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GEVREY REGULARITY AND SUMMABILITY OF THE

FORMAL POWER SERIES SOLUTIONS OF THE

INHOMOGENEOUS GENERALIZED BOUSSINESQ EQUATIONS

PASCAL REMY

Abstract. In this article, we investigate Gevrey and summability properties
of the formal power series solutions of the inhomogeneous generalized Boussi-

nesq equations. We first prove that the inhomogeneity and the formal solutions

are together s-Gevrey for any s ě 1, and that the formal solutions are generi-
cally 1-Gevrey while the inhomogeneity is s-Gevrey with s ă 1. In the latter

case, we give in particular an explicit example in which the formal solution is

s1-Gevrey for no s1 ă 1, that is exactly 1-Gevrey. Then, we give a necessary
and sufficient condition under which the formal solutions are 1-summable in

a given direction argptq “ θ. In addition, we present some technical results

on the generalized binomial and multinomial coefficients, which are needed for
the proofs of our various results.

Contents

1. Introduction 1
1.1. Setting the problem 1
1.2. The generalized Boussinesq equation 2
1.3. Known results and aim of the article 4
2. Gevrey regularity of rupt, xq 5
2.1. Main result 5
2.2. Proof of Theorem 2.3: first point 6
2.3. Proof of Theorem 2.3: second point 14
3. 1-summability of rupt, xq 15
3.1. 1-summable formal series 16
3.2. Main result 17
3.3. Proof of Theorem 3.5 18
4. Appendix: some technical results on the binomial and multinomial

coefficients 24
References 29

1. Introduction

1.1. Setting the problem. The nonlinear evolution equations are often used to
represent the motion of the isolated waves, localized in a small part of space in
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many fields such as optical fibers, neural physics, solid state physics, hydrodynam-
ics, diffusion process, plasma physics and nonlinear optics (nonlinear heat equa-
tion, nonlinear Klein-Gordon equation, nonlinear Euler-Lagrange equation, Burgers
equation, Korteweg-de Vries equation, Boussinesq equation, etc.).

When studying such equations, one of the major challenges is the determination
of exact solutions, if any exists, and the precise analysis of their properties (dy-
namic, asymptotic behavior, etc.) in order to have a better understanding of the
mechanism of the underlying physical phenomena and dynamic processes.

Thus, for several decades, many analytical methods have been developed in this
perspective. For example, in the case of real variables, that is when the variables
pt, xq belong to a subset of R2, we can quote, among the many existing techniques,
the tanh-sech method, the F-expansion method, the exp-function method, the vari-
ational iteration method, etc. More recently, in the case of complex variables, that
is when the variables pt, xq belong to a subset of C2, the summation theory has also
been used succesfullly [19,25,26]. This theory, initially developed within the frame-
work of the meromorphic ordinary differential equation with an irregular singular
point (see for instance [10, 16]), allows the construction of explicit solutions from
formal solutions.

In the following, we will be more particularly interested in this theory which we
shall apply to the generalized Boussinesq equation.

1.2. The generalized Boussinesq equation. The Boussinesq equation

(1.1)

$

’

&

’

%

B2
t u ´ aB4

xu ´ bB2
xu ´ cB2

xpunq “ 0

a, b, c nonzero constants

n ě 2 an integer

was introduced for the first time in 1872 by J. Boussinesq [4] (the original equation
corresponds to the values a “ ´1, b “ c “ 1 and n “ 2). It allows to model many
physical problems such as, for example, the propagation of long waves in shallow
water, the propagation of one-dimensional nonlinear lattice-waves, the propagation
of vibrations in a nonlinear string, or the propagation of ionic sound waves in a
plasma.

In the case of real variables, Eq. (1.1) has already been the subject of many
investigations and many results have already been established (see for instance
[1, 6, 27] and the references therein). On the other hand, to our knowledge, it does
not seem that there are known results when (at least) one of the coefficients a, b,
or c is variable, or when the variables t and x are complex.

In the present paper, we are interested in the following inhomogeneous general-
ized Boussinesq equation

(1.2)

#

B2
t u ´ apt, xqB4

xu ´ P pt, x, uqB2
xu ´ Qpt, x, uqpBxuq2 “ rfpt, xq

B
j
tupt, xq|t“0 “ φjpxq, j “ 0, 1

in two variables pt, xq P C2, where

‚ apt, xq is analytic on a polydisc Dρ0 ˆDρ1 centered at the origin p0, 0q P C2

(Dρ denotes the disc with center 0 P C and radius ρ ą 0) and satisfies the
condition ap0, 0q ‰ 0;
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‚ P pt, x,Xq andQpt, x,Xq are two polynomials inX with analytic coefficients
on Dρ0 ˆDρ1 and with degree less than or equal to a positive integer d ě 1:

P pt, x,Xq “

d
ÿ

m“0

bP,mpt, xqXm and Qpt, x,Xq “

d
ÿ

m“0

bQ,mpt, xqXm;

‚ the inhomogeneity rfpt, xq is a formal power series in t with analytic co-

efficients in Dρ1
(we denote this by rfpt, xq P OpDρ1

qrrtss) which may be
smooth, or not1;

‚ the initial conditions φ0pxq and φ1pxq are analytic on Dρ1
.

Observe that Eq. (1.2) coincides with Eq. (1.1) for apt, xq ” a P C˚, P pt, x,Xq “

b` cnXn´1, Qpt, x,Xq “ cnpn´ 1qXn´2 and rfpt, xq ” 0. Observe also that, in the
special case where P andQ are both zero, Eq. (1.2) is reduced to the inhomogeneous
linear Euler-Lagrange equation

(1.3)

#

B2
t u ´ apt, xqB4

xu “ rfpt, xq

B
j
tupt, xq|t“0 “ φjpxq, j “ 0, 1

which allows to model a dynamic inhomogeneous beam with a transverse load.
Considering t as the variable and x as a parameter, we have the following.

Proposition 1.1. Equation (1.2) admits a unique formal solution rupt, xq P OpDρ1
qrrtss.

Proof. Let us write the coefficients apt, xq, bP,mpt, xq and bQ,mpt, xq for all m “

0, ..., d, and the inhomogeneity rfpt, xq in the form

apt, xq “
ÿ

jě0

aj,˚pxq
tj

j!
rfpt, xq “

ÿ

jě0

fj,˚pxq
tj

j!

bP,mpt, xq “
ÿ

jě0

bP,m;j,˚pxq
tj

j!
bQ,mpt, xq “

ÿ

jě0

bQ,m;j,˚pxq
tj

j!

with aj,˚pxq, bP,m;j,˚pxq, bQ,m;j,˚pxq, fj,˚pxq P OpDρ1
q for all j ě 0 and all m “

0, ..., d. Looking for rupt, xq on the same type:

rupt, xq “
ÿ

jě0

uj,˚pxq
tj

j!
with uj,˚pxq P OpDρ1q for all j ě 0,

one easily checks that its coefficients uj,˚pxq are uniquely determined for all j ě 0
by the recurrence relations

(1.4) uj`2,˚pxq “ fj,˚pxq `
ÿ

j0`j1“j

ˆ

j

j0, j1

˙

aj0,˚pxqB4
xuj1,˚pxq

`

d
ÿ

m“0

ÿ

j0`...`jm`1“j

ˆ

j

j0, ..., jm`1

˙

TP,m,j0,...,jm`1pxq

`

d
ÿ

m“0

ÿ

j0`...`jm`2“j

ˆ

j

j0, ..., jm`2

˙

TQ,m,j0,...,jm`2
pxq,

1We denote rf with a tilde to emphasize the possible divergence of the series rf .
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where TP,m,j0,...,jm`1
pxq and TQ,m,j0,...,jm`2

pxq are the analytic functions on Dρ1

respectively defined by

TP,m,j0,...,jm`1
pxq “

#

bP,0;j0,˚pxqB2
xuj1,˚pxq if m “ 0

bP,m;j0,˚pxquj1,˚pxq...ujm,˚pxqB2
xujm`1,˚pxq if m ě 1

and

TQ,m,j0,...,jm`2
pxq “

#

bQ,0;j0,˚pxqBxuj1,˚pxqBxuj2,˚pxq if m “ 0

bQ,m;j0,˚pxquj1,˚pxq...ujm,˚pxqBxujm`1,˚pxqBxujm`2,˚pxq if m ě 1
,

together with the two initial conditions uj,˚pxq “ φjpxq for j “ 0, 1. As usual,

the notation

ˆ

a

a0, ..., ap

˙

, for any nonnegative real numbers a, a0, ..., ap such that

a0 ` ... ` ap “ a, stands for the multinomial coefficients (see Section 4). □

1.3. Known results and aim of the article. In the two previous articles [18,26]
(see also [20], and [17, 19, 24] for more general equations), the author studied, in
the framework of the Euler-Lagrange equation (1.3), the Gevrey regularity and the
1-summability of the formal solution rupt, xq. More precisely, he proved the two
following.

Proposition 1.2 (Gevrey regularity [18]). Let rupt, xq be the formal solution in
OpDρ1

qrrtss of Eq. (1.3). Then,

(1) rupt, xq and rfpt, xq are together s-Gevrey for any s ě 1.

(2) rupt, xq is generically 1-Gevrey while rfpt, xq is s-Gevrey with s ă 1.

Proposition 1.3 (Summability [26]). Let rupt, xq be the formal solution in OpDρ1
qrrtss

of Eq. (1.3). Let argptq “ θ P R{2πZ be a direction issuing from 0. Then,

(1) rupt, xq is 1-summable in the direction θ if and only if the inhomogeneity
rfpt, xq and the formal series Bn

x rupt, xq|x“0 P Crrtss for n “ 0, 1, 2, 3 are
1-summable in the direction θ.

(2) Moreover, the 1-sum upt, xq, if any exists, satisfies Eq. (1.3) in which
rfpt, xq is replaced by its 1-sum fpt, xq in the direction θ.

In this article, we propose to prove that these two results remain true in the case
of the generalized Boussinesq equation (1.2). To do this, we shall use an approach
similar to those already developed by the author in [17–19,23–26] for some nonlin-
ear partial differential equations (see also [3, 20–22] for an approach in the linear
case). Let us point out here that, as we shall see below, the terms umpBxuq2 of
Eq. (1.2), which have never been considered in the previous articles, shall make the
calculations much more complicated by revealing new computational and combina-
torial situations, which require some technical results on the generalized binomial
and multinomial coefficients, that is on the binomial and multinomial coefficients
with nonnegative real terms.

