remy | Gevrey index theorem for the inhomogeneous n-dimensional heat equation with a power-law nonlinearity and variable coefficients[END_REF][START_REF] Remy | Gevrey regularity of the solutions of the inhomogeneous partial differential equations with a polynomial semilinearity[END_REF] in the case of certain nonlinear equations. It is based on the Nagumo norms [START_REF] Canalis-Durand | Gevrey solutions of singularly perturbed differential equations[END_REF][START_REF] Nagumo | Über das Anfangswertproblem partieller Differentialgleichungen[END_REF][START_REF] Walter | An elementary proof of the Cauchy-Kowalevsky theorem[END_REF] and on a technique of majorant series. However, as we shall see, our calculations appear to be much more technical and complicated. Furthermore, the nonlinear terms u m pB x uq 2 generate several new technical combinatorial situations which have never been investigated in the previous articles. Before starting the calculations, let us first recall for the convenience of the reader the definition of the Nagumo norms and some of their properties which are needed in the sequel. Following Proposition 2.6, whose a proof can be found for instance in [START_REF] Remy | Gevrey properties and summability of formal power series solutions of some inhomogeneous linear Cauchy-Goursat problems[END_REF], gives us some properties of the Nagumo norms.

Proposition 2.6. Let f, g P OpD ρ1 q, p, p 1 ě 0 and 0 ă r ă ρ 1 be. Then,

(1) }¨} p,r is a norm on OpD ρ1 q.

(2) |f pxq| ď }f } p,r d r pxq ´p for all |x| ă r .

(

) }f } 0,r " sup |x|ďr |f pxq| is the usual sup-norm on D r . (4) }f g} p`p 1 ,r ď }f } p,r }g} p 1 ,r . (5) }B x f } p`1,r ď epp `1q }f } p,r . 3 
Remark 2.7. Inequalities 4-5 of Proposition 2.6 are the most important properties.

Observe besides that the same index r occurs on their both sides, allowing thus to get estimates for the product f g in terms of f and g, and for the derivative B x f in terms of f without having to shrink the disc D r .

Let us now turn to the proof of the first point of Theorem 2.3.

2.2.2.

First step: some inequalities. From the recurrence relations (3.1), we first derive for all j ě 0 the identities

u j`2,˚p xq Γp1 `ps `1qpj `2qq " f j,˚p xq Γp1 `ps `1qpj `2qq `ÿ j0`j1"j ˆj j 0 , j 1 ˙aj0,˚p xqB 4 x u j1,˚p xq Γp1 `ps `1qpj `2qq `d ÿ m"0 ÿ j0`...`jm`1"j ˆj j 0 , ..., j m`1 ˙TP,m,j0,...,jm`1 pxq Γp1 `ps `1qpj `2qq `d ÿ m"0 ÿ j0`...`jm`2"j ˆj j 0 , ..., j m`2
˙TQ,m,j0,...,jm`2 pxq Γp1 `ps `1qpj `2qq , where T P,m,j0,...,jm`1 pxq "

# b P,m;j0,˚p xqB 2 x u j1,˚p xq if m " 0 b P,m;j0,˚p xqu j1,˚p xq...u jm,˚p xqB 2 x u jm`1,˚p xq if m ě 1 and T Q,m,j0,...,jm`2 pxq " # b Q,m;j0,˚p xqB x u j1,˚p xqB x u j2,˚p xq if m " 0 b Q,m;j0,˚p xqu j1,˚p xq...u jm,˚p xqB x u jm`1,˚p xqB x u jm`2,˚p xq if m ě 1 ,
together with the two initial conditions u 0,˚p xq " φ 0 pxq and u 1,˚p xq " φ 1 pxq.

Applying then the Nagumo norms of indices pps `1qpj `2q, ρq, we deduce successively from Property 1 and Properties 4-5 of Proposition 2.6 the inequalities }u j`2,˚} ps`1qpj`2q,ρ Γp1 `ps `1qpj `2qq ď }f j,˚} ps`1qpj`2q,ρ Γp1 `ps `1qpj `2qq `ÿ j0`j1"j ˆj j 0 , j 1 ˙› › a j0,˚B Γp1 `ps `1qj 0 q Γp1 `ps `1qj m`1 `1qΓp1 `ps `1qj m`2 `1q Γp1 `ps `1qpj m`1 `1qΓp1 `ps `1qpj m`2 `1qqq ĵ j 0 , ..., j m , j m`1 , j m`2 ṗs `1qpj `2q ps `1qj 0 , ..., ps `1qj m , ps `1qpj m`1 `1q, ps `1qpj m`2 `1q Ȯbserve that all the norms written in the inequalities (2.2), and especially the norms }a j0,˚} ps`1qpj0`2q´4,ρ , }b P,m;j0,˚} ps`1qpj0`2q´2,ρ and }b Q,m;j0,˚} ps`1qpj0`2q´2,ρ are well-defined. Indeed, the assumption s ě 1 implies ps `1qpj 0 `2q ´4 ě 2j 0 ě 0 and ps `1qpj 0 `2q ´2 ě 2j 0 `2 ą 0. Lemma 2.8.

4 x u j1,˚› › ps`1qpj`2q,ρ Γp1 `ps `1qpj `2qq `d ÿ m"0 ÿ j0`...`jm`1"j ˆj j 0 , ..., j m`1 ˙› › T P,m,j0,...,jm`1 › › ps`1qpj`2q,ρ Γp1 `ps `1qpj `2qq `d ÿ m"0 ÿ j0`...`jm`2"j ˆj j 0 , ..., j m`2 ˙› › T Q,m,j0,...,
(1) For all j ě 0 and all j 0 , j 1 ě 0 such that j 0 `j1 " j,

(2.3) A s,j0,j1 ď e 4 }a j0,˚} ps`1qpj0`2q´4,ρ
Γp1 `ps `1qj 0 q

(2) For all m, j ě 0 and j 0 , ..., j m`1 ě 0 such that j 0 `... `jm`1 " j,

(2.4) B P,m,s,j0,...,jm`1 ď e 2 }b P,m;j0,˚} ps`1qpj0`2q´2,ρ

Γp1 `ps `1qj 0 q

(3) For all m, j ě 0 and j 0 , ..., j m`2 ě 0 such that j 0 `... `jm`2 " j, Γp1 `ps `1qj 1 q ...

(2.5) C Q,m
› › u jm`1,˚› › ps`1qjm`1,ρ Γp1 `ps `1qj m`1 q `d ÿ m"0 ÿ j0`...`jm`2"j γ Q,m,s,j0 }u j1,˚} ps`1qj1,ρ Γp1 `ps `1qj 1 q ... › › u jm`2,˚› › ps`1qjm`2,ρ
Γp1 `ps `1qj m`2 q for all j ě 0, where the terms g s,j , α s,j0 , β P,m,s,j0 and γ Q,m,s,j0 are nonnegative and defined by g s,j " }f j,˚} ps`1qpj`2q,ρ Γp1 `ps `1qpj `2qq β P,m,s,j0 " e 2 }b P,m;j0,˚} ps`1qpj0`2q´2,ρ

Γp1 `ps `1qj 0 q α s,j0 " e 4 }a j0,˚} ps`1qpj0`2q´4,ρ

Γp1 `ps `1qj 0 q γ Q,m,s,j0 " e 2 }b Q,m;j0,˚} ps`1qpj0`2q´2,ρ
Γp1 `ps `1qj 0 q The following result, which will be useful in the next section, provides some bounds on these various terms. Lemma 2.9. There exist two positive constants

C 1 , K 1 ą 0 such that the inequal- ities 0 ď g s,j ď C 1 K j 1 0 ď β P,m,s,j ď C 1 K j 1 0 ď α s,j ď C 1 K j 1 0 ď γ Q,m,s,j ď C 1 K j 1
hold for all j ě 0 and all m " 0, ..., d.

