
HAL Id: hal-03445797
https://hal.science/hal-03445797

Submitted on 24 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The productivity of two serial chemostats
Manel Dali-Youcef, Tewfik Sari

To cite this version:
Manel Dali-Youcef, Tewfik Sari. The productivity of two serial chemostats. International Journal of
Biomathematics, 2023, 16 (6), �10.1142/S1793524522501133�. �hal-03445797�

https://hal.science/hal-03445797
https://hal.archives-ouvertes.fr


THE PRODUCTIVITY OF TWO SERIAL CHEMOSTATS

MANEL DALI-YOUCEF AND TEWFIK SARI

Abstract. This paper considers the production of biomass of two interconnected chemostats
in serial with biomass mortality and a growth kinetic of the biomass described by an increasing
function. A comparison is made with the productivity of a single chemostat with the same
mortality rate and with volume equal to the sum of the volumes of the two chemostats. We
determine the operating conditions under which the productivity of the serial configuration is
greater than the productivity of the single chemostat. Moreover, the differences and similarities
in the results corresponding to the case with mortality and the one without mortality, are
highlighted. The mortality leads to surprising results where the productivity of a steady state
where the bacteria are washed out in the first chemostat is greater than the one where the
bacteria are present in both chemostats.
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1. Introduction

The mathematical model of the chemostat has received a great attention in the literature
for many years (see for instance [6, 16] and literature cited inside). Several extensions of the
original model of the chemostat, considering spatial heterogeneity, have been proposed to better
cope reality. Discrete spatial representations, such as the gradostat model [16, 17], are a way
to represent spatial heterogeneity. Serial configurations, are examples of gradostats, that have
received a great interest in the literature in view of optimizing bioprocesses [4, 5, 7, 9, 10,
13, 15, 18]. A complete and deep analysis of the serial configuration of two chemostats was
given in [2, 3], and the performance of the serial configuration were compared to those of the
single chemostat, for three criteria : the minimization of the output substrate concentration, the
maximization of the biogas flow rate and the maximization of the productivity of the biomass. In
[2], it was proved that if a serial configuration is better than a single chemostat for one of these
criteria, then it is also better for the other two criteria. More precisely, the serial chemostats
have a smaller output substrate concentration than the single chemostat, if and only if it has a
larger biogas flow rate (or productivity of the biomass). In fact, in [2], where the model does not
consider mortality rate of the biomass, the biomass productivity and the biogas flow rate are
given by the same expression. Hence, it is not surprising that the maximization of the biogas
flow rate and the maximization of the productivity of the biomass are characterized by the same
operating conditions. However, when the mortality of the biomass is introduced in the equations
of the model, then the biomass productivity and the biogas flow rate are no longer given by the
same expression. In the case where the mortality is included in the model, it was shown in [3]
that the performance of the serial configuration, compared to a single chemostat, for the first
and second criteria, lead to the same conclusions, i.e. the serial device has a smaller output
substrate concentration than the single chemostat, if and only if it has a larger biogas flow rate.
Characterizing the operating conditions for which the series device has a higher productivity
than the single chemostat is a much more difficult problem. The aim of this article is to give
the answer of this problem.

The paper is organized as follows. Section 2 describes the mathematical model corresponding
to the serial configuration of two chemostats with mortality rate. The results on the existence
and stability of the steady states obtained in [3] are outlined and the definition of the productivity
of each steady state is given. The section ends with the comparison of these productivities with
the one of the single chemostat, in case without mortality. This is an extension of former results
obtained in [2]. Afterwards, Section 3 presents the comparison of these productivities with the
one of the single chemostat, in the mortality case. Then, Section 4 considers the most efficient
serial device when the two operating parameters (the input concentration of substrate and the
dilution rate) are fixed. Section 5 provides illustrations of our results to the Monod growth
function which is often used in the applications. However, our results are general and apply
to a large class of growth functions, as illustrated in Appendix C. Finally, Section 6 contains
a conclusion. Appendix A provides some results on the single chemostat that are used in this
paper, while Appendix B gives the results on the existence and stability of the steady states of
the model and its operating diagram. Some of the proofs are given in Section D.