The organization of the article is as follows. Section 2 is devoted to the study of
the Gevrey regularity of the formal solution rupt, xq of Eq. (1.2). After briefly recall-
ing the definition and some basic properties of the s-Gevrey formal power series in

OpDρ1
qrrtss which are needed, we prove that rupt, xq and the inhomogeneity rfpt, xq

of Eq. (1.2) are together s-Gevrey for any s ě 1, and that rupt, xq is generically
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1-Gevrey while rfpt, xq is s-Gevrey with s ă 1 (Theorem 2.3). In the latter case, we
give in particular an explicit example in which rupt, xq is s1-Gevrey for no s1 ă 1,
that is rupt, xq is exactly 1-Gevrey. In Section 3, we investigate the 1-summability
of rupt, xq and we give a necessary and sufficient condition under which the formal
solution rupt, xq is 1-summable in a given direction argptq “ θ. We prove in particu-
lar that the statement of Proposition 1.3 above remains true (Theorem 3.5). In the
last Section 4, we present all the technical results on the generalized binomial and
multinomial coefficients which are needed for the proofs of our two main results.
This section can also be read independently of the rest of the article, so as not to
burden the main proofs.

2. Gevrey regularity of rupt, xq

As said at the beginning of Section 1.2, we consider the time t as the variable
and the space x as a parameter. Thereby, to define the notion of Gevrey formal
power series in OpDρ1

qrrtss, one extends the classical notion of Gevrey formal power
series in Crrtss to families parametrized by x in requiring similar conditions, the
estimates being however uniform with respect to x. Doing that, any formal power
series of OpDρ1qrrtss can be seen as a formal power series in t with coefficients in a
convenient Banach space defined as the space of functions that are holomorphic on
a convenient disc Dρ and continuous up to its boundary, equipped with the usual
supremum norm. For a general study of the formal power series with coefficients
in a Banach space, we refer for instance to [2].

2.1. Main result. Before stating our main result on the Gevrey regularity of the
formal solution rupt, xq of Eq. (1.2), let us first recall for the convenience of the
reader some definitions and basic properties about the Gevrey formal power series
in OpDρ1qrrtss, which are needed in the sequel.

Definition 2.1 (s-Gevrey formal series). Let s ě 0 be. A formal power series

rupt, xq “
ÿ

jě0

uj,˚pxq
tj

j!
P OpDρ1

qrrtss

is said to be Gevrey of order s (in short, s-Gevrey) if there exist three positive
constants 0 ă ρ ă ρ1, C ą 0 and K ą 0 such that the inequalities

sup
|x|ďρ

|uj,˚pxq| ď CKjΓp1 ` ps ` 1qjq

hold for all j ě 0. We denote by OpDρ1
qrrtsss the set of all the formal series in

OpDρ1
qrrtss which are s-Gevrey.

In other words, Definition 2.1 means that rupt, xq is s-Gevrey in t, uniformly in
x on a neighborhood of x “ 0 P C.

Observe that the set Ctt, xu of germs of analytic functions at the origin of C2 coin-
cides with the union

Ť

ρ1ą0 OpDρ1qrrtss0; in particular, any element of OpDρ1qrrtss0
is convergent and Ctt, xu X OpDρ1

qrrtss “ OpDρ1
qrrtss0.

Observe also that the sets OpDρ1
qrrtsss are filtered as follows:

OpDρ1
qrrtss0 Ă OpDρ1

qrrtsss Ă OpDρ1
qrrtsss1 Ă OpDρ1

qrrtss

for all s and s1 satisfying 0 ă s ă s1 ă `8.
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Proposition 2.2 ([2, 20]). Let s ě 0 be. Then, the set pOpDρ1
qrrtsss, Bt, Bxq is a

C-differential algebra.

Let us now state the result in view in this section.

Theorem 2.3. Let rupt, xq be the formal solution in OpDρ1
qrrtss of the generalized

Boussinesq equation (1.2). Then,

(1) rupt, xq and rfpt, xq are together s-Gevrey for any s ě 1.

(2) rupt, xq is generically 1-Gevrey while rfpt, xq is s-Gevrey with s ă 1.

Observe that Theorem 2.3 coincides with Proposition 1.2 in the case of the Euler-
Lagrange equation (1.3), that is in the case where the polynomials P and Q are
both zero.

Observe also that Theorem 2.3 provides the Gevrey regularity of the classical
Boussinesq equation (1.1).

Corollary 2.4. The formal solution rupt, xq P OpDρ1
qrrtss of the Boussinesq equa-

tion (1.1) is 1-Gevrey.

Corollary 2.4 will be improved later for some special values of its coefficients (see
Proposition 2.13). The proof of Theorem 2.3 is detailed in the next two sections.
The first point is the most technical and the most complicated. Its proof is based
on the Nagumo norms, a technique of majorant series and a fixed point procedure
(see Section 2.2). As for the second point, it stems both from the first one and
from Proposition 2.13 that gives an explicit example for which rupt, xq is s1-Gevrey

for no s1 ă 1 while rfpt, xq is s-Gevrey with s ă 1 (see Section 2.3).

2.2. Proof of Theorem 2.3: first point. According to Proposition 2.2, it is clear
that

rupt, xq P OpDρ1
qrrtsss ñ rfpt, xq P OpDρ1

qrrtsss.

Reciprocally, let us fix s ě 1 and let us suppose that the inhomogeneity rfpt, xq

of Eq. (1.2) is s-Gevrey. By assumption, its coefficients fj,˚pxq P OpDρ1
q satisfy

the following condition (see Definition 2.1): there exist three positive constants
0 ă ρ ă ρ1, C ą 0 and K ą 0 such that the inequalities

(2.1) |fj,˚pxq| ď CKjΓp1 ` ps ` 1qjq

hold for all j ě 0 and all |x| ď ρ.
We must prove that the coefficients uj,˚pxq P OpDρ1

q of the formal solution
rupt, xq satisfy similar inequalities. The approach we present below is analoguous
to the ones already developed in [3, 20–22] in the framework of linear partial and
integro-differential equations, and in [17, 18, 23, 24] in the case of certain nonlinear
equations. It is based on the Nagumo norms [5, 13, 28] and on a technique of
majorant series. However, as we shall see, our calculations appear to be much more
technical and complicated. Furthermore, the nonlinear terms umpBxuq2 generate
several new technical combinatorial situations which have never been investigated
in the previous articles.

Before starting the calculations, let us first recall for the convenience of the
reader the definition of the Nagumo norms and some of their properties which are
needed in the sequel.
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2.2.1. Nagumo norms.

Definition 2.5. Let f P OpDρ1q, p ě 0 and 0 ă r ă ρ1 be. Then, the Nagumo
norm }f}p,r with indices pp, rq of f is defined by

}f}p,r :“ sup
|x|ďr

|fpxqdrpxqp| ,

where drpxq denotes the Euclidian distance drpxq :“ r ´ |x|.

Following Proposition 2.6, whose a proof can be found for instance in [22], gives
us some properties of the Nagumo norms.

Proposition 2.6. Let f, g P OpDρ1
q, p, p1 ě 0 and 0 ă r ă ρ1 be. Then,

(1) }¨}p,r is a norm on OpDρ1
q.

(2) |fpxq| ď }f}p,r drpxq´p for all |x| ă r .

(3) }f}0,r “ sup
|x|ďr

|fpxq| is the usual sup-norm on Dr.

(4) }fg}p`p1,r ď }f}p,r }g}p1,r.

(5) }Bxf}p`1,r ď epp ` 1q }f}p,r.

Remark 2.7. Inequalities 4–5 of Proposition 2.6 are the most important properties.
Observe besides that the same index r occurs on their both sides, allowing thus to
get estimates for the product fg in terms of f and g, and for the derivative Bxf in
terms of f without having to shrink the disc Dr.

Let us now turn to the proof of the first point of Theorem 2.3.

2.2.2. First step: some inequalities. From the recurrence relations (3.1), we first
derive for all j ě 0 the identities

uj`2,˚pxq

Γp1 ` ps ` 1qpj ` 2qq
“

fj,˚pxq

Γp1 ` ps ` 1qpj ` 2qq

`
ÿ

j0`j1“j

ˆ

j

j0, j1

˙

aj0,˚pxqB4
xuj1,˚pxq

Γp1 ` ps ` 1qpj ` 2qq

`

d
ÿ

m“0

ÿ

j0`...`jm`1“j

ˆ

j

j0, ..., jm`1

˙

TP,m,j0,...,jm`1pxq

Γp1 ` ps ` 1qpj ` 2qq

`

d
ÿ

m“0

ÿ

j0`...`jm`2“j

ˆ

j

j0, ..., jm`2

˙

TQ,m,j0,...,jm`2
pxq

Γp1 ` ps ` 1qpj ` 2qq
,

where

TP,m,j0,...,jm`1
pxq “

#

bP,m;j0,˚pxqB2
xuj1,˚pxq if m “ 0

bP,m;j0,˚pxquj1,˚pxq...ujm,˚pxqB2
xujm`1,˚pxq if m ě 1

and

TQ,m,j0,...,jm`2
pxq “

#

bQ,m;j0,˚pxqBxuj1,˚pxqBxuj2,˚pxq if m “ 0

bQ,m;j0,˚pxquj1,˚pxq...ujm,˚pxqBxujm`1,˚pxqBxujm`2,˚pxq if m ě 1
,

together with the two initial conditions u0,˚pxq “ φ0pxq and u1,˚pxq “ φ1pxq.
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Applying then the Nagumo norms of indices pps ` 1qpj ` 2q, ρq, we deduce suc-
cessively from Property 1 and Properties 4-5 of Proposition 2.6 the inequalities

}uj`2,˚}
ps`1qpj`2q,ρ

Γp1 ` ps ` 1qpj ` 2qq
ď

}fj,˚}
ps`1qpj`2q,ρ

Γp1 ` ps ` 1qpj ` 2qq

`
ÿ

j0`j1“j

ˆ

j

j0, j1

˙

›

›aj0,˚B4
xuj1,˚

›

›

ps`1qpj`2q,ρ

Γp1 ` ps ` 1qpj ` 2qq

`

d
ÿ

m“0

ÿ

j0`...`jm`1“j

ˆ

j

j0, ..., jm`1

˙

›

›TP,m,j0,...,jm`1

›

›

ps`1qpj`2q,ρ

Γp1 ` ps ` 1qpj ` 2qq

`

d
ÿ

m“0

ÿ

j0`...`jm`2“j

ˆ

j

j0, ..., jm`2

˙

›

›TQ,m,j0,...,jm`2

›

›

ps`1qpj`2q,ρ

Γp1 ` ps ` 1qpj ` 2qq
,

and, next,

(2.2)
}uj`2,˚}

ps`1qpj`2q,ρ

Γp1 ` ps ` 1qpj ` 2qq
ď

}fj,˚}
ps`1qpj`2q,ρ

Γp1 ` ps ` 1qpj ` 2qq

`
ÿ

j0`j1“j

As,j0,j1

}uj1,˚}
ps`1qj1,ρ

Γp1 ` ps ` 1qj1q

`

d
ÿ

m“0

ÿ

j0`...`jm`1“j

BP,m,s,j0,...,jm`1

}uj1,˚}
ps`1qj1,ρ

Γp1 ` ps ` 1qj1q
...