Proof. Given the hypothesis on the coefficients f j,˚p xq of the inhomogeneity r f pt, xq (see inequality (2.1) at the beginning of Section 2.2), and the analyticity of the functions apt, xq, b P,m pt, xq and b Q,m pt, xq at the origin of C 2 , we first have the relations

|f j,˚p xq| ď CK j Γp1 `ps `1qjq |b P,m;j,˚p xq| ď C 2 K 2j j! |a j,˚p xq| ď C 1 K 1j j! |b Q,m;j,˚p xq| ď C 3 K 3j j!
for all j ě 0, all m P t0, ..., du and all |x| ď ρ, the height constants C, K, C 1 , K 1 , C 2 , K 2 , C 3 , K 3 ą 0 being independent of j, m and x. Hence, applying the definition of the Nagumo norms and the classical property Γpaq ď Γpbq for all a ě 1 and all b ě maxp2, aq, the inequalities 0 ď g s,j ď CK j Γp1 `ps `1qjqρ ps`1qpj`2q Γp1 `ps `1qpj `2qq " Cρ 2ps`1q pKρ s`1 q j 0 ď α s,j ď e 4 C 1 K 1j j!ρ ps`1qpj`2q´4 Γp1 `ps `1qjq " e 4 C 1 ρ 2ps´1q pK 1 ρ s`1 q j 0 ď β P,m,s,j ď e 2 C 2 K 2j j!ρ ps`1qpj`2q´2 Γp1 `ps `1qjq " e 2 C 2 ρ 2s pK 2 ρ s`1 q j 0 ď β Q,m,s,j ď e 2 C 3 K 3j j!ρ ps`1qpj`2q´2 Γp1 `ps `1qjq " e 2 C 3 ρ 2s pK 3 ρ s`1 q j for all j ě 0 and all m P t0, ..., du. The constants C 1 and K 1 follow, which achieves the proof. □

We shall now bound the Nagumo norms }u j,˚} ps`1qj,ρ for any j ě 0. To do that, we shall proceed similarly as in [START_REF] Balser | Summability of solutions of the heat equation with inhomogeneous thermal conductivity in two variables[END_REF][START_REF] Remy | Gevrey regularity of the solutions of some inhomogeneous nonlinear partial differential equations[END_REF][START_REF] Remy | Gevrey regularity of the solutions of some inhomogeneous semilinear partial differential equations with variable coefficients[END_REF][START_REF] Remy | Gevrey order and summability of formal series solutions of some classes of inhomogeneous linear partial differential equations with variable coefficients[END_REF][START_REF] Remy | Gevrey order and summability of formal series solutions of certain classes of inhomogeneous linear integro-differential equations with variable coefficients[END_REF][START_REF] Remy | Gevrey properties and summability of formal power series solutions of some inhomogeneous linear Cauchy-Goursat problems[END_REF][START_REF] Remy | Gevrey index theorem for the inhomogeneous n-dimensional heat equation with a power-law nonlinearity and variable coefficients[END_REF][START_REF] Remy | Gevrey regularity of the solutions of the inhomogeneous partial differential equations with a polynomial semilinearity[END_REF] by using a technique of majorant series.

2.2.3. Second step: a majorant series. Let us consider the formal power series vpXq "

ÿ jě0 v j X j P R `rrX ss,
where the coefficients v j are recursively determined from the two initial conditions

v 0 " 1 `}φ 0 } 0,ρ , v 1 " }φ 1 } s`1,ρ Γp2 `sq by the relations (2.7) v j`2 " g s,j `ÿ j0`j1"j α s,j0 v j1 `ÿ j0`...`j d`2 "j δ s,j0 v j1 ...v j d`2
for all j ě 0, where the terms δ s,j0 are nonnegative and defined by

δ s,j0 " d ÿ m"0
pβ P,m,s,j0 `γQ,m,s,j0 q.

Lemma 2.10. The following inequalities hold for all j ě 0:

(2.8) 0 ď }u j,˚} ps`1qj,ρ Γp1 `ps `1qjq ď v j .

Proof. According to the initial conditions on the u j 's and on the v j 's, the inequalities (2.8) hold for j " 0 and j " 1. Let us now suppose that these inequalities are true for all k " 0, ..., j `1 for a certain j ě 0. Then, it results from inequalities (2.6) that 0 ď }u j`2,˚} ps`1qpj`2q,ρ Γp1 `ps `1qpj `2qq ď g s,j `ÿ j0`j1"j α s,j0 v j1

`d ÿ m"0 ÿ j0`...`jm`1"j β P,m,s,j0 v j1 ...v jm`1 `d ÿ m"0 ÿ j0`...`jm`2"j γ Q,m,s,j0 v j1 ...v jm`2 .
Let us now observe that ' for all m P t0, ..., du, any pm `2q-tuple pj 0 , ..., j m`1 q P N m`2 such that j 0 ... `jm`1 " j can be seen as the pd `3q-tuple pj 0 , ..., j m`1 , j m`2 , ..., j d`2 q P N d`3 where j m`2 " ... " j d`2 " 0; ' for all m P t0, ..., d ´1u, any pm `3q-tuple pj 0 , ..., j m`2 q P N m`3 such that j 0 `...`j m`2 " j can be seen as the pd`3q-tuple pj 0 , ..., j m`2 , j m`3 , ..., j d`2 q P N d`3 where j m`3 " ... " j d`2 " 0.

Notice that the convergence of vpXq is obvious when δpXq " 0 (case where the polynomials P and Q are both zero), since we have the identity p1´X 2 αpXqqvpXq " gpXq.

Let us now assume δpXq ı 0. To prove the convergence of the formal series vpXq, we proceed through a fixed point method as follows. Let us set

V pXq " ÿ iě0 V i pXq
and let us choose the solution of Eq. (2.9) given by the system

$ & % p1 ´X2 αpXqqV 0 pXq " gpXq p1 ´X2 αpXqqV i`1 pXq " X 2 δpXq ÿ i1`...`i d`2 "i V i1 pXq...V i d`2 pXq for i ě 0.
By induction on i ě 0, we easily check that (2.10)

V i pXq " C i,d`2 X 2i pδpXqq i pgpXqq ipd`1q`1 p1 ´X2 αpXqq ipd`2q`1 ,
where the C i,d`2 's are the positive constants recursively determined from C 0,d`2 :" 1 by the relations

C i`1,d`2 " ÿ i1`...`i d`2 "i C i1,d`2 ...C i d`2 ,d`2 .
Thereby, all the V i 's are analytic functions on the disc with center 0 P C and radius minpr 1 α , r δ , r g q at least. Moreover, identities (2.10) show us that V i pXq is of order X 2i for all i ě 0. Consequently, the series V pXq makes sense as a formal power series in X and we get V pXq " vpXq by unicity.