2. The mathematical model

We consider two serial interconnected chemostats of volumes, V1 and V2. The substrate
and the biomass concentrations are respectively denoted Si and xi, where i = 1 in the first
chemostat and i = 2 in the second one. The input substrate concentration in the first chemostat
is designated Sin, and Q is the flow rate, as shown in Figure 1.

The dilution rates in the chemostats are given by

(1) D1 := Q
V1

= D
r , D2 := Q

V2
= D

1−r ,
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Figure 1. The serial configuration of two chemostats.

where V = V1 + V2 is the total volume, r = V1/V and D = Q/V . The mathematical model is
given by the following equations:

(2)

Ṡ1 = D1(Sin − S1)− x1

ẋ1 = −D1x1 + f(S1)x1 − ax1

Ṡ2 = D2(S1 − S2)− f(S2)x2

ẋ2 = D2(x1 − x2) + f(S2)x2 − ax2,

where a is the mortality rate of the microorganism and f its specific growth rate. Note that
equations (2) are not valid for r = 0 or r = 1. In these cases V1 = 0 or V2 = 0, and Figure
1 corresponds to a single chemostat of volume V = V1 + V2 and flow rate Q. Therefore, the
dilution rate of this single chemostat is D = Q/V and its mathematical equations are given by

(3)
Ṡ = D(Sin − S)− f(S)x
ẋ = −Dx+ f(S)x− ax

where S and x denote respectively the substrate and the biomass concentration, see [6, 16]. We
give in Appendix A the results on (3) that are necessary for the understanding of this paper.
Note that singular perturbation theory shows that (3) is the reduced model associated with (2)
in the limiting cases r → 0 or r → 1.

In (2), the input substrate concentration Sin, the volume V and the flow rate Q are assumed
to be fixed, together with the ratio r = V1/V . Therefore D = Q/V , Sin and r are the operating
parameters in the model, since they can be easily chosen and manipulated by the experimenter of
the device. Apart from these parameters, all other parameters have biological meaning and can
be fitted using experimental data from real measurements of concentrations of micro-organisms
and substrates. To provide the experimenter useful tools, the results on the behavior of the
model are discussed with respect of the operating parameters and are describe using the so-called
operating diagram. The operating diagram is the bifurcation diagram for which the values of the
biological parameters are fixed. The various regions of the operating diagram reflect qualitatively
different dynamics. The importance of the operating diagrams for bioreactors was emphasized
in [11]. Since it is not easy to visualize regions in the three-dimensional operating parameters
space, D and Sin are used as coordinates of the operating diagram, while r is kept constant.
The effects of r are shown in a series of operating diagrams, see Figures 2, 7, 12, 13 and 16.

Our aim is to compare the productivity of (2) with the productivity of (3). We make the
following assumption and notation:

Assumption 1. The function f is C1, with f(0) = 0 and f ′(S) > 0 for all S > 0.

Notation 1. Let λ : [0,m) → R+ be the inverse function of f , where m := supS>0 f(S). For
D < m, S = λ(D) is called the break-even concentration. It is the unique solution of equation
f(S) = D.

2.1. The steady states and their stability. The existence and stability of the steady states
of (2) is studied in [3]. The system (2) can have up to three steady states:

• The washout steady state E0 = (Sin, 0, Sin, 0).
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• The steady state E1 = (Sin, 0, S2, x2) of washout in the first chemostat but not in the
second one.
• The steady state E2 = (S∗1 , x

∗
1, S
∗
2 , x
∗
2) of persistence of the species in both chemostats.