›

›ujm`1,˚

›

›

ps`1qjm`1,ρ

Γp1 ` ps ` 1qjm`1q

`

d
ÿ

m“0

ÿ

j0`...`jm`2“j

CQ,m,s,j0,...,jm`2

}uj1,˚}
ps`1qj1,ρ

Γp1 ` ps ` 1qj1q
...

›

›ujm`2,˚

›

›

ps`1qjm`2,ρ

Γp1 ` ps ` 1qjm`2q

for all j ě 0, where the terms As,j0,j1 , BP,m,s,j0,...,jm`1 and CQ,m,s,j0,...,jm`2 are
nonnegative and defined by

As,j0,j1 “
e4 }aj0,˚}

ps`1qpj0`2q´4,ρ

Γp1 ` ps ` 1qj0q

Γp1 ` ps ` 1qj1 ` 4q

Γp1 ` ps ` 1qpj1 ` 2qq
ˆ

ˆ

j

j0, j1

˙

ˆ

ps ` 1qpj ` 2q

ps ` 1qj0, ps ` 1qpj1 ` 2q

˙

BP,m,s,j0,...,jm`1
“

e2 }bP,m;j0,˚}
ps`1qpj0`2q´2,ρ

Γp1 ` ps ` 1qj0q

Γp1 ` ps ` 1qjm`1 ` 2q

Γp1 ` ps ` 1qpjm`1 ` 2qq
ˆ

ˆ

j

j0, ..., jm, jm`1

˙

ˆ

ps ` 1qpj ` 2q

ps ` 1qj0, ..., ps ` 1qjm, ps ` 1qpjm`1 ` 2q

˙
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CQ,m,s,j0,...,jm`2
“

e2 }bQ,m;j0,˚}
ps`1qpj0`2q´2,ρ

Γp1 ` ps ` 1qj0q
ˆ

Γp1 ` ps ` 1qjm`1 ` 1qΓp1 ` ps ` 1qjm`2 ` 1q

Γp1 ` ps ` 1qpjm`1 ` 1qΓp1 ` ps ` 1qpjm`2 ` 1qqq
ˆ

ˆ

j

j0, ..., jm, jm`1, jm`2

˙

ˆ

ps ` 1qpj ` 2q

ps ` 1qj0, ..., ps ` 1qjm, ps ` 1qpjm`1 ` 1q, ps ` 1qpjm`2 ` 1q

˙

Observe that all the norms written in the inequalities (2.2), and especially the
norms }aj0,˚}

ps`1qpj0`2q´4,ρ, }bP,m;j0,˚}
ps`1qpj0`2q´2,ρ and }bQ,m;j0,˚}

ps`1qpj0`2q´2,ρ

are well-defined. Indeed, the assumption s ě 1 implies ps`1qpj0 `2q ´4 ě 2j0 ě 0
and ps ` 1qpj0 ` 2q ´ 2 ě 2j0 ` 2 ą 0.

Lemma 2.8. (1) For all j ě 0 and all j0, j1 ě 0 such that j0 ` j1 “ j,

(2.3) As,j0,j1 ď
e4 }aj0,˚}

ps`1qpj0`2q´4,ρ

Γp1 ` ps ` 1qj0q

(2) For all m, j ě 0 and j0, ..., jm`1 ě 0 such that j0 ` ... ` jm`1 “ j,

(2.4) BP,m,s,j0,...,jm`1
ď

e2 }bP,m;j0,˚}
ps`1qpj0`2q´2,ρ

Γp1 ` ps ` 1qj0q

(3) For all m, j ě 0 and j0, ..., jm`2 ě 0 such that j0 ` ... ` jm`2 “ j,

(2.5) CQ,m,s,j0,...,jm`2 ď
e2 }bQ,m;j0,˚}

ps`1qpj0`2q´2,ρ

Γp1 ` ps ` 1qj0q

Proof. (1) Let us first observe that the assumption s ě 1 implies

1 ` ps ` 1qpj0 ` 2q ě 1 ` ps ` 1qj0 ` 4 ě 2.

Hence, the inequality

Γp1 ` ps ` 1qj1 ` 4q

Γp1 ` ps ` 1qpj1 ` 2qq
ď 1

by increasing of the Gamma function on r2,`8r.
On the other hand, applying successively the Vandermonde Inequality

(see Proposition 4.2) and Proposition 4.4, we get
ˆ

ps ` 1qpj ` 2q

ps ` 1qj0, ps ` 1qpj1 ` 2q

˙

ě

ˆ

j

j0, j1

˙ˆ

sj ` 2ps ` 1q

sj0, sj1 ` 2ps ` 1q

˙

ě

ˆ

j

j0, j1

˙

;

hence, the inequality
ˆ

j

j0, j1

˙

ˆ

ps ` 1qpj ` 2q

ps ` 1qj0, ps ` 1qpj1 ` 2q

˙ ď 1.

Inequality (2.3) follows.
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(2)-(3) The proof of inequalities (2.4) and (2.5) is similar and is left to the reader.
□

Applying Lemma 2.8 to the previous relations (2.2), we finally get the inequalities

(2.6)
}uj`2,˚}

ps`1qpj`2q,ρ

Γp1 ` ps ` 1qpj ` 2qq
ď gs,j `

ÿ

j0`j1“j

αs,j0

}uj1,˚}
ps`1qj1,ρ

Γp1 ` ps ` 1qj1q

`

d
ÿ

m“0

ÿ

j0`...`jm`1“j

βP,m,s,j0

}uj1,˚}
ps`1qj1,ρ

Γp1 ` ps ` 1qj1q
...

›

›ujm`1,˚

›

›

ps`1qjm`1,ρ

Γp1 ` ps ` 1qjm`1q

`

d
ÿ

m“0

ÿ

j0`...`jm`2“j

γQ,m,s,j0

}uj1,˚}
ps`1qj1,ρ

Γp1 ` ps ` 1qj1q
...

›

›ujm`2,˚

›

›

ps`1qjm`2,ρ

Γp1 ` ps ` 1qjm`2q

for all j ě 0, where the terms gs,j , αs,j0 , βP,m,s,j0 and γQ,m,s,j0 are nonnegative
and defined by

gs,j “
}fj,˚}

ps`1qpj`2q,ρ

Γp1 ` ps ` 1qpj ` 2qq
βP,m,s,j0 “

e2 }bP,m;j0,˚}
ps`1qpj0`2q´2,ρ

Γp1 ` ps ` 1qj0q

αs,j0 “
e4 }aj0,˚}

ps`1qpj0`2q´4,ρ

Γp1 ` ps ` 1qj0q
γQ,m,s,j0 “

e2 }bQ,m;j0,˚}
ps`1qpj0`2q´2,ρ

Γp1 ` ps ` 1qj0q

The following result, which will be useful in the next section, provides some
bounds on these various terms.

Lemma 2.9. There exist two positive constants C1,K1 ą 0 such that the inequal-
ities

0 ď gs,j ď C1K
j
1 0 ď βP,m,s,j ď C1K

j
1

0 ď αs,j ď C1K
j
1 0 ď γQ,m,s,j ď C1K

j
1

hold for all j ě 0 and all m “ 0, ..., d.

Proof. Given the hypothesis on the coefficients fj,˚pxq of the inhomogeneity rfpt, xq

(see inequality (2.1) at the beginning of Section 2.2), and the analyticity of the
functions apt, xq, bP,mpt, xq and bQ,mpt, xq at the origin of C2, we first have the
relations

|fj,˚pxq| ď CKjΓp1 ` ps ` 1qjq |bP,m;j,˚pxq| ď C2K2jj!
|aj,˚pxq| ď C 1K 1jj! |bQ,m;j,˚pxq| ď C3K3jj!

for all j ě 0, allm P t0, ..., du and all |x| ď ρ, the height constants C,K,C 1,K 1, C2,K2, C3,K3 ą

0 being independent of j, m and x. Hence, applying the definition of the Nagumo
norms and the classical property Γpaq ď Γpbq for all a ě 1 and all b ě maxp2, aq,
the inequalities

0 ď gs,j ď
CKjΓp1 ` ps ` 1qjqρps`1qpj`2q

Γp1 ` ps ` 1qpj ` 2qq
“ Cρ2ps`1qpKρs`1qj

0 ď αs,j ď
e4C 1K 1jj!ρps`1qpj`2q´4

Γp1 ` ps ` 1qjq
“ e4C 1ρ2ps´1qpK 1ρs`1qj

0 ď βP,m,s,j ď
e2C2K2jj!ρps`1qpj`2q´2

Γp1 ` ps ` 1qjq
“ e2C2ρ2spK2ρs`1qj

0 ď βQ,m,s,j ď
e2C3K3jj!ρps`1qpj`2q´2

Γp1 ` ps ` 1qjq
“ e2C3ρ2spK3ρs`1qj
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for all j ě 0 and all m P t0, ..., du. The constants C1 and K1 follow, which achieves
the proof. □

We shall now bound the Nagumo norms }uj,˚}
ps`1qj,ρ for any j ě 0. To do that,

we shall proceed similarly as in [3, 17, 18, 20–24] by using a technique of majorant
series.

2.2.3. Second step: a majorant series. Let us consider the formal power series

vpXq “
ÿ

jě0

vjX
j P R`rrXss,

where the coefficients vj are recursively determined from the two initial conditions

v0 “ 1 ` }φ0}0,ρ , v1 “
}φ1}s`1,ρ

Γp2 ` sq

by the relations

(2.7) vj`2 “ gs,j `
ÿ

j0`j1“j

αs,j0vj1 `
ÿ

j0`...`jd`2“j

δs,j0vj1 ...vjd`2

for all j ě 0, where the terms δs,j0 are nonnegative and defined by

δs,j0 “

d
ÿ

m“0

pβP,m,s,j0 ` γQ,m,s,j0q.

Lemma 2.10. The following inequalities hold for all j ě 0:

(2.8) 0 ď
}uj,˚}

ps`1qj,ρ

Γp1 ` ps ` 1qjq
ď vj .

Proof. According to the initial conditions on the uj ’s and on the vj ’s, the inequal-
ities (2.8) hold for j “ 0 and j “ 1. Let us now suppose that these inequalities are
true for all k “ 0, ..., j ` 1 for a certain j ě 0. Then, it results from inequalities
(2.6) that

0 ď
}uj`2,˚}

ps`1qpj`2q,ρ

Γp1 ` ps ` 1qpj ` 2qq
ď gs,j `

ÿ

j0`j1“j

αs,j0vj1

`

d
ÿ

m“0

ÿ

j0`...`jm`1“j

βP,m,s,j0vj1 ...vjm`1

`

d
ÿ

m“0

ÿ

j0`...`jm`2“j

γQ,m,s,j0vj1 ...vjm`2
.