We are left to prove the convergence of V pXq. To do that, let us choose 0 ă r ă minpr 1 α , r α , r δ , r g q. By definition, the constants C i,d`2 's are the generalized Catalan numbers of order d `2. We have therefore

C i,d`2 " 1 pd `1qi `1 ˆipd `2q i ˙ď 2 ipd`2q
for all i ě 0 (see [START_REF] Hilton | Catalan numbers, their generalization, and their uses[END_REF][START_REF] Klarner | Correspondences between plane trees and binary sequences[END_REF][START_REF] Pólya | Aufgaben und Lehrsätze aus der Analysis[END_REF] for instance). On the other hand, according to the increasing of the functions αpXq, δpXq and gpXq on r0, rs, we derive from identities (2.10) the inequalities

|V i pXq| ď gprq 1 ´r2 αprq ˆ2d`2 δprqpgprqq d`1 p1 ´r2 αprqq d`2 |X| 2 ˙i
for all i ě 0 and all |X| ď r. Consequently, since δprq ą 0 and gprq ą 0 (we have indeed gp0q ě 1), the series V pXq is normally convergent on any disc with center 0 P C and radius

0 ă r 1 ă min ˜r, ˆp1 ´r2 αprqq d`2 2 d`2 δprqpgprqq d`1 ˙1{2 ¸.
This proves the analyticity of V pXq at 0 and ends the proof of Proposition 2.11. □

According to Lemma 2.10 and Proposition 2.11, we can now bound the Nagumo norms }u j,˚} ps`1qj,ρ . Corollary 2.12. Let C 1 , K 1 ą 0 be as in Proposition 2.11. Then, the inequalities }u j,˚} ps`1qj,ρ ď C 1 K 1j Γp1 `ps `1qjq hold for all j ě 0.

We are now able to conclude the proof of the first point of Theorem 2.3. 2.2.4. Third step: conclusion. We must prove on the sup-norm of the u j,˚p xq estimates similar to the ones on the norms }u j,˚} ps`1qj,ρ (see Corollary 2.12). To this end, we proceed by shrinking the closed disc |x| ď ρ. Let 0 ă ρ 1 ă ρ. Then, for all j ě 0 and all |x| ď ρ 1 , we have |u j,˚p xq| " ˇˇˇu j,˚p xqd ρ pxq ps`1qj 1 d ρ pxq ps`1qj ˇˇˇď ˇˇu j,˚p xqd ρ pxq ps`1qj ˇpρ ´ρ1 q ps`1qj ď }u j,˚} ps`1qj,ρ pρ ´ρ1 q ps`1qj To conclude that we can not say better about the Gevrey order of r upt, xq, that is r upt, xq is generically 1-Gevrey, we need to find an example for which the formal solution r upt, xq of Eq. (1.2) is s 1 -Gevrey for no s 1 ă 1. Proposition 2.13 below provides such an example. Proposition 2.13. Let us consider the inhomogeneous Boussinesq equation

(2.11) # B 2 t u ´aB 4 x u ´bB 2 x u ´cB 2 x pu n q " r f pt, xq, a, b, c ą 0, n ě 2 B j t upt, xq |t"0 " φpxq, j " 0, 1
where φpxq is the analytic function on D 1 defined by φpxq " 1 1 ´x .

Suppose that the inhomogeneity r f pt, xq is s-Gevrey and satisfies the inequalities B ℓ x f j,˚p 0q ě 0 for all ℓ, j ě 0.

Then, the formal solution r upt, xq of Eq. (2.11) is exactly 1-Gevrey.

Proof. According to the remark above, it is sufficient to prove that r upt, xq is s 1 -Gevrey for no s 1 ă 1.

First of all, let us rewrite Eq. (2.11) in the form

B 2 t u ´aB 4
x u ´pb `cnu n´1 qB 2 x u ´cnpn ´1qu n´2 pB x uq 2 " r f pt, xq.

We derive then from the general relations (3. In particular, we easily check that the coefficients u 2j,˚p xq read for all j ě 1 on the form u 2j,˚p xq " a j B 4j

x φpxq `rem j pxq, where rem jpκ`vq pxq is a linear combination with nonnegative coefficients of terms of the form ź ℓPt0,...,2pj´1qu d1,d2ě0 p1,p2,p3,p4,p5,p6,p7ě0 a p1 b p2 c p3 n p4 pn ´1q p5 `Bd1

x f ℓ,˚p xq ˘p6 `Bd2

x φpxq ˘p7 .

Using then our assumptions on the coefficients a, b, c and n, and on the inhomogeneity r f pt, xq, we finally get the following inequalities:

(2.12) u 2j,˚p 0q ě a j p4jq!.

Let us now suppose that r upt, xq is s 1 -Gevrey for some s 1 ă 1. Then, Definition 2.1 and inequality (2.12) imply 1 ď C ˆK a ˙j Γp1 `2ps 1 `1qjq Γp1 `4jq for all j ě 1 and some convenient positive constants C and K independent of j. Proposition 2.13 follows since such inequalities are impossible. Indeed, applying the Stirling's Formula, we get (2.13)

C ˆK a ˙j Γp1 `2ps 1 `1qjq Γp1 `4jq " jÑ`8 C 1 ˆK1 j 2p1´s 1 q ˙j with C 1 " C c s 1 `1 2 and K 1 " Ke 2p1´s 1 q p2ps 1 `1qq 2ps 1 `1q 256a ,
and the right hand-side of (2.13) goes to 0 when j tends to infinity. □

This achieves the proof of the second point of Theorem 2.3.

1-summability of r upt, xq

In this section, we consider the critical value s " 1 and we are interested in the 1-summability of the formal solution r upt, xq P OpD ρ1 qrrtss of the generalized Boussinesq equation (1.2). More precisely, our aim is to make explicit a necessary and sufficient condition under which r upt, xq is 1-summable in a given direction argptq " θ. Before starting our calculations, let us recall the definition and some properties of the 1-summability.

3.1. 1-summable formal series. Still considering t as the variable and x as a parameter, one extends, in the similar way as the s-Gevrey formal series (see Definition 2.1), the classical notion of 1-summability of formal series in Crrtss to the notion of 1-summability of formal series in OpD ρ1 qrrtss in requiring similar conditions, the estimates being however uniform with respect to x.

Among the many equivalent definitions of 1-summability in a given direction argptq " θ at t " 0, we choose in this article a generalization of Ramis' definition which states that a formal series r gpt, xq P Crrtss is 1-summable in direction θ if there exists a holomorphic function g which is 1-Gevrey asymptotic to r

g in an open sector Σ θ,ąπ bisected by θ and with opening larger than π [15, Def. 3.1]. To express the 1-Gevrey asymptotic, there also exist various equivalent ways. We choose here the one which sets conditions on the successive derivatives of g (see [11, p. 171] or [START_REF] Ramis | Les séries k-sommables et leurs applications[END_REF]Thm. 2.4] for instance).

Definition 3.1 (1-summability). A formal series r

upt, xq P OpD ρ1 qrrtss is said to be 1-summable in the direction argptq " θ if there exist a sector Σ θ,ąπ , a radius 0 ă r 1 ď ρ 1 and a function upt, xq called 1-sum of r upt, xq in the direction θ such that (1) u is defined and holomorphic on Σ θ,ąπ ˆDr1 ;

(2) for any x P D r1 , the map t Þ Ñ upt, xq has r upt, xq "

ÿ jě0 u j,˚p xq t j j!
as Taylor series at 0 on Σ θ,ąπ ; (3) for any proper 2 subsector Σ Ť Σ θ,ąπ , there exist two positive constants C, K ą 0 such that, for all ℓ ě 0, all t P Σ and all x P D r1 , ˇˇB ℓ t upt, xq ˇˇď CK ℓ Γp1 `2ℓq " CK ℓ p2ℓq!. We denote by OpD ρ1 qttu 1;θ the subset of OpD ρ1 qrrtss made of all the 1-summable formal series in the direction argptq " θ.