For the description of the steady state E2 , we need to define the auxiliary function h given by:

(4) h(S2, S
in) = (D2 + a)

S∗1 − S2

D1Sin+aS∗1
D1+a − S2

, where S∗1 = λ (D1 + a)

Table 1. The steady states of (2) and their conditions of existence and stability
The steady states E1 and E2 of (2)

E1 = (Sin, 0, S2, x2) S2 = λ (D2 + a) and x2 = D2
D2+a

(
Sin − S2

)
E2 = (S∗1 , x

∗
1, S
∗
2 , x
∗
2)

S∗1 = λ (D1 + a), x∗1 = D1
D1+a(Sin − S∗1)

S∗2 is the unique solution of equation
h(S2, S

in) = f(S2) and

x∗2 = D2
D2+a (x∗1 + S∗1 − S∗2)

Existence condition Stability condition
E0 Always exists D1 > f(Sin)− a and D2 > f(Sin)− a
E1 D2 < f(Sin)− a D1 > f(Sin)− a
E2 D1 < f(Sin)− a Stable if it exists

Theorem 1. [3] Assume that Assumption 1 is satisfied. The components of the steady states of
(2) and their conditions of existence and stability are given in Table 1.

For the uniqueness of the solution of equation h(S2, S
in) = f(S2) and other useful properties

of the steady states, the reader is referred to Appendix B.

2.2. Productivity of the biomass. When a continuous culture system is viewed as a pro-
duction process, its performance may be judged by the quantity of bacteria produced, which
is called the productivity of biomass. The total output from a continuous culture unit in the
steady state is equal to the product of flow-rate and concentration of organisms [8]. Therefore,
for two serial interconnected chemostats, the production of biomass P1 and P2, corresponding
respectively to the steady states E1 and E2, are given by

(5) P1 := Qx2 and P2 := Qx∗2,

where x2 and x∗2 are defined in Table 1. Using Q = V D, and the expressions of x2 and x∗2 given
in Table 1, it is deduced that the productivities (5) depend on the operating parameters Sin, D
and r and are given by the following formulas:

(6) P1(Sin, D, r) = V D2

D+(1−r)a

(
Sin − λ

(
D

1−r + a
))

.

(7) P2(Sin, D, r) = V D2

D+(1−r)a

(
D

D+ra(Sin − S∗1) + S∗1 − S∗2
)
.

where S∗1 = λ(D/r + a) and S∗2 is the unique solution of equation f(S2) = h(S2, S
in).

We recall that our aim is to compare the productivity of the serial configuration with the
productivity of a single chemostat of total volume V = V1 + V2. The equations of the single
chemostat are given by (3). The productivity of the single chemostat, denoted by P , is given by

(8) P (Sin, D) = Qx∗ = V D2

D+a(Sin − λ(D + a)).

See Appendix A for details and complements.
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2.3. The case without mortality. The productivities of the serial configuration (2), in the
case where a = 0, are given by:

P1(Sin, D, r) = V D
(
Sin − λ

(
D

1−r

))
,(9)

P2(Sin, D, r) = V D
(
Sin − S∗2

)
.(10)

On the other hand, the productivity of the single chemostat (3), with a = 0, is

(11) P (Sin, D) = V D
(
Sin − λ(D)

)
.

We have the following results.

Proposition 1. In the case a = 0, whenever the productivities are defined, we have

P1(Sin, D, r) < P (Sin, D),(12)

P1(Sin, D, r) < P2(Sin, D, r),(13)

P2(Sin, D, r) > P (Sin, D)⇐⇒ Sin > gr(D),(14)

where gr is given by

(15) gr(D) = λ(D) + λ(D/r)−λ(D)
1−r .

Proof. We have λ(D) < λ (D/(1− r)). Hence (12) holds, whenever P1 and P are both defined.
On the other hand, we have S∗2 < λ (D/(1− r)), see Lemma 10 in the Appendix. Hence (13)
holds, whenever P1 and P2 are both defined. Finally, (14) is a direct consequence of Theorem 2
in [2]. �

When the mortality is added in the model, the surprising result is that P1 can be larger than
P . Our aim is to give the operating conditions for which P1 > P and to extend (14) by giving
the operating conditions for which P2 > P . As a consequence we show that there are operating
conditions for which P1 > P2, i.e. (13) is no longer true when a > 0.