Let us now observe that

‚ for all m P t0, ..., du, any pm` 2q-tuple pj0, ..., jm`1q P Nm`2 such that j0 `

...` jm`1 “ j can be seen as the pd`3q-tuple pj0, ..., jm`1, jm`2, ..., jd`2q P

Nd`3 where jm`2 “ ... “ jd`2 “ 0;
‚ for all m P t0, ..., d ´ 1u, any pm ` 3q-tuple pj0, ..., jm`2q P Nm`3 such that
j0`...`jm`2 “ j can be seen as the pd`3q-tuple pj0, ..., jm`2, jm`3, ..., jd`2q P

Nd`3 where jm`3 “ ... “ jd`2 “ 0.
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Consequently, using the fact that v0 ě 1, we have

0 ď βP,m,s,j0vj1 ...vjm`1 ď βP,m,s,j0vj1 ...vjm`1v
d´m`1
0 “ βP,m,s,j0vj1 ...vjd`2

0 ď γQ,m,s,j0vj1 ...vjm`2 ď γQ,m,s,j0vj1 ...vjm`2v
d´m
0 “ γQ,m,s,j0vj1 ...vjd`2

for all m P t0, ..., du. Hence, the inequalities

0 ď
ÿ

j0`...`jm`1“j

βP,m,s,j0vj1 ...vjm`1
ď

ÿ

j0`...`jd`2“j
jm`2“...“jd`2“0

βP,m,s,j0vj1 ...vjd`2

ď
ÿ

j0`...`jd`2“j

βP,m,s,j0vj1 ...vjd`2

and

0 ď
ÿ

j0`...`jm`2“j

γQ,m,s,j0vj1 ...vjm`2
ď

ÿ

j0`...`jd`2“j
jm`3“...“jd`2“0

γQ,m,s,j0vj1 ...vjd`2

ď
ÿ

j0`...`jd`2“j

γQ,m,s,j0vj1 ...vjd`2

for all m P t0, ..., du since all the terms are nonnegative. Using then the definition
of the terms δs,j0 , we get

0 ď
}uj`2,˚}

ps`1qpj`2q,ρ

Γp1 ` ps ` 1qpj ` 2qq
ď gs,j `

ÿ

j0`j1“j

αs,j0vj1 `
ÿ

j0`...`jd`2“j

δs,j0vj1 ...vjd`2

and thereby

0 ď
}uj`2,˚}

ps`1qpj`2q,ρ

Γp1 ` ps ` 1qpj ` 2qq
ď vj`2

by comparing with (2.7), which achieves the proof. □

Following Proposition 2.11 allows us to bound the vj ’s.

Proposition 2.11. The formal series vpXq is convergent. In particular, there exist
two positive constants C 1,K 1 ą 0 such that vj ď C 1K 1j for all j ě 0.

Proof. It is sufficient to prove the convergence of vpXq.
First of all, let us start by observing that vpXq is the unique formal power series

in X solution of the functional equation

(2.9) p1 ´ X2αpXqqvpXq “ X2δpXqpvpXqqd`2 ` gpXq,

where

αpXq “
ÿ

jě0

αs,jX
j , δpXq “

ÿ

jě0

δs,jX
j and

gpXq “ 1 ` }φ0}0,ρ `
}φ1}s`1,ρ

Γp2 ` sq
X ` X2

ÿ

jě0

gs,jX
j .

are three convergent power series (see Lemma 2.9) with nonnegative coefficients.
In particular, they respectively define three increasing functions on r0, rαr, r0, rδr

and r0, rgr, where rα ą 0, rδ ą 0 and rg ą 0 stand respectively for the radius of
convergence of αpXq, δpXq and gpXq. We also denote by r1

α ą 0 the radius of
convergence of the series 1{p1 ´ X2αpXqq.
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Notice that the convergence of vpXq is obvious when δpXq ” 0 (case where the
polynomials P andQ are both zero), since we have the identity p1´X2αpXqqvpXq “

gpXq.
Let us now assume δpXq ı 0. To prove the convergence of the formal series

vpXq, we proceed through a fixed point method as follows. Let us set

V pXq “
ÿ

iě0

VipXq

and let us choose the solution of Eq. (2.9) given by the system
$

&

%

p1 ´ X2αpXqqV0pXq “ gpXq

p1 ´ X2αpXqqVi`1pXq “ X2δpXq
ÿ

i1`...`id`2“i

Vi1pXq...Vid`2
pXq for i ě 0.

By induction on i ě 0, we easily check that

(2.10) VipXq “
Ci,d`2X

2ipδpXqqipgpXqqipd`1q`1

p1 ´ X2αpXqqipd`2q`1
,

where the Ci,d`2’s are the positive constants recursively determined from C0,d`2 :“
1 by the relations

Ci`1,d`2 “
ÿ

i1`...`id`2“i

Ci1,d`2...Cid`2,d`2.

Thereby, all the Vi’s are analytic functions on the disc with center 0 P C and radius
minpr1

α, rδ, rgq at least. Moreover, identities (2.10) show us that VipXq is of order
X2i for all i ě 0. Consequently, the series V pXq makes sense as a formal power
series in X and we get V pXq “ vpXq by unicity.

We are left to prove the convergence of V pXq. To do that, let us choose 0 ă r ă

minpr1
α, rα, rδ, rgq. By definition, the constants Ci,d`2’s are the generalized Catalan

numbers of order d ` 2. We have therefore

Ci,d`2 “
1

pd ` 1qi ` 1

ˆ

ipd ` 2q

i

˙

ď 2ipd`2q

for all i ě 0 (see [7, 8, 14] for instance). On the other hand, according to the
increasing of the functions αpXq, δpXq and gpXq on r0, rs, we derive from identities
(2.10) the inequalities

|VipXq| ď
gprq

1 ´ r2αprq

ˆ

2d`2δprqpgprqqd`1

p1 ´ r2αprqqd`2
|X|

2

˙i

for all i ě 0 and all |X| ď r. Consequently, since δprq ą 0 and gprq ą 0 (we have
indeed gp0q ě 1), the series V pXq is normally convergent on any disc with center
0 P C and radius

0 ă r1 ă min

˜

r,

ˆ

p1 ´ r2αprqqd`2

2d`2δprqpgprqqd`1

˙1{2
¸

.

This proves the analyticity of V pXq at 0 and ends the proof of Proposition 2.11. □

According to Lemma 2.10 and Proposition 2.11, we can now bound the Nagumo
norms }uj,˚}

ps`1qj,ρ.
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Corollary 2.12. Let C 1,K 1 ą 0 be as in Proposition 2.11. Then, the inequalities

}uj,˚}
ps`1qj,ρ ď C 1K 1jΓp1 ` ps ` 1qjq

hold for all j ě 0.

We are now able to conclude the proof of the first point of Theorem 2.3.

2.2.4. Third step: conclusion. We must prove on the sup-norm of the uj,˚pxq esti-
mates similar to the ones on the norms }uj,˚}

ps`1qj,ρ (see Corollary 2.12). To this

end, we proceed by shrinking the closed disc |x| ď ρ. Let 0 ă ρ1 ă ρ. Then, for all
j ě 0 and all |x| ď ρ1, we have

|uj,˚pxq| “

ˇ

ˇ

ˇ

ˇ

uj,˚pxqdρpxqps`1qj 1

dρpxqps`1qj

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇuj,˚pxqdρpxqps`1qj
ˇ

ˇ

pρ ´ ρ1qps`1qj
ď

}uj,˚}
ps`1qj,ρ

pρ ´ ρ1qps`1qj

and, consequently,

sup
|x|ďρ1

|uj,˚pxq| ď C 1

ˆ

K 1

pρ ´ ρ1qs`1

˙j

Γp1 ` ps ` 1qjq

by applying Corollary 2.12. This ends the proof of the first point of Theorem 2.3.

2.3. Proof of Theorem 2.3: second point. Let us fix s ă 1. According to the
filtration of the s-Gevrey spaces OpDρ1qrrtsss (see Section 2.1) and the first point
of Theorem 2.3, it is clear that we have the following implications:

rfpt, xq P OpDρ1
qrrtsss ñ rfpt, xq P OpDρ1

qrrtss1 ñ rupt, xq P OpDρ1
qrrtss1.

To conclude that we can not say better about the Gevrey order of rupt, xq, that
is rupt, xq is generically 1-Gevrey, we need to find an example for which the formal
solution rupt, xq of Eq. (1.2) is s1-Gevrey for no s1 ă 1. Proposition 2.13 below
provides such an example.

Proposition 2.13. Let us consider the inhomogeneous Boussinesq equation

(2.11)

#

B2
t u ´ aB4

xu ´ bB2
xu ´ cB2

xpunq “ rfpt, xq, a, b, c ą 0, n ě 2

B
j
tupt, xq|t“0 “ φpxq, j “ 0, 1

where φpxq is the analytic function on D1 defined by

φpxq “
1

1 ´ x
.

Suppose that the inhomogeneity rfpt, xq is s-Gevrey and satisfies the inequalities
Bℓ
xfj,˚p0q ě 0 for all ℓ, j ě 0.
Then, the formal solution rupt, xq of Eq. (2.11) is exactly 1-Gevrey.

Proof. According to the remark above, it is sufficient to prove that rupt, xq is s1-
Gevrey for no s1 ă 1.

First of all, let us rewrite Eq. (2.11) in the form

B2
t u ´ aB4

xu ´ pb ` cnun´1qB2
xu ´ cnpn ´ 1qun´2pBxuq2 “ rfpt, xq.

We derive then from the general relations (3.1) that the coefficients uj,˚pxq of
the formal solution rupt, xq of Eq. (2.11) are recursively determined by the initial
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conditions u0,˚pxq “ u1,˚pxq “ φpxq and, for all j ě 0 by the relations

uj`2,˚pxq “ fj,˚pxq ` aB4
xuj,˚pxq ` bB2

xuj,˚pxq

` cn
ÿ

j1`...`jn“j

ˆ

j

j1, ..., jn

˙

uj1,˚pxq...ujn´1,˚pxqB2
xujn,˚pxq

` cnpn ´ 1q
ÿ

j1`...`jn“j

ˆ

j

j1, ..., jn

˙

uj1,˚pxq...ujn´2,˚pxqBxujn´1,˚pxqBxujn,˚pxq.

In particular, we easily check that the coefficients u2j,˚pxq read for all j ě 1 on the
form

u2j,˚pxq “ ajB4j
x φpxq ` remjpxq,

where remjpκ`vqpxq is a linear combination with nonnegative coefficients of terms
of the form

ź

ℓPt0,...,2pj´1qu

d1,d2ě0
p1,p2,p3,p4,p5,p6,p7ě0

ap1bp2cp3np4pn ´ 1qp5
`

Bd1
x fℓ,˚pxq

˘p6
`

Bd2
x φpxq

˘p7
.