Notice that, for any fixed x P D r1 , the 1-summability of r upt, xq coincides with the classical 1-summability. Consequently, Watson's lemma [START_REF] Loday-Richaud | Divergent Series, Summability and Resurgence II. Simple and Multiple Summability[END_REF]Theorem 5.1.3] implies the unicity of its 1-sum, if any exists.

Notice also that the 1-sum of a 1-summable formal series r upt, xq P OpD ρ1 qttu 1;θ may be analytic with respect to x on a disc D r1 smaller than the common disc D ρ1 of analyticity of the coefficients u j,˚p xq of r upt, xq. Denote by B ´1 t r u (resp. B ´1 x r u) the anti-derivative of r u with respect to t (resp. x) which vanishes at t " 0 (resp. x " 0). Following Proposition 3.2, which is proved for instance in [START_REF] Balser | Summability of solutions of the heat equation with inhomogeneous thermal conductivity in two variables[END_REF]Prop. 3.2], specifies the algebraic structure of OpD ρ1 qttu 1;θ . Proposition 3.2. Let θ P R{2πZ. Then, pOpD ρ1 qttu 1;θ , B t , B x q is a C-differential algebra stable under the anti-derivatives B ´1 t and B ´1

x . With respect to t, the 1-sum upt, xq of a 1-summable series r upt, xq P OpD ρ1 qttu 1;θ is analytic on an open sector for which there is no control on the angular opening except that it must be larger than π (hence, it contains a closed sector Σ θ,π bisected by θ and with opening π) and no control on the radius except that it must be positive. Thereby, the 1-sum upt, xq is well-defined as a section of the sheaf of analytic functions in pt, xq on a germ of closed sector of opening π (that is, a closed 2 A subsector Σ of a sector Σ 1 is said to be a proper subsector and one denotes Σ Ť Σ 1 if its

closure in C is contained in Σ 1 Y t0u.
interval I θ,π of length π on the circle S 1 of directions issuing from 0; see [12, 1.1] or [9, I.2]) times t0u (in the plane C of the variable x). We denote by O I θ,π ˆt0u the space of such sections.

Corollary 3.3. The operator of 1-summation

S 1;θ : OpD ρ1 qttu 1;θ ÝÑ O I θ,π ˆt0u r upt, xq Þ ÝÑ upt, xq
is a homomorphism of C-differential algebras for the derivations B t and B x . Moreover, it commutes with the anti-derivations B ´1 t and B ´1

x . The following result investigates the 1-summability of the analytic functions at the origin p0, 0q P C 2 . Proposition 3.4. Let apt, xq be an analytic function on a polydic D ρ0 ˆDρ1 . Then, apt, xq P OpD ρ1 qttu 1;θ for any direction θ P R{2πZ.

Proof. Let us fix a direction θ P R{2πZ and four radii 0 ă ρ 2 j ă ρ 1 j ă ρ j with j " 0, 1. Let us first start by observing that apt, xq is its own Taylor series at p0, 0q on D ρ0 ˆDρ1 . On the other hand, we derive from the Cauchy Integral Formula

B ℓ t apt, xq " ℓ! p2iπq 2 ż |t 1 ´t|"ρ 1 0 ´ρ2 0 |x 1 ´x|"ρ 1 1 ´ρ2 1 apt 1 , x 1 q pt 1 ´tq ℓ`1 px 1 ´xq dt 1 dx 1 the inequalities |B ℓ t apt, xq| ď α ˆ1 ρ 1 0 ´ρ2 0 ˙ℓ ℓ!
for all ℓ ě 0 and all pt, xq P D ρ 2 0 ˆDρ 2 1 , where α stands for the maximum of |apt, xq| on the closed polydisc D ρ 1 0 ˆDρ 1 1 (D ρ denotes the closed disc with center 0 P C and radius ρ ą 0). Observing then that ℓ! ď p2ℓq! for all ℓ ě 0, we finally get the inequalities 

|B ℓ t apt, xq| ď α ˆ1 ρ 1 0 ´ρ2 0 ˙ℓ p2ℓq 
ÿ ně0 a ˚,n ptq x n n! b P,m pt, xq " ÿ ně0 b P,m;˚,n ptq x n n! , b Q,m pt, xq " ÿ ně0 b Q,m;˚,n ptq x n n!
with a ˚,n ptq, b P,m;˚,n ptq, b Q,m;˚,n ptq P OpD ρ0 q for all n ě 0 and all m " 0, ..., d. Let us also write the formal solution r upt, xq and the inhomogeneity r f pt, xq in the same way:

r upt, xq " ÿ ně0 r u ˚,n ptq x n n! , r f pt, xq " ÿ ně0 r f ˚,n ptq x n n! .
Observe that the coefficients r u ˚,n ptq and r f ˚,n ptq are divergent in general (hence, the notation with a tilde). By identifying the terms in x n in Eq. (1.2), we get the identities ˙r T Q,m,n0,...,nm`2 ptq for all n ě 0, where r T P,m,n0,...,nm`1 ptq and r T Q,m,n0,...,nm`2 ptq are the formal power series in t respectively defined by r T P,m,n0,...,nm`1 ptq "

# b P,0;˚,n0 ptqr u ˚,n1`2 ptq if m " 0 b P,m;˚,n0 ptqr u ˚,n1 ptq...r u ˚,nm ptqr u ˚,nm`1`2 ptq if m ě 1 and r T Q,m,n0,...,nm`2 ptq " # b Q,0;˚,n0 ptqr u ˚,n1`1 ptqr u ˚,n2`1 ptq if m " 0 b Q,0;˚,n0 ptqr u ˚,n1 ptq...r u ˚,nm ptqr u ˚,nm`1`1 ptqr u ˚,nm`2`1 ptq if m ě 1 .
By assumption, a ˚,0 p0q " ap0, 0q ‰ 0. Then, 1{a ˚,0 ptq is well-defined in Crrtss and, consequently, each coefficient r u ˚,n ptq is uniquely determined from the inhomogeneity r f pt, xq and from the formal series r u ˚,n 1 ptq with n 1 " 0, 1, 2, 3. In particular, the same applies to the formal solution r upt, xq. We are now able to state the main result in view in this section. Theorem 3.5. Let r upt, xq be the formal solution in OpD ρ1 qrrtss of the generalized Boussinesq equation (1.2). Let argptq " θ P R{2πZ be a direction issuing from 0. Then,

(1) r upt, xq is 1-summable in the direction θ if and only if the inhomogeneity r f pt, xq and the formal series r u ˚,n ptq " B n x r upt, xq |x"0 P Crrtss for n " 0, 1, 2, 3 are 1-summable in the direction θ.

(2) Moreover, the 1-sum upt, xq, if any exists, satisfies Eq. (1.2) in which r f pt, xq is replaced by its 1-sum f pt, xq in the direction θ.

Observe that Theorem 3.5 coincides with Proposition 1.3 in the case of the Euler-Lagrange equation (1.3), that is in the case where the polynomials P and Q are both zero.