Using then our assumptions on the coefficients a, b, c and n, and on the inhomo-

geneity rfpt, xq, we finally get the following inequalities:

(2.12) u2j,˚p0q ě ajp4jq!.

Let us now suppose that rupt, xq is s1-Gevrey for some s1 ă 1. Then, Definition
2.1 and inequality (2.12) imply

1 ď C

ˆ

K

a

˙j
Γp1 ` 2ps1 ` 1qjq

Γp1 ` 4jq

for all j ě 1 and some convenient positive constants C and K independent of j.
Proposition 2.13 follows since such inequalities are impossible. Indeed, applying
the Stirling’s Formula, we get

(2.13) C

ˆ

K

a

˙j
Γp1 ` 2ps1 ` 1qjq

Γp1 ` 4jq
„

jÑ`8
C 1

ˆ

K 1

j2p1´s1q

˙j

with

C 1 “ C

c

s1 ` 1

2
and K 1 “

Ke2p1´s1
qp2ps1 ` 1qq2ps1

`1q

256a
,

and the right hand-side of (2.13) goes to 0 when j tends to infinity. □

This achieves the proof of the second point of Theorem 2.3.

3. 1-summability of rupt, xq

In this section, we consider the critical value s “ 1 and we are interested in
the 1-summability of the formal solution rupt, xq P OpDρ1

qrrtss of the generalized
Boussinesq equation (1.2). More precisely, our aim is to make explicit a necessary
and sufficient condition under which rupt, xq is 1-summable in a given direction
argptq “ θ. Before starting our calculations, let us recall the definition and some
properties of the 1-summability.
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3.1. 1-summable formal series. Still considering t as the variable and x as a
parameter, one extends, in the similar way as the s-Gevrey formal series (see Def-
inition 2.1), the classical notion of 1-summability of formal series in Crrtss to the
notion of 1-summability of formal series in OpDρ1

qrrtss in requiring similar condi-
tions, the estimates being however uniform with respect to x.

Among the many equivalent definitions of 1-summability in a given direction
argptq “ θ at t “ 0, we choose in this article a generalization of Ramis’ definition
which states that a formal series rgpt, xq P Crrtss is 1-summable in direction θ if
there exists a holomorphic function g which is 1-Gevrey asymptotic to rg in an open
sector Σθ,ąπ bisected by θ and with opening larger than π [15, Def. 3.1]. To express
the 1-Gevrey asymptotic, there also exist various equivalent ways. We choose here
the one which sets conditions on the successive derivatives of g (see [11, p. 171] or
[15, Thm. 2.4] for instance).

Definition 3.1 (1-summability). A formal series rupt, xq P OpDρ1
qrrtss is said to

be 1-summable in the direction argptq “ θ if there exist a sector Σθ,ąπ, a radius
0 ă r1 ď ρ1 and a function upt, xq called 1-sum of rupt, xq in the direction θ such
that

(1) u is defined and holomorphic on Σθ,ąπ ˆ Dr1 ;

(2) for any x P Dr1 , the map t ÞÑ upt, xq has rupt, xq “
ÿ

jě0

uj,˚pxq
tj

j!
as Taylor

series at 0 on Σθ,ąπ;
(3) for any proper2 subsector Σ Ť Σθ,ąπ, there exist two positive constants

C,K ą 0 such that, for all ℓ ě 0, all t P Σ and all x P Dr1 ,
ˇ

ˇBℓ
tupt, xq

ˇ

ˇ ď CKℓΓp1 ` 2ℓq “ CKℓp2ℓq!.

We denote by OpDρ1qttu1;θ the subset of OpDρ1qrrtss made of all the 1-summable
formal series in the direction argptq “ θ.

Notice that, for any fixed x P Dr1 , the 1-summability of rupt, xq coincides with
the classical 1-summability. Consequently, Watson’s lemma [10, Theorem 5.1.3]
implies the unicity of its 1-sum, if any exists.

Notice also that the 1-sum of a 1-summable formal series rupt, xq P OpDρ1qttu1;θ
may be analytic with respect to x on a disc Dr1 smaller than the common disc Dρ1

of analyticity of the coefficients uj,˚pxq of rupt, xq.

Denote by B
´1
t ru (resp. B´1

x ru) the anti-derivative of ru with respect to t (resp. x)
which vanishes at t “ 0 (resp. x “ 0). Following Proposition 3.2, which is proved
for instance in [3, Prop. 3.2], specifies the algebraic structure of OpDρ1qttu1;θ.

Proposition 3.2. Let θ P R{2πZ. Then, pOpDρ1
qttu1;θ, Bt, Bxq is a C-differential

algebra stable under the anti-derivatives B
´1
t and B´1

x .

With respect to t, the 1-sum upt, xq of a 1-summable series rupt, xq P OpDρ1qttu1;θ
is analytic on an open sector for which there is no control on the angular opening
except that it must be larger than π (hence, it contains a closed sector Σθ,π bisected
by θ and with opening π) and no control on the radius except that it must be
positive. Thereby, the 1-sum upt, xq is well-defined as a section of the sheaf of
analytic functions in pt, xq on a germ of closed sector of opening π (that is, a closed

2A subsector Σ of a sector Σ1 is said to be a proper subsector and one denotes Σ Ť Σ1 if its
closure in C is contained in Σ1 Y t0u.
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interval Iθ,π of length π on the circle S1 of directions issuing from 0; see [12, 1.1]
or [9, I.2]) times t0u (in the plane C of the variable x). We denote by OIθ,πˆt0u

the

space of such sections.

Corollary 3.3. The operator of 1-summation

S1;θ : OpDρ1
qttu1;θ ÝÑ OIθ,πˆt0u

rupt, xq ÞÝÑ upt, xq

is a homomorphism of C-differential algebras for the derivations Bt and Bx. More-
over, it commutes with the anti-derivations B

´1
t and B´1

x .

The following result investigates the 1-summability of the analytic functions at
the origin p0, 0q P C2.

Proposition 3.4. Let apt, xq be an analytic function on a polydic Dρ0 ˆDρ1 . Then,
apt, xq P OpDρ1qttu1;θ for any direction θ P R{2πZ.

Proof. Let us fix a direction θ P R{2πZ and four radii 0 ă ρ2
j ă ρ1

j ă ρj with
j “ 0, 1. Let us first start by observing that apt, xq is its own Taylor series at p0, 0q

on Dρ0 ˆ Dρ1 . On the other hand, we derive from the Cauchy Integral Formula

Bℓ
tapt, xq “

ℓ!

p2iπq2

ż

|t1
´t|“ρ1

0´ρ2
0

|x1
´x|“ρ1

1´ρ2
1

apt1, x1q

pt1 ´ tqℓ`1px1 ´ xq
dt1dx1

the inequalities

|Bℓ
tapt, xq| ď α

ˆ

1

ρ1
0 ´ ρ2

0

˙ℓ

ℓ!

for all ℓ ě 0 and all pt, xq P Dρ2
0

ˆDρ2
1
, where α stands for the maximum of |apt, xq|

on the closed polydisc Dρ1
0

ˆ Dρ1
1
(Dρ denotes the closed disc with center 0 P C

and radius ρ ą 0). Observing then that ℓ! ď p2ℓq! for all ℓ ě 0, we finally get the
inequalities

|Bℓ
tapt, xq| ď α

ˆ

1

ρ1
0 ´ ρ2

0

˙ℓ

p2ℓq!

for all ℓ ě 0 and all pt, xq P Dρ2
0
ˆDρ2

1
. The choice of an arbitrary sector Σθ,ąπ Ă Dρ2

0

ends the proof of Proposition 3.4. □

Let us now turn to the study of the 1-summability of the formal solution rupt, xq P

OpDρ1
qrrtss of Eq. (1.2).

3.2. Main result. Before stating our main result, let us start with a preliminary
remark. Let us write the coefficients apt, xq, bP,mpt, xq and bQ,mpt, xq in the form

apt, xq “
ÿ

ně0

a˚,nptq
xn

n!

bP,mpt, xq “
ÿ

ně0

bP,m;˚,nptq
xn

n!
, bQ,mpt, xq “

ÿ

ně0

bQ,m;˚,nptq
xn

n!

with a˚,nptq, bP,m;˚,nptq, bQ,m;˚,nptq P OpDρ0q for all n ě 0 and all m “ 0, ..., d. Let

us also write the formal solution rupt, xq and the inhomogeneity rfpt, xq in the same
way:

rupt, xq “
ÿ

ně0

ru˚,nptq
xn

n!
, rfpt, xq “

ÿ

ně0

rf˚,nptq
xn

n!
.
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Observe that the coefficients ru˚,nptq and rf˚,nptq are divergent in general (hence,
the notation with a tilde). By identifying the terms in xn in Eq. (1.2), we get the
identities

(3.1) a˚,0ptqru˚,n`4ptq “ B2
t ru˚,nptq ´ rf˚,nptq ´

ÿ

n0`n1“n
n1‰n

ˆ

n

n0, n1

˙

a˚,n0
ptqru˚,n1`4ptq

´

d
ÿ

m“0

ÿ

n0`...`nm`1“n

ˆ

n

n0, ..., nm`1

˙

rTP,m,n0,...,nm`1
ptq

´

d
ÿ

m“0

ÿ

n0`...`nm`2“n

ˆ

n

n0, ..., nm`2

˙

rTQ,m,n0,...,nm`2
ptq

for all n ě 0, where rTP,m,n0,...,nm`1
ptq and rTQ,m,n0,...,nm`2

ptq are the formal power
series in t respectively defined by

rTP,m,n0,...,nm`1
ptq “

#

bP,0;˚,n0
ptqru˚,n1`2ptq if m “ 0

bP,m;˚,n0
ptqru˚,n1

ptq...ru˚,nm
ptqru˚,nm`1`2ptq if m ě 1

and

rTQ,m,n0,...,nm`2
ptq “

#

bQ,0;˚,n0
ptqru˚,n1`1ptqru˚,n2`1ptq if m “ 0

bQ,0;˚,n0
ptqru˚,n1

ptq...ru˚,nm
ptqru˚,nm`1`1ptqru˚,nm`2`1ptq if m ě 1

.

By assumption, a˚,0p0q “ ap0, 0q ‰ 0. Then, 1{a˚,0ptq is well-defined in Crrtss and,
consequently, each coefficient ru˚,nptq is uniquely determined from the inhomogene-

ity rfpt, xq and from the formal series ru˚,n1 ptq with n1 “ 0, 1, 2, 3. In particular, the
same applies to the formal solution rupt, xq.

We are now able to state the main result in view in this section.