3.3. Proof of Theorem 3.5. First of all, let us observe that the necessary condition of the first point is straightforward from Proposition 3.2, and that the second point stems obvious from Corollary 3.3. Consequently, we are left to prove the sufficient condition of the first point. To this end, we fix from now on a direction θ and we suppose that the inhomogeneity r f pt, xq and the formal power series r u ˚,n ptq " B n x r upt, xq |x"0 P Crrtss for n " 0, 1, 2, 3 are all 1-summable in the direction θ. To prove that the formal solution r upt, xq is also 1-summable in this direction, we shall proceed through a fixed point method similar to the ones already used by W. Balser and M. Loday-Richaud in [START_REF] Balser | Summability of solutions of the heat equation with inhomogeneous thermal conductivity in two variables[END_REF] and by the author in [19-22, 25, 26]. Observe that r wpt, xq is actually the unique formal series solution of Eq. (3.2) (reason as in Proposition 1.1 by exchanging the role of t and x). Observe also that, thanks to the initial assumption ap0, 0q ‰ 0 (see page 2), the function Apt, xq is well-defined and analytic on a polydisc D ρ 1 0 ˆDρ 1 1 with convenient radii 0 ă ρ 1 j ď ρ j for j " 0, 1; hence, the coefficients r B ',k pt, xq, r C Q,k pt, xq and r D k pt, xq, and the inhomogeneity r gpt, xq belong to OpD ρ 1 1 qrrtss. Moreover, taking into account the fact that the formal series r f pt, xq and r vpt, xq are both 1-summable in the direction θ, it is the same for all these formal series (Propositions 3.2 and 3.4). Consequently, identity (3.2) above tells us that it is sufficient to prove that the formal series r wpt, xq is also 1-summable in the direction θ. To do that, we shall proceed in a similar way as [3, 19-22, 25, 26] by using a fixed point method. 

r B P,k pt, xqpB ´4 x r wq k B ´2 x r w ´d ÿ k"0 r B Q,k pt, xqpB ´4 x r wq k pB ´3 x r wq 2 ´d ÿ k"0 r C Q,k pt, xqpB ´4 x r wq k B ´3 x r w ´d ÿ k"1 r D k pt,
B ´4 x r w µi ¸B´2 x r w µ k`1 ḑ ÿ k"0 ÿ µ1`...`µ k`2 "µ ˜r B Q,k pt, xq ˜k ź i"1 B ´4 x r w µi ¸B´3 x r w µ k`1 B ´3 x r w µ k`2 ḑ ÿ k"0 ÿ µ1`...`µ k`1 "µ ˜r C Q,k pt, xq ˜k ź i"1 B ´4 x r w µi ¸B´3 x r w µ k`1 ḑ ÿ k"1 ÿ µ1`...`µ k "µ ˜r D k pt, xq ˜k ź i"1 B ´4 x r w µi
¸with the classical convention that the products over i are 1 when k " 0. Observe that r w µ pt, xq P OpD ρ 1 1 qrrtss for all µ ě 0. Observe also that the r w µ pt, xq's are of order Opx 2µ q in x for all µ ě 0. Thereby, the series Ă W pt, xq itself makes sense as a formal series in t and 1 with a convenient radius 0 ă ρ 2 1 ď ρ 1 1 . To end the proof, it remains to prove that the series ÿ µě0 w µ pt, xq is convergent and that its sum wpt, xq is the 1-sum of r wpt, xq in the direction θ. To do that, we shall now give estimates on the functions w µ pt, xq.

3.3.3.

Third step: some estimates on the w µ pt, xq's. According to Definition 3.1 and Proposition 3.4, there exists a radius 0 ă r 1 1 ď minp1, ρ 2 1 q such that, for any proper subsector Σ Ť Σ θ,ąπ , there exist two positive constants C ą 0 and K ě 1 such that

(3.4) $ ' & ' % ˇˇB ℓ t w 0 pt, xq ˇˇď CK ℓ p2ℓq! ˇˇB ℓ t Apt, xq ˇˇď CK ℓ p2ℓq!, ˇˇB ℓ t B ',k pt, xq ˇˇď CK ℓ p2ℓq! ˇˇB ℓ t C Q,k pt, xq ˇˇď CK ℓ p2ℓq!, ˇˇB ℓ t D k pt, xq ˇˇď CK ℓ p2ℓq 
! for all ℓ ě 0, all k " 0, ..., d, and all pt, xq P Σ ˆDr 1 1 .

Let us now fix a proper subsector Σ Ť Σ θ,ąπ and let us choose the constants C and K as above. Proposition 3.6 below provides us some first estimates on the derivatives B ℓ t w µ pt, xq on Σ ˆDr 1 1 .

Proposition 3.6. Let pP µ pxqq µě0 be the sequence of polynomials in R `rxs recursively determined from P 0 pxq " 1 by the relations

(3.5) P µ`1 pxq " 3CB ´4 x P µ pxq `d ÿ k"0 ˜p3Cq k`1 p4µ `4q! ÿ µ1`...`µ k`1 "µ ˜k`1 ź i"1 p4µ i q! ¸˜k ź i"1 B ´4 x P µi pxq ¸B´2 x P µ k`1 pxq ḑ ÿ k"0 ˜p3Cq k`2 p4µ `4q! ÿ µ1`...`µ k`2 "µ ˜k`2 ź i"1 p4µ i q! ¸˜k ź i"1 B ´4 x P µi pxq ¸˜k`2 ź i"k`1 B ´3 x P µi pxq ¸ḑ ÿ k"0 ˜p3Cq k`1 p4µ `4q! ÿ µ1`...`µ k`1 "µ ˜k`1 ź i"1 p4µ i q! ¸˜k ź i"1 B ´4 x P µi pxq ¸B´3 x P µ k`1 pxq ḑ ÿ k"1 ˜p3Cq k p4µ `4q! ÿ µ1`...`µ k "µ ˜k ź i"1 p4µ i q!B ´4
x P µi pxq ¸for all µ ě 0, where the products over i are 1 when k " 0 as usual. Then, the following inequalities

(3.6)
ˇˇB ℓ t w µ pt, xq ˇˇď CK 2µ`ℓ p4µ `2ℓq!P µ p|x|q hold for all ℓ, µ ě 0 and all pt, xq P Σ ˆDr 1 1 . Proof. The proof proceeds by recursion on µ. The case µ " 0 is straightforward from the first inequality of (3.4). Let us now suppose that the inequalities (3.6) hold for all the functions w j pt, xq with j " 0, ..., µ for a certain µ ě 0.

According to the relations (3.3), we derive from the generalized Leibniz Formula, from the inequalities (3.4) and (3.6), and from the fact that K ě 1 the identities

ˇˇB ℓ t w µ`1 pt, xq ˇˇď CK 2µ`2`ℓ p4µ `4 `2ℓq! ˆ«S ℓ,µ B ´4 x P µ p|x|q `d ÿ k"0 ÿ µ1`...`µ k`1 "µ ˜S1 k`1,ℓ,µ,µ1,...,µ k`1 ˜k ź i"1 B ´4 x P µi p|x|q ¸B´2 x P µ k`1 p|x|q ḑ ÿ k"0 ÿ µ1`...`µ k`2 "µ ˜S1 k`2,ℓ,µ,µ1,...,µ k`2 ˜k ź i"1 B ´4 x P µi p|x|q ¸˜k`2 ź i"k`1 B ´3 x P µi p|x|q ¸ḑ ÿ k"0 ÿ µ1`...`µ k`1 "µ ˜S1 k`1,ℓ,µ,µ1,...,µ k`1 ˜k ź i"1 B ´4 x P µi p|x|q ¸B´3 x P µ k`1 p|x|q ḑ ÿ k"1 ÿ µ1`...`µ k "µ ˜S1 k,ℓ,µ,µ1,...,µ k ˜k ź i"1 B ´4 
x P µi p|x|q ¸¸ff any tuples pn, n 1 , ..., n q q of nonnegative integers satisfying q ě 2 and n 1 `...`n q " n by the relations ˆn m ˙" n! m!pn ´mq! and ˆn n 1 , ..., n q ˙" n! n 1 !...n q ! .

They respectively denote the number of ways of choosing m objects from a collection of n distinct objects without regard to order, and the number of ways of putting n " n 1 `... `nq different objects into q different boxes with n i in the i-th box for all i " 1, ..., q.

Using the fact that n! " Γp1 `nq for any integer n ě 0, one can easily extend the definitions of these coefficients to the case where their terms are no longer necessarily integers by setting ˆa a 1 , ..., a q ˙" Γp1 `aq Γp1 `a1 q...Γp1 `aq q " Γp1 `aq q ź i"1

Γp1 `ai q for any tuples pa, a 1 , ..., a q q of nonnegative real numbers satisfying q ě 2 and a 1 ... `aq " a. Observe that all these coefficients are positive. Observe also that one has the following decomposition (4.3) ˆa a 1 , ..., a q ˙" q ź i"2 ˆa1 `... `ai a 1 `... `ai´1

˙.

The four propositions below extend to the generalized binomial coefficients (4.1) and the generalized multinomial coefficients (4.2) some well-known results in combinatorial analysis.

In the proof of Theorems 2. (2) (Multinomial case) Let q ě 2 be an integer, pa, a 1 , ..., a q q a tuple of nonnegative real numbers and pn, n 1 , ..., n q q a tuple of nonnegative integers such that a 1 `... `aq " a and n 1 `... `nq " n. Then,

ˆa `n a 1 `n1 , ..., a q `nq ˙ě ˆa a 1 , ..., a q ˙ˆn n 1 , ..., n q ˙.

Proof. ‹ First point. The inequality (4.5) is clear for n " m " 0. Let us now fix 0 ď b ď a and let us prove by induction on n ě 1 the property pP n q : @m P t0, ..., nu, Assuming now the property pP n q for a certain n ě 1, let us prove the property pP n`1 q. As for the property pP 1 q, the sought inequality stems from a direct calculation when m " 0 and m " n `1:

ˆa `n `1 b ˙"
Γp1 `a `n `1q Γp1 `bqΓp1 `a `n `1 ´bq " ˜n`1 ź since all the coefficients in the sum are nonnegative. However, this proof fails in our general case where a and b are no longer integers, since some terms in the sum of (4.7) may now be negative. 

1. 2 .

 2 The generalized Boussinesq equation.

Xq " d ÿ m" 0 bb

 0 P,m pt, xqX m and Qpt, x, Xq " Q,m pt, xqX m ;

Proposition 1 . 1 .

 11 Equation (1.2) admits a unique formal solution r upt, xq P OpD ρ1 qrrtss. Proof. Let us write the coefficients apt, xq, b P,m pt, xq and b Q,m pt, xq for all m " 0, ..., d, and the inhomogeneity r f pt, xq in the form apt, xq " m pt, xq " ÿ jě0 b P,m;j,˚p xq t j j! b Q,m pt, xq " ÿ jě0 b Q,m;j,˚p xq t j j! with a j,˚p xq, b P,m;j,˚p xq, b Q,m;j,˚p xq, f j,˚p xq P OpD ρ1 q for all j ě 0 and all m " 0, ..., d. Looking for r upt, xq on the same type: r upt, xq " ÿ jě0

( 1 )

 1 r upt, xq and r f pt, xq are together s-Gevrey for any s ě 1. (2) r upt, xq is generically 1-Gevrey while r f pt, xq is s-Gevrey with s ă 1.

Definition 2 . 1

 21 (s-Gevrey formal series). Let s ě 0 be. A formal power series r upt, xq " ÿ jě0 u j,˚p xq t j j! P OpD ρ1 qrrtss is said to be Gevrey of order s (in short, s-Gevrey) if there exist three positive constants 0 ă ρ ă ρ 1 , C ą 0 and K ą 0 such that the inequalities sup |x|ďρ |u j,˚p xq| ď CK j Γp1 `ps `1qjq

2. 2 . 1 .Definition 2 . 5 .

 2125 Nagumo norms. Let f P OpD ρ1 q, p ě 0 and 0 ă r ă ρ 1 be. Then, the Nagumo norm }f } p,r with indices pp, rq of f is defined by }f } p,r :" sup |x|ďr |f pxqd r pxq p | , where d r pxq denotes the Euclidian distance d r pxq :" r ´|x|.

! 2 0 3 . 2 .

 232 for all ℓ ě 0 and all pt, xq P D ρ 2 0 ˆDρ 2 1 . The choice of an arbitrary sector Σ θ,ąπ Ă D ρ ends the proof of Proposition 3.4. □ Let us now turn to the study of the 1-summability of the formal solution r upt, xq P OpD ρ1 qrrtss of Eq. (1.2). Main result. Before stating our main result, let us start with a preliminary remark. Let us write the coefficients apt, xq, b P,m pt, xq and b Q,m pt, xq in the form apt, xq "

( 3 . 1 )

 31 a ˚,0 ptqr u ˚,n`4 ptq " B 2 t r u ˚,n ptq ´r f ˚,n ptq ´ÿ n0`n1"n n1‰n ˆn n 0 , n 1 ˙a˚,n0 ptqr u ˚,n1`4 ptq ´d ÿ m"0 ÿ n0`...`nm`1"n ˆn n 0 , ..., n m`1 ˙r T P,m,n0,...,nm`1 ptq ´d ÿ m"0 ÿ n0`...`nm`2"n ˆn n 0 , ..., n m`2

  x and, consequently, Ă W pt, xq " r wpt, xq by unicity. Let us now respectively denote by w 0 pt, xq, B ',k pt, xq, C Q,k pt, xq and D k pt, xq the 1-sums of r w 0 pt, xq, r B ',k pt, xq, r C Q,k pt, xq and r D k pt, xq in the direction θ and, for all µ ą 0, let w µ pt, xq be determined by the relations (3.3) in which the formal series r B ',k pt, xq, r C Q,k pt, xq and r D k pt, xq are respectively replaced by B ',k pt, xq, C Q,k pt, xq and D k pt, xq, and all the r w µ by w µ . By construction, all the functions w µ pt, xq are defined and holomorphic on a common domain Σ θ,ąπ ˆDρ 2

  Γp1 `bqΓp1 `a ´bq for any nonnegative real numbers 0 ď b ď a and (4.2)

3 and 3 . 5 ,

 35 we essentially use the inequalities stated in Propositions 4.2, 4.4 and 4.5. The result of Proposition 4.1 is useful for the proof of Proposition 4.2.

Proposition 4 . 1 (( 1 )

 411 Pascal Formula). Let 0 ď b ď a be two nonnegative real numbers and 1 ď m ď n two nonnegative integers. Then,(4.4) ˆa `n `1 b `m ˙" ˆa `n b `m˙`ˆa `n b `m ´1˙. Γp1 `b`mqΓp1 `a ´b `n ´mq `Γp1 `a `nq Γp1 `b `m ´1qΓp1 `a ´b `n ´m `1q " pa ´b `n ´m `1qΓp1 `a `nq Γp1 `b `mqΓp1 `a ´b `n ´m `1q `pb `mqΓp1 `a `nq Γp1 `b `mqΓp1 `a ´b `n ´m `1q " pa `n `1qΓp1 `a `nq Γp1 `b `mqΓp1 `a ´b `n ´m `1q "Γp1 `a `n `1q Γp1 `b `mqΓp1 `a ´b `n ´m `1q " (Binomial case) Let 0 ď b ď a be two nonnegative real numbers and 0 ď m ď n two nonnegative integers. Then,

‹ˆn1Remark 4 . 3 .