Theorem 3.5. Let rupt, xq be the formal solution in OpDρ1
qrrtss of the generalized

Boussinesq equation (1.2). Let argptq “ θ P R{2πZ be a direction issuing from 0.
Then,

(1) rupt, xq is 1-summable in the direction θ if and only if the inhomogene-

ity rfpt, xq and the formal series ru˚,nptq “ Bn
x rupt, xq|x“0 P Crrtss for n “

0, 1, 2, 3 are 1-summable in the direction θ.
(2) Moreover, the 1-sum upt, xq, if any exists, satisfies Eq. (1.2) in which

rfpt, xq is replaced by its 1-sum fpt, xq in the direction θ.

Observe that Theorem 3.5 coincides with Proposition 1.3 in the case of the Euler-
Lagrange equation (1.3), that is in the case where the polynomials P and Q are
both zero.

3.3. Proof of Theorem 3.5. First of all, let us observe that the necessary condi-
tion of the first point is straightforward from Proposition 3.2, and that the second
point stems obvious from Corollary 3.3. Consequently, we are left to prove the
sufficient condition of the first point. To this end, we fix from now on a direc-

tion θ and we suppose that the inhomogeneity rfpt, xq and the formal power series
ru˚,nptq “ Bn

x rupt, xq|x“0 P Crrtss for n “ 0, 1, 2, 3 are all 1-summable in the direction
θ. To prove that the formal solution rupt, xq is also 1-summable in this direction,
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we shall proceed through a fixed point method similar to the ones already used by
W. Balser and M. Loday-Richaud in [3] and by the author in [19–22,25,26].

3.3.1. First step: an associated equation. Let us set

rvpt, xq “ ru˚,0ptq ` ru˚,1ptq
x

1!
` ru˚,2ptq

x2

2!
` ru˚,3ptq

x3

3!

and let us introduce the formal series rwpt, xq P OpDρ1
qrrtss defined by the relation

rupt, xq “ rvpt, xq ` B´4
x rwpt, xq.

With these notations, Eq. (1.2) becomes

(3.2) rw ´ rHpt, x, rwq “ rgpt, xq,

where

rHpt, x, rwq “ Apt, xqB2
t B´4

x rw ´

d
ÿ

k“0

rBP,kpt, xqpB´4
x rwqkB´2

x rw

´

d
ÿ

k“0

rBQ,kpt, xqpB´4
x rwqkpB´3

x rwq2 ´

d
ÿ

k“0

rCQ,kpt, xqpB´4
x rwqkB´3

x rw

´

d
ÿ

k“1

rDkpt, xqpB´4
x rwqk

with

Apt, xq “
1

apt, xq
, rB‚,kpt, xq “

d‚
ÿ

m“k

ˆ

m

k

˙

b‚,mpt, xq

apt, xq
rvm´kpt, xq,

rCQ,kpt, xq “ 2 rBQ,kpt, xqBxrvpt, xq,

rDkpt, xq “ rBP,kpt, xqB2
xrvpt, xq ` rBQ,kpt, xqpBxrvpt, xqq2,

and where

rgpt, xq “ Apt, xqpB2
t rv ´ P pt, x, rvqB2

xrv ´ Qpt, x, rvqpBxrvq2 ´ rfpt, xqq.

Observe that rwpt, xq is actually the unique formal series solution of Eq. (3.2) (reason
as in Proposition 1.1 by exchanging the role of t and x). Observe also that, thanks
to the initial assumption ap0, 0q ‰ 0 (see page 2), the function Apt, xq is well-defined
and analytic on a polydisc Dρ1

0
ˆDρ1

1
with convenient radii 0 ă ρ1

j ď ρj for j “ 0, 1;

hence, the coefficients rB‚,kpt, xq, rCQ,kpt, xq and rDkpt, xq, and the inhomogeneity
rgpt, xq belong to OpDρ1

1
qrrtss. Moreover, taking into account the fact that the

formal series rfpt, xq and rvpt, xq are both 1-summable in the direction θ, it is the
same for all these formal series (Propositions 3.2 and 3.4). Consequently, identity
(3.2) above tells us that it is sufficient to prove that the formal series rwpt, xq is also
1-summable in the direction θ. To do that, we shall proceed in a similar way as
[3, 19–22,25,26] by using a fixed point method.
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3.3.2. Second step: the fixed point procedure. Let us set

ĂW pt, xq “
ÿ

µě0

rwµpt, xq

and let us choose the solution of Eq. (3.2) recursively determined by the relations

(3.3)

#

rw0pt, xq “ rgpt, xq

rwµ`1pt, xq “ rH 1pt, x, rw0, ..., rwµq for all µ ě 0

where

rH 1pt, x, rw0, ..., rwµq “ Apt, xqB2
t B´4

x rwµ

´

d
ÿ

k“0

ÿ

µ1`...`µk`1“µ

˜

rBP,kpt, xq

˜

k
ź

i“1

B´4
x rwµi

¸

B´2
x rwµk`1

¸

´

d
ÿ

k“0

ÿ

µ1`...`µk`2“µ

˜

rBQ,kpt, xq

˜

k
ź

i“1

B´4
x rwµi

¸

B´3
x rwµk`1

B´3
x rwµk`2

¸

´

d
ÿ

k“0

ÿ

µ1`...`µk`1“µ

˜

rCQ,kpt, xq

˜

k
ź

i“1

B´4
x rwµi

¸

B´3
x rwµk`1

¸

´

d
ÿ

k“1

ÿ

µ1`...`µk“µ

˜

rDkpt, xq

˜

k
ź

i“1

B´4
x rwµi

¸¸

with the classical convention that the products over i are 1 when k “ 0.
Observe that rwµpt, xq P OpDρ1

1
qrrtss for all µ ě 0. Observe also that the rwµpt, xq’s

are of order Opx2µq in x for all µ ě 0. Thereby, the series ĂW pt, xq itself makes sense

as a formal series in t and x and, consequently, ĂW pt, xq “ rwpt, xq by unicity.
Let us now respectively denote by w0pt, xq, B‚,kpt, xq, CQ,kpt, xq and Dkpt, xq the

1-sums of rw0pt, xq, rB‚,kpt, xq, rCQ,kpt, xq and rDkpt, xq in the direction θ and, for all
µ ą 0, let wµpt, xq be determined by the relations (3.3) in which the formal series
rB‚,kpt, xq, rCQ,kpt, xq and rDkpt, xq are respectively replaced by B‚,kpt, xq, CQ,kpt, xq

and Dkpt, xq, and all the rwµ by wµ. By construction, all the functions wµpt, xq

are defined and holomorphic on a common domain Σθ,ąπ ˆ Dρ2
1
with a convenient

radius 0 ă ρ2
1 ď ρ1

1.

To end the proof, it remains to prove that the series
ÿ

µě0

wµpt, xq is convergent

and that its sum wpt, xq is the 1-sum of rwpt, xq in the direction θ. To do that, we
shall now give estimates on the functions wµpt, xq.

3.3.3. Third step: some estimates on the wµpt, xq’s. According to Definition 3.1
and Proposition 3.4, there exists a radius 0 ă r1

1 ď minp1, ρ2
1q such that, for any

proper subsector Σ Ť Σθ,ąπ, there exist two positive constants C ą 0 and K ě 1
such that

(3.4)

$

’

&

’

%

ˇ

ˇBℓ
tw0pt, xq

ˇ

ˇ ď CKℓp2ℓq!
ˇ

ˇBℓ
tApt, xq

ˇ

ˇ ď CKℓp2ℓq!,
ˇ

ˇBℓ
tB‚,kpt, xq

ˇ

ˇ ď CKℓp2ℓq!
ˇ

ˇBℓ
tCQ,kpt, xq

ˇ

ˇ ď CKℓp2ℓq!,
ˇ

ˇBℓ
tDkpt, xq

ˇ

ˇ ď CKℓp2ℓq!

for all ℓ ě 0, all k “ 0, ..., d, and all pt, xq P Σ ˆ Dr1
1
.
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Let us now fix a proper subsector Σ Ť Σθ,ąπ and let us choose the constants
C and K as above. Proposition 3.6 below provides us some first estimates on the
derivatives Bℓ

twµpt, xq on Σ ˆ Dr1
1
.

Proposition 3.6. Let pPµpxqqµě0 be the sequence of polynomials in R`rxs recur-
sively determined from P0pxq ” 1 by the relations

(3.5) Pµ`1pxq “ 3CB´4
x Pµpxq

`

d
ÿ

k“0

˜

p3Cqk`1

p4µ ` 4q!

ÿ

µ1`...`µk`1“µ

˜

k`1
ź

i“1

p4µiq!

¸ ˜

k
ź

i“1

B´4
x Pµi

pxq

¸

B´2
x Pµk`1

pxq

¸

`

d
ÿ

k“0

˜

p3Cqk`2

p4µ ` 4q!

ÿ

µ1`...`µk`2“µ

˜

k`2
ź

i“1

p4µiq!

¸ ˜

k
ź

i“1

B´4
x Pµipxq

¸ ˜

k`2
ź

i“k`1

B´3
x Pµipxq

¸¸

`

d
ÿ

k“0

˜

p3Cqk`1

p4µ ` 4q!

ÿ

µ1`...`µk`1“µ

˜

k`1
ź

i“1

p4µiq!

¸ ˜

k
ź

i“1

B´4
x Pµipxq

¸

B´3
x Pµk`1

pxq

¸

`

d
ÿ

k“1

˜

p3Cqk

p4µ ` 4q!

ÿ

µ1`...`µk“µ

˜

k
ź

i“1

p4µiq!B
´4
x Pµipxq

¸¸

for all µ ě 0, where the products over i are 1 when k “ 0 as usual.
Then, the following inequalities

(3.6)
ˇ

ˇBℓ
twµpt, xq

ˇ

ˇ ď CK2µ`ℓp4µ ` 2ℓq!Pµp|x|q

hold for all ℓ, µ ě 0 and all pt, xq P Σ ˆ Dr1
1
.

Proof. The proof proceeds by recursion on µ. The case µ “ 0 is straightforward
from the first inequality of (3.4). Let us now suppose that the inequalities (3.6)
hold for all the functions wjpt, xq with j “ 0, ..., µ for a certain µ ě 0.