 43 When m P t1, ..., nu, it stems from Proposition 4.1 and the property pP n q as follows:This ends the induction and proves the first point of Proposition 4.2. Second point. Let us apply the relation (4.3) and the inequality (4.5) to each factor of the product. We get ˆa `n a 1 `n1 , ..., a q `nq ˙" q ź i"2 ˆa1 `... `ai `n1 `... `ni a 1 `... `ai´1 `n1 `... `ni´1 `... `ni n 1 `... `ni´1˙¸.The inequality (4.6) follows then by applying again the relation (4.3), which ends the proof of the second point of Proposition 4.2. □ When all the terms a, b, n and m are nonnegative integers, inequality (4.5) is also a direct consequence of the Chu-

Proposition 4 . 4 (

 44 Variations of the binomial coefficients). Let b ě 0. Then, the function Bin b : a P rb, `8rÞ ÝÑ ˆa b ˙is increasing on rb, `8r. In particular, Bin b paq ě Bin b pbq " 1 for all a ě b.

  Setting the problem. The nonlinear evolution equations are often used to represent the motion of the isolated waves, localized in a small part of space in many fields such as optical fibers, neural physics, solid state physics, hydrodynamics, diffusion process, plasma physics and nonlinear optics (nonlinear heat equation, nonlinear Klein-Gordon equation, nonlinear Euler-Lagrange equation, Burgers equation, Korteweg-de Vries equation, Boussinesq equation, etc.).
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	1. Introduction	
	1.1.	

  P,m;j0,˚p xqu j1,˚p xq...u jm,˚p xqB 2 x u jm`1,˚p xq if m ě 1 and

	T P,m,j0,...,jm`1 pxq "	# b P,0;j0,˚p xqB 2 x u j1,˚p xq b	if m " 0

  Q,m,s,j0,...,jm`2 " e 2 }b Q,m;j0,˚} ps`1qpj0`2q´2,ρ

							›
							jm`2 Γp1 `ps `1qpj `2qq › ps`1qpj`2q,ρ	,
	and, next,				
	(2.2)	}u j`2,˚} ps`1qpj`2q,ρ Γp1 `ps `1qpj `2qq	ď	}f j,˚} ps`1qpj`2q,ρ Γp1 `ps `1qpj `2qq
						`ÿ j0`j1"j	A s,j0,j1	}u j1,˚} ps`1qj1,ρ Γp1 `ps `1qj 1 q
	`d ÿ m"0	ÿ j0`...`jm`1"j	B P,m,s,j0,...,jm`1	}u j1,˚} ps`1qj1,ρ Γp1 `ps `1qj 1 q	...	› › u jm`1,˚› › ps`1qjm`1,ρ Γp1 `ps `1qj m`1 q
		`d ÿ m"0	ÿ j0`...`jm`2"j	C Q,m,s,j0,...,jm`2	Γp1 `ps `1qj 1 q }u j1,˚} ps`1qj1,ρ	...	› › u jm`2,˚› ›
				Γp1 `ps `1qj 0 q	Γp1 `ps `1qj 1 `4q Γp1 `ps `1qpj 1 `2qq	ˆˆj
							ṗs
							j 0 , j 1
							`1qpj `2q	ḂP,m,s,j0,...,jm`1
							ps `1qj 0 , ps `1qpj 1 `2q
				"	e 2 }b P,m;j0,˚} ps`1qpj0`2q´2,ρ Γp1 `ps `1qj 0 q	Γp1 `ps `1qj m`1 `2q Γp1 `ps `1qpj m`1 `2qq	ĵ
							j

ps`1qjm`2,ρ

Γp1 `ps `1qj m`2 q for all j ě 0, where the terms A s,j0,j1 , B P,m,s,j0,...,jm`1 and C Q,m,s,j0,...,jm`2 are nonnegative and defined by A s,j0,j1 " e 4 }a j0,˚} ps`1qpj0`2q´4,ρ 0 , ..., j m , j m`1 ṗs `1qpj `2q ps `1qj 0 , ..., ps `1qj m , ps `1qpj m`1 `2q ˙ C

  The proof of inequalities (2.4) and (2.5) is similar and is left to the reader. □

	(2)-(3) Applying Lemma 2.8 to the previous relations (2.2), we finally get the inequalities
	(2.6)	}u j`2,˚} ps`1qpj`2q,ρ Γp1 `ps `1qpj `2qq	ď g s,j	`ÿ j0`j1"j	α s,j0	}u j1,˚} ps`1qj1,ρ Γp1 `ps `1qj 1 q
		`d ÿ	ÿ	β P,m,s,j0	}u j1,˚} ps`1qj1,ρ
		m"0	j0`...`jm`1"j			
		Hence, the inequality	
				Γp1 `ps `1qj 1 `4q Γp1 `ps `1qpj 1 `2qq	ď 1
		by increasing of the Gamma function on r2, `8r.
		On the other hand, applying successively the Vandermonde Inequality
		(see Proposition 4.2) and Proposition 4.4, we get
		ˆps `1qpj `2q ps `1qj 0 , ps `1qpj 1 `2q ˙ě ˆj j 0 , j 1	sj 0 , sj 1 `2ps `1q ˙ˆsj `2ps `1q	ě
							ˆj j 0 , j 1	˙;
		hence, the inequality		
					ṗs `1qpj `2q ˆj j 0 , j 1	˙ď 1.
			ps `1qj 0 , ps `1qpj 1 `2q
		Inequality (2.3) follows.	

,s,j0,...,jm`2 ď e 2 }b Q,m;j0,˚} ps`1qpj0`2q´2,ρ Γp1 `ps `1qj 0 q Proof.

(1) Let us first observe that the assumption s ě 1 implies 1 `ps `1qpj 0 `2q ě 1 `ps `1qj 0 `4 ě 2.

  0,˚p xq " u 1,˚p xq " φpxq and, for all j ě 0 by the relations u j`2,˚p xq " f j,˚p xq `aB 4x u j,˚p xq `bB 2 x u j,˚p xq ˆj j 1 , ..., j n ˙uj1,˚p xq...u jn´2,˚p xqB x u jn´1,˚p xqB x u jn,˚p xq.

	`cn	ÿ j1`...`jn"j ˆj j 1 , ..., j n	˙uj1,˚p xq...u jn´1,˚p xqB 2 x u jn,˚p xq
		ÿ	
	`cnpn ´1q		
	j1`...`jn"j	

1) that the coefficients u j,˚p xq of the formal solution r upt, xq of Eq. (2.11) are recursively determined by the initial conditions u

  3.3.2. Second step: the fixed point procedure. Let us set

				ÿ
			Ă W pt, xq "	r w µ pt, xq
				µě0
	and let us choose the solution of Eq. (3.2) recursively determined by the relations
	#			
	(3.3)	r w 0 pt, xq " r gpt, xq r w µ`1 pt, xq " r H 1 pt, x, r w 0 , ..., r w µ q for all µ ě 0
	where			
	r H 1 pt, x, r w 0 , ..., r w µ q " Apt, xqB 2 t B ´4 x r w µ
	´d ÿ	ÿ	˜r B P,k pt, xq	˜k ź
	k"0	µ1`...`µ k`1 "µ		i"1