According to the relations (3.3), we derive from the generalized Leibniz Formula,
from the inequalities (3.4) and (3.6), and from the fact that K ě 1 the identities

ˇ

ˇBℓ
twµ`1pt, xq

ˇ

ˇ ď CK2µ`2`ℓp4µ ` 4 ` 2ℓq! ˆ

«

Sℓ,µB´4
x Pµp|x|q

`

d
ÿ

k“0

ÿ

µ1`...`µk`1“µ

˜

S1
k`1,ℓ,µ,µ1,...,µk`1

˜

k
ź

i“1

B´4
x Pµi

p|x|q

¸

B´2
x Pµk`1

p|x|q

¸

`

d
ÿ

k“0

ÿ

µ1`...`µk`2“µ

˜

S1
k`2,ℓ,µ,µ1,...,µk`2

˜

k
ź

i“1

B´4
x Pµi

p|x|q

¸ ˜

k`2
ź

i“k`1

B´3
x Pµi

p|x|q

¸¸

`

d
ÿ

k“0

ÿ

µ1`...`µk`1“µ

˜

S1
k`1,ℓ,µ,µ1,...,µk`1

˜

k
ź

i“1

B´4
x Pµi

p|x|q

¸

B´3
x Pµk`1

p|x|q

¸

`

d
ÿ

k“1

ÿ

µ1`...`µk“µ

˜

S1
k,ℓ,µ,µ1,...,µk

˜

k
ź

i“1

B´4
x Pµi

p|x|q

¸¸ff
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for all ℓ ě 0 and all pt, xq P Σ ˆ Dr1
1
, where

Sℓ,µ “ C
ÿ

ℓ0`ℓ1“ℓ

ˆ

ℓ

ℓ0, ℓ1

˙

ˆ

4µ ` 4 ` 2ℓ

2ℓ0, 4µ ` 4 ` 2ℓ1

˙

and, for all p ě 1 and all nonnegative intergers µ1, ..., µp such that µ1` ...`µp “ µ:

S1
p,ℓ,µ,µ1,...,µp

“
Cp

4!

ÿ

ℓ0`ℓ1`...`ℓp“ℓ

ˆ

ℓ

ℓ0, ℓ1, ..., ℓp

˙

ˆ

4µ ` 4 ` 2ℓ

2ℓ0, 4µ1 ` 2ℓ1, ..., 4µp ` 2ℓp, 4

˙ .

Inequality (3.6) for wµ`1pt, xq follows then from Lemma 3.7 below, which achieves
the proof. □

Lemma 3.7. (1) Let ℓ, µ ě 0. Then,

Sℓ,µ ď 3C.

(2) Let ℓ, µ ě 0, p ě 1, and pµ1, ..., µpq a p-tuple of nonnegative integers such
that µ1 ` ... ` µp “ µ. Then,

S1
p,ℓ,µ,µ1,...,µp

ď p3Cqp
p4µ1q!...p4µpq!

p4µ ` 4q!
.

Proof. (1) Using the Vandermonde Inequality (see Proposition 4.2)

ˆ

4µ ` 4 ` 2ℓ

2ℓ0, 4µ ` 4 ` 2ℓ1

˙

ě

ˆ

ℓ

ℓ0, ℓ1

˙2ˆ

4µ ` 4

0, 4µ ` 4

˙

“

ˆ

ℓ

ℓ0, ℓ1

˙2

,

we get

Sℓ,µ ď C
ÿ

ℓ0`ℓ1“ℓ

1
ˆ

ℓ

ℓ0, ℓ1

˙

and thereby Sℓ,µ ď 3C by applying Proposition 4.5.
(2) The second point is proved in the same way and is left to the reader.

□

Let us now bound the polynomials Pµ.

Proposition 3.8. Let B be the positive real number defined by

B “ 48C ` p3Cqd`1ζp2qdp2 ` 3Cζp2qq ` 9Cp1 ` Cζp2qq

d´1
ÿ

k“0

p3Cζp2qqk,

where ζ stands for the Riemann Zeta function. Then, the inequalities

0 ď Pµpxq ď
pBx2qµ

p4µq!

hold for all µ ě 0 and all x P r0, 1s.
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Proof. The left inequality is obvious since all the coefficients of the Pµpxq’s are
nonnegative. The right inequality is proved by recursion on µ ě 0 as follows.

The case µ “ 0 is clear since P0pxq ” 1. Let us now suppose that Proposition
3.8 holds for all the polynomials Pkpxq with k P t0, ..., µu for a certain µ ě 0, and
let us prove it for the polynomial Pµ`1pxq.

Applying the recurrence relation (3.5) and the fact that x P r0, 1s, we first get

Pµ`1pxq ď B1 B
µx2µ`2

p4µ ` 4q!

for all x P r0, 1s, where B1 is the positive real number defined by

B1 “ 3Cαµ ` 2βd`1,µ ` βd`2,µ `

d´1
ÿ

k“0

p3βk`1,µ ` βk`2,µq

with

αµ “
p4µ ` 1qp4µ ` 2qp4µ ` 3qp4µ ` 4q

p2µ ` 1qp2µ ` 2qp2µ ` 3qp2µ ` 4q
and

βp,µ “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

3C if p “ 1

p3Cqp
ÿ

µ1`...`µp“µ

1
p´1
ź

j“1

pµj ` 1q2

if p ě 2 .

The constant αµ is easily bounded as follows:

αµ “

24
ˆ

2µ `
1

2

˙

p2µ ` 1q

ˆ

2µ `
3

2

˙

p2µ ` 2q

p2µ ` 1qp2µ ` 2qp2µ ` 3qp2µ ` 4q
ď 24 “ 16.

Let us now prove that βp,µ ď p3Cqpζp2qp´1 for all p ě 1 and all µ ě 0. This is
obvious when p “ 1 and stems from the following calculations when p ě 2:

βp,µ ď p3Cqp
µ

ÿ

µ1“0

. . .
µ

ÿ

µp´1“0

1
p´1
ź

j“1

pµj ` 1q2

“ p3Cqp

˜

µ
ÿ

µ1“0

1

pµ1 ` 1q2

¸p´1

ď p3Cqp

˜

`8
ÿ

µ1“1

1

µ12

¸p´1

“ p3Cqpζp2qp´1.

Consequently, B1 ď B and the sought inequality on Pµ`1pxq follows, which ends
the proof of Proposition 3.8. □

We are now able to improve the bounds of the functions Bℓ
twµpt, xq given in

Proposition 3.6.

Corollary 3.9. Let us set K1 “ 4K and c “ 16BK2. Then, the inequalities
ˇ

ˇBℓ
twµpt, xq

ˇ

ˇ ď CKℓ
1p2ℓq!pc |x|

2
qµ

hold for all ℓ, µ ě 0 and all pt, xq P Σ ˆ Dr1
1
.
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Proof. Applying Propositions 3.6 and 3.8, we get

ˇ

ˇBℓ
twµpt, xq

ˇ

ˇ ď CK2µ`ℓp4µ ` 2ℓq!
Bµ |x|

2µ

p4µq!
“ CKℓp2ℓq!

ˆ

4µ ` 2ℓ

4µ, 2ℓ

˙

´

BK2 |x|
2
¯µ

for all ℓ, µ ě 0 and all pt, xq P ΣˆDr1
1
(recall that the radius r1

1 was chosen so that

r1
1 ď 1). Lemma 3.9 follows then by using the fact that

ˆ

4µ ` 2ℓ

4µ, 2ℓ

˙

ď 24µ`2ℓ. □

We are now able to complete the proof of Theorem 3.5.

3.3.4. Fourth step: conclusion. Let us now choose for Σ a sector containing a proper
subsector Σ1 bisected by the direction θ and opening larger than π (recall that such a
choice is already possible by definition of a proper subsector, see Footnote 2). Let us

also choose a radius 0 ă r1 ă minpr1
1, 1{

?
cq and let us set C1 :“ C

ÿ

µě0

pcr21qµ P R˚
`.

Thanks to Corollary 3.9, the series
ÿ

µě0

Bℓ
twµpt, xq are normally convergent on

Σ ˆ Dr1 for all ℓ ě 0 and satisfy the inequalities
ÿ

µě0

ˇ

ˇBℓ
twµpt, xq

ˇ

ˇ ď C1K
ℓ
1p2ℓq!

for all pt, xq P Σ ˆ Dr1 . In particular, the sum wpt, xq of the series
ÿ

µě0

wµpt, xq is

well-defined, holomorphic on Σ ˆ Dr1 and satisfies the inequalities
ˇ

ˇBℓ
twpt, xq

ˇ

ˇ ď C1K
ℓ
1p2ℓq!

for all ℓ ě 0 and all pt, xq P Σ ˆ Dr1 . Hence, Conditions 1 and 3 of Definition 3.1
hold, since Σ1 Ť Σ.

To prove the second condition of Definition 3.1, we proceed as follows. The
Removable Singularities Theorem implies the existence of lim

tÑ0
tPΣ1

Bℓ
twpt, xq for all x P

Dr1 and, thereby, the existence of the Taylor series of w at 0 on Σ1 for all x P Dr1

(see for instance [11, Cor. 1.1.3.3]; see also [10, Prop. 1.1.11]). On the other
hand, considering recurrence relations (3.3), it is clear that wpt, xq satisfies Eq.
(3.2) where all the formal coefficients and the inhomogeneity are replaced by their
1-sums in the direction θ and, consequently, so does its Taylor series. Then, since
Eq. (3.2) has a unique formal series solution rwpt, xq (see the remark page 19 just
after the definition of Eq. (3.2)), we then conclude that the Taylor expansion of
wpt, xq is rwpt, xq. Hence, Condition 2 of Definition 3.1 holds.

This achieves the proof of the sufficient condition of the first point of Theorem
3.5, which ends its full proof.

4. Appendix: some technical results on the binomial and multinomial
coefficients

In combinatorial analysis, the binomial coefficients

ˆ

n

m

˙

and the multinomial

coefficients

ˆ

n

n1, ..., nq

˙

are defined for any nonnegative integers 0 ď m ď n and
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any tuples pn, n1, ..., nqq of nonnegative integers satisfying q ě 2 and n1`...`nq “ n
by the relations

ˆ

n

m

˙

“
n!

m!pn ´ mq!
and

ˆ

n

n1, ..., nq

˙

“
n!

n1!...nq!
.

They respectively denote the number of ways of choosingm objects from a collection
of n distinct objects without regard to order, and the number of ways of putting
n “ n1 ` ... ` nq different objects into q different boxes with ni in the i-th box for
all i “ 1, ..., q.

Using the fact that n! “ Γp1 ` nq for any integer n ě 0, one can easily extend
the definitions of these coefficients to the case where their terms are no longer
necessarily integers by setting

(4.1)

ˆ

a

b

˙

“
Γp1 ` aq

Γp1 ` bqΓp1 ` a ´ bq

for any nonnegative real numbers 0 ď b ď a and

(4.2)

ˆ

a

a1, ..., aq

˙

“
Γp1 ` aq

Γp1 ` a1q...Γp1 ` aqq
“

Γp1 ` aq
q

ź

i“1

Γp1 ` aiq

for any tuples pa, a1, ..., aqq of nonnegative real numbers satisfying q ě 2 and a1 `

... ` aq “ a. Observe that all these coefficients are positive. Observe also that one
has the following decomposition

(4.3)

ˆ

a

a1, ..., aq

˙

“

q
ź

i“2

ˆ

a1 ` ... ` ai
a1 ` ... ` ai´1

˙

.