Consequently, using the fact that v 0 ě 1, we have 0 ď β P,m,s,j0 v j1 ...v jm`1 ď β P,m,s,j0 v j1 ...v jm`1 v d´m`1 0 " β P,m,s,j0 v j1 ...v j d`2 0 ď γ Q,m,s,j0 v j1 ...v jm`2 ď γ Q,m,s,j0 v j1 ...v jm`2 v d´m 0 " γ Q,m,s,j0 v j1 ...v j d`2 for all m P t0, ..., du. Hence, the inequalities 0 ď ÿ j0`...`jm`1"j β P,m,s,j0 v j1 ...v jm`1 ď ÿ j0`...`j d`2 "j jm`2"..."j d`2 "0 β P,m,s,j0 v j1 ...v j d`2 ď ÿ j0`...`j d`2 "j β P,m,s,j0 v j1 ...v j d`2 and 0 ď ÿ j0`...`jm`2"j γ Q,m,s,j0 v j1 ...v jm`2 ď ÿ j0`...`j d`2 "j jm`3"..."j d`2 "0 γ Q,m,s,j0 v j1 ...v j d`2 ď ÿ j0`...`j d`2 "j γ Q,m,s,j0 v j1 ...v j d`2 for all m P t0, ..., du since all the terms are nonnegative. Using then the definition of the terms δ s,j0 , we get

and thereby 0 ď }u j`2,˚} ps`1qpj`2q,ρ Γp1 `ps `1qpj `2qq ď v j`2 by comparing with (2.7), which achieves the proof. □ Following Proposition 2.11 allows us to bound the v j 's.

Proposition 2.11. The formal series vpXq is convergent. In particular, there exist two positive constants C 1 , K 1 ą 0 such that v j ď C 1 K 1j for all j ě 0.

Proof. It is sufficient to prove the convergence of vpXq. First of all, let us start by observing that vpXq is the unique formal power series in X solution of the functional equation (2.9) p1 ´X2 αpXqqvpXq " X 2 δpXqpvpXqq d`2 `gpXq, where αpXq "

are three convergent power series (see Lemma 2.9) with nonnegative coefficients.

In particular, they respectively define three increasing functions on r0, r α r, r0, r δ r and r0, r g r, where r α ą 0, r δ ą 0 and r g ą 0 stand respectively for the radius of convergence of αpXq, δpXq and gpXq. We also denote by r 1 α ą 0 the radius of convergence of the series 1{p1 ´X2 αpXqq. for all ℓ ě 0 and all pt, xq P Σ ˆDr 1 1 , where

ȧnd, for all p ě 1 and all nonnegative intergers µ 1 , ..., µ p such that µ 1 `...`µ p " µ: S 1 p,ℓ,µ,µ1,...,µp "

Inequality (3.6) for w µ`1 pt, xq follows then from Lemma 3.7 below, which achieves the proof. □ Lemma 3.7.

(1) Let ℓ, µ ě 0. Then, S ℓ,µ ď 3C.

(2) Let ℓ, µ ě 0, p ě 1, and pµ 1 , ..., µ p q a p-tuple of nonnegative integers such that µ 1 `... `µp " µ. Then, S 1 p,ℓ,µ,µ1,...,µp ď p3Cq p p4µ 1 q!...p4µ p q! p4µ `4q! .

Proof.

(1) Using the Vandermonde Inequality (see Proposition 4.2)

(2) The second point is proved in the same way and is left to the reader. □

Let us now bound the polynomials P µ .

Proposition 3.8. Let B be the positive real number defined by

where ζ stands for the Riemann Zeta function. Then, the inequalities

hold for all µ ě 0 and all x P r0, 1s.

Proof. The left inequality is obvious since all the coefficients of the P µ pxq's are nonnegative. The right inequality is proved by recursion on µ ě 0 as follows.

The case µ " 0 is clear since P 0 pxq " 1. Let us now suppose that Proposition 3.8 holds for all the polynomials P k pxq with k P t0, ..., µu for a certain µ ě 0, and let us prove it for the polynomial P µ`1 pxq.

Applying the recurrence relation (3.5) and the fact that x P r0, 1s, we first get

p4µ `4q! for all x P r0, 1s, where B 1 is the positive real number defined by

The constant α µ is easily bounded as follows:

p2µ `1qp2µ `2qp2µ `3qp2µ `4q ď 2 4 " 16.

Let us now prove that β p,µ ď p3Cq p ζp2q p´1 for all p ě 1 and all µ ě 0. This is obvious when p " 1 and stems from the following calculations when p ě 2:

Consequently, B 1 ď B and the sought inequality on P µ`1 pxq follows, which ends the proof of Proposition 3.8. □

We are now able to improve the bounds of the functions B ℓ t w µ pt, xq given in Proposition 3.6. Corollary 3.9. Let us set K 1 " 4K and c " 16BK 2 . Then, the inequalities ˇˇB ℓ t w µ pt, xq ˇˇď CK ℓ 1 p2ℓq!pc |x| 2 q µ hold for all ℓ, µ ě 0 and all pt, xq P Σ ˆDr 1 1 .

Proof. Applying Propositions 3.6 and 3.8, we get

for all ℓ, µ ě 0 and all pt, xq P Σ ˆDr 1 1 (recall that the radius r 1 1 was chosen so that r 1 1 ď 1). Lemma 3.9 follows then by using the fact that ˆ4µ `2ℓ 4µ, 2ℓ ˙ď 2 4µ`2ℓ . □

We are now able to complete the proof of Theorem 3.5. Thanks to Corollary 3.9, the series ÿ µě0 B ℓ t w µ pt, xq are normally convergent on Σ ˆDr1 for all ℓ ě 0 and satisfy the inequalities

for all pt, xq P Σ ˆDr1 . In particular, the sum wpt, xq of the series ÿ µě0 w µ pt, xq is well-defined, holomorphic on Σ ˆDr1 and satisfies the inequalities

! for all ℓ ě 0 and all pt, xq P Σ ˆDr1 . Hence, Conditions 1 and 3 of Definition 3.1 hold, since Σ 1 Ť Σ.

To prove the second condition of Definition 3.1, we proceed as follows. The Removable Singularities Theorem implies the existence of lim tÑ0 tPΣ 1 B ℓ t wpt, xq for all x P D r1 and, thereby, the existence of the Taylor series of w at 0 on Σ 1 for all x P D r1 (see for instance [START_REF] Malgrange | Sommation des séries divergentes[END_REF]Cor. 1.1.3.3]; see also [START_REF] Loday-Richaud | Divergent Series, Summability and Resurgence II. Simple and Multiple Summability[END_REF]Prop. 1.1.11]). On the other hand, considering recurrence relations (3.3), it is clear that wpt, xq satisfies Eq. (3.2) where all the formal coefficients and the inhomogeneity are replaced by their 1-sums in the direction θ and, consequently, so does its Taylor series. Then, since Eq. (3.2) has a unique formal series solution r wpt, xq (see the remark page 19 just after the definition of Eq. (3.2)), we then conclude that the Taylor expansion of wpt, xq is r wpt, xq. Hence, Condition 2 of Definition 3.1 holds. This achieves the proof of the sufficient condition of the first point of Theorem 3.5, which ends its full proof.

Appendix: some technical results on the binomial and multinomial coefficients

In combinatorial analysis, the binomial coefficients ˆn m ˙and the multinomial coefficients ˆn n 1 , ..., n q ˙are defined for any nonnegative integers 0 ď m ď n and (2) (Multinomial case) The following inequality holds for all integers q ě 2 and n ě 0:

(4.9) ÿ n1`...`nq"n 1 ˆn n 1 , ..., n q ˙ď 3 q´1 .

Proof. ‹ First point. The inequality (4.8) is obvious when n P t0, 1u:

Let us now assume n ě 2 and let us write the left hand-side of ( Inequality (4.9) stems then from the inequality (4.8) which we apply q ´1 times. This completes the proof. □