The four propositions below extend to the generalized binomial coefficients (4.1)
and the generalized multinomial coefficients (4.2) some well-known results in com-
binatorial analysis.

In the proof of Theorems 2.3 and 3.5, we essentially use the inequalities stated
in Propositions 4.2, 4.4 and 4.5. The result of Proposition 4.1 is useful for the proof
of Proposition 4.2.

Proposition 4.1 (Pascal Formula). Let 0 ď b ď a be two nonnegative real numbers
and 1 ď m ď n two nonnegative integers. Then,

(4.4)

ˆ

a ` n ` 1

b ` m

˙

“

ˆ

a ` n

b ` m

˙

`

ˆ

a ` n

b ` m ´ 1

˙

.
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Proof. We compute:

ˆ

a ` n

b ` m

˙

`

ˆ

a ` n

b ` m ´ 1

˙

“
Γp1 ` a ` nq

Γp1 ` b ` mqΓp1 ` a ´ b ` n ´ mq

`
Γp1 ` a ` nq

Γp1 ` b ` m ´ 1qΓp1 ` a ´ b ` n ´ m ` 1q

“
pa ´ b ` n ´ m ` 1qΓp1 ` a ` nq

Γp1 ` b ` mqΓp1 ` a ´ b ` n ´ m ` 1q

`
pb ` mqΓp1 ` a ` nq

Γp1 ` b ` mqΓp1 ` a ´ b ` n ´ m ` 1q

“
pa ` n ` 1qΓp1 ` a ` nq

Γp1 ` b ` mqΓp1 ` a ´ b ` n ´ m ` 1q

“
Γp1 ` a ` n ` 1q

Γp1 ` b ` mqΓp1 ` a ´ b ` n ´ m ` 1q

“

ˆ

a ` n ` 1

b ` m

˙

;

hence, the identity (4.4). □

Proposition 4.2 (Vandermonde Inequality).

(1) (Binomial case) Let 0 ď b ď a be two nonnegative real numbers and 0 ď

m ď n two nonnegative integers. Then,

(4.5)

ˆ

a ` n

b ` m

˙

ě

ˆ

a

b

˙ˆ

n

m

˙

.

(2) (Multinomial case) Let q ě 2 be an integer, pa, a1, ..., aqq a tuple of nonneg-
ative real numbers and pn, n1, ..., nqq a tuple of nonnegative integers such
that a1 ` ... ` aq “ a and n1 ` ... ` nq “ n. Then,

(4.6)

ˆ

a ` n

a1 ` n1, ..., aq ` nq

˙

ě

ˆ

a

a1, ..., aq

˙ˆ

n

n1, ..., nq

˙

.

Proof. ‹ First point. The inequality (4.5) is clear for n “ m “ 0. Let us now fix
0 ď b ď a and let us prove by induction on n ě 1 the property

pPnq : @m P t0, ..., nu,

ˆ

a ` n

b ` m

˙

ě

ˆ

a

b

˙ˆ

n

m

˙

.

A direct calculation gives us the property pP1q:

ˆ

a ` 1

b

˙

“
Γp1 ` a ` 1q

Γp1 ` bqΓp1 ` a ` 1 ´ bq
“

a ` 1

a ` 1 ´ b

ˆ

a

b

˙

ě

ˆ

a

b

˙

“

ˆ

a

b

˙ˆ

1

0

˙

,

ˆ

a ` 1

b ` 1

˙

“
Γp1 ` a ` 1q

Γp1 ` b ` 1qΓp1 ` a ´ bq
“

a ` 1

b ` 1

ˆ

a

b

˙

ě

ˆ

a

b

˙

“

ˆ

a

b

˙ˆ

1

1

˙

.

Assuming now the property pPnq for a certain n ě 1, let us prove the prop-
erty pPn`1q. As for the property pP1q, the sought inequality stems from a direct
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calculation when m “ 0 and m “ n ` 1:

ˆ

a ` n ` 1

b

˙

“
Γp1 ` a ` n ` 1q

Γp1 ` bqΓp1 ` a ` n ` 1 ´ bq
“

˜

n`1
ź

k“1

a ` k

a ` k ´ b

¸

ˆ

a

b

˙

ě

ˆ

a

b

˙

“

ˆ

a

b

˙ˆ

n ` 1

0

˙

,

ˆ

a ` n ` 1

b ` n ` 1

˙

“
Γp1 ` a ` n ` 1q

Γp1 ` b ` n ` 1qΓp1 ` a ´ bq
“

˜

n`1
ź

k“1

a ` k

b ` k

¸

ˆ

a

b

˙

ě

ˆ

a

b

˙

“

ˆ

a

b

˙ˆ

n ` 1

n ` 1

˙

.

When m P t1, ..., nu, it stems from Proposition 4.1 and the property pPnq as follows:
ˆ

a ` n ` 1

b ` m

˙

“

ˆ

a ` n

b ` m

˙

`

ˆ

a ` n

b ` m ´ 1

˙

ě

ˆ

a

b

˙ˆ

n

m

˙

`

ˆ

a

b

˙ˆ

n

m ´ 1

˙

“

ˆ

a

b

˙ ˆˆ

n

m

˙

`

ˆ

n

m ´ 1

˙˙

“

ˆ

a

b

˙ˆ

n ` 1

m

˙

.

This ends the induction and proves the first point of Proposition 4.2.

‹ Second point. Let us apply the relation (4.3) and the inequality (4.5) to each
factor of the product. We get

ˆ

a ` n

a1 ` n1, ..., aq ` nq

˙

“

q
ź

i“2

ˆ

a1 ` ... ` ai ` n1 ` ... ` ni

a1 ` ... ` ai´1 ` n1 ` ... ` ni´1

˙

ě

q
ź

i“2

ˆ

a1 ` ... ` ai
a1 ` ... ` ai´1

˙ˆ

n1 ` ... ` ni

n1 ` ... ` ni´1

˙

“

˜

q
ź

i“2

ˆ

a1 ` ... ` ai
a1 ` ... ` ai´1

˙

¸ ˜

q
ź

i“2

ˆ

n1 ` ... ` ni

n1 ` ... ` ni´1

˙

¸

.

The inequality (4.6) follows then by applying again the relation (4.3), which ends
the proof of the second point of Proposition 4.2. □

Remark 4.3. When all the terms a, b, n andm are nonnegative integers, inequality
(4.5) is also a direct consequence of the Chu-Vandermonde Identity

(4.7)

ˆ

a ` n

b ` m

˙

“
ÿ

k`ℓ“b`m

ˆ

a

k

˙ˆ

n

ℓ

˙

,

since all the coefficients in the sum are nonnegative. However, this proof fails in
our general case where a and b are no longer integers, since some terms in the sum
of (4.7) may now be negative.

Proposition 4.4 (Variations of the binomial coefficients). Let b ě 0. Then,

the function Binb : a P rb,`8rÞÝÑ

ˆ

a

b

˙

is increasing on rb,`8r. In particular,

Binbpaq ě Binbpbq “ 1 for all a ě b.
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Proof. The derivative of Binb is defined for all a P rb,`8r by the identity

Bin1
bpaq “

ˆ

a

b

˙

pΨp1 ` aq ´ Ψp1 ` a ´ bqq,

where Ψ “ Γ1{Γ is the Psi (or Digamma) function. Since the function ln Γ is
convex on s0,`8r, the latter is increasing on s0,`8r and Proposition 4.4 follows
from Lagrange Theorem. □

Proposition 4.5 (Sum of the inverses of binomial and multinomial coefficients).

(1) (Binomial case) The following inequality holds for all integers n ě 0:

(4.8)
n

ÿ

m“0

1
ˆ

n

m

˙ ď 3.

(2) (Multinomial case) The following inequality holds for all integers q ě 2 and
n ě 0:

(4.9)
ÿ

n1`...`nq“n

1
ˆ

n

n1, ..., nq

˙ ď 3q´1.

Proof. ‹ First point. The inequality (4.8) is obvious when n P t0, 1u:

n
ÿ

m“0

1
ˆ

n

m

˙ “

#

1 if n “ 0

2 if n “ 1
ď 3.

Let us now assume n ě 2 and let us write the left hand-side of (4.8) in the form

n
ÿ

m“0

1
ˆ

n

m

˙ “
1

ˆ

n

0

˙ `

n´1
ÿ

m“1

1
ˆ

n

m

˙ `
1

ˆ

n

n

˙ “ 2 `

n´1
ÿ

m“1

1
ˆ

n

m

˙ .

Inequality (4.8) follows then by observing that all the terms

ˆ

n

m

˙

are ě

ˆ

n

1

˙

for

m “ 1, ..., n ´ 1. We get indeed the following relations:
n

ÿ

m“0

1
ˆ

n

m

˙ ď 2 `
n ´ 1
ˆ

n

1

˙ “ 2 `
n ´ 1

n
ď 3.

‹ Second point. Applying the relation (4.3) and setting n1
k “ n1 ` ... ` nk for all

k “ 1, ..., q ´ 1, we first get the identities
ÿ

n1`...`nq“n

1
ˆ

n

n1, ..., nq

˙ “
ÿ

n1`...`nq´1ďn

1
ˆ

n

n1 ` ... ` nq´1

˙

...

ˆ

n1 ` n2

n1

˙

“

n
ÿ

n1
q´1“0

n1
q´1
ÿ

n1
q´2“0

...

n1
2

ÿ

n1
1“0

1
ˆ

n

n1
q´1

˙ˆ

n1
q´1

n1
q´2

˙

...

ˆ

n1
2

n1
1

˙ .

Inequality (4.9) stems then from the inequality (4.8) which we apply q ´ 1 times.
This completes the proof. □
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[5] M. Canalis-Durand, J.-P. Ramis, R. Schäfke, and Y. Sibuya. Gevrey solutions of singularly

perturbed differential equations. J. Reine Angew. Math., 518:95–129, 2000.
[6] O. Guner. Soliton solution of the generalized modified BBM equation and the generalized

Boussinesq equation. J. Ocean Eng. Sci., 2(4):248–252, 2017.

[7] P. Hilton and J. Pedersen. Catalan numbers, their generalization, and their uses. Math.
Intelligencer, 13(2):64–75, 1991.

[8] D. A. Klarner. Correspondences between plane trees and binary sequences. J. Combinatorial

Theory, 9:401–411, 1970.
[9] M. Loday-Richaud. Stokes phenomenon, multisummability and differential Galois groups.

Ann. Inst. Fourier (Grenoble), 44(3):849–906, 1994.

[10] M. Loday-Richaud. Divergent Series, Summability and Resurgence II. Simple and Multiple
Summability, volume 2154 of Lecture Notes in Math. Springer-Verlag, 2016.
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