3. Performance

3.1. The performance at steady state E1. The productivity P1 is given by (6). The following
result gives the operating conditions for which P1 > P .

Theorem 2. Assume that Assumption 1 is satisfied. Let P1 and P defined by (6) and (8)
respectively. We have

(16) P1(Sin, D, r) > P (Sin, D)⇐⇒ Sin > p1(D, r),

where p1 is given by

(17) p1(D, r) := λ(D + a) + D+a
ra

(
λ
(

D
1−r + a

)
− λ(D + a)

)
.

The equivalence (16) holds when inequalities are replaced by equalities.

Proof. From (8) and (6) we deduce that P1(Sin, D, r) > P (Sin, D) if and only if

1
D+(1−r)a

(
Sin − λ

(
D

1−r + a
))

> 1
D+a(Sin − λ(D + a)),

which is equivalent to Sin > p1(D, r), where p1 is defined by (17). On the other hand, equality
holds if and only if Sin = p1(D, r). �

Remark 1. The region where Sin > p1(D, r) disappears when a→ 0, which is consistent with
(12). Indeed, from (17) one has lima→0 p1(D, r) = +∞.
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Note that p1 is defined on

dom(p1) := {(D, r) : 0 ≤ D < m− a, 0 < r < 1−D/(m− a)} .

According to the Theorem 2, the curve Πr1 defined by

(18) Πr1 =
{

(Sin, D) : Sin = p1(D, r)
}

is the set of operating conditions for which P1(Sin, D, r) = P (Sin, D). The result of Theorem 2
asserts that for all (Sin, D) at the right of the curve Πr1, P1(Sin, D, r) > P (Sin, D). To have a
better description of this set of operating conditions for which P1 > P we plot the curve Πr1 in
the operating diagram, together with the curves

Φ1−r =
{

(Sin, D) ∈ R2
+ : Sin = λ

(
D

1−r + a )} ,(19)

Φr =
{

(Sin, D) ∈ R2
+ : Sin = λ

(
D
r + a )} ,(20)

which determine the domain of existence and stability of E1, see Appendix B.2. The Figure 2
shows a typical situation obtained with a specific Monod function. The red curves depicted in
Figure 2 are the curves where P2 = P and will be described in the next section. The Figure 2
shows a situation where the curves Πr1 and Φr do not intersect. The case where these curves
can intersect is investigated in Appendix C. Let us give more details on the relative positions of
the curves Πr1, Φr and Φ1−r.

Proposition 2. The curve Πr1 passes through point (λ(a), 0), where Φr and Φ1−r intersect. For
D > 0, the curve Πr1 is at the right of the curve Φ1−r. The curve Πr1 may intersect the curve
Φr, with D > 0. If such an intersection exists then necessarily one has 0 < r < 1/2 and D is a
solution of equation

(21) (D + a)λ
(

D
1−r + a

)
− (D + a(1− r))λ (D + a)− arλ

(
D
r + a

)
= 0.

Proof. From (17), it is seen that p1(0, r) = λ(a). Thus Πr1 passes through point (λ(a), 0). From
(17), it is deduced that

p1(D, r) = λ
(

D
1−r + a

)
+ D+a(1−r)

ra

(
λ
(

D
1−r + a

)
− λ (D + a)

)
.

Hence, for D > 0 one has p1(D, r) > λ
(

D
1−r + a

)
. From (19), it is deduced that Πr1 is at the

right of Φ1−r. If r > 1/2 then Φ1−r is at the right of Φr, so that Πr1 cannot intersect Φr.
From (18) and (20) it is deduced that the intersection points of Πr1 and Φr are the solutions of
equation p1(D, r) = λ (D/r + a), which is equivalent to (21). �

D
Φ1−r

Φr

Πr1
Π1
r2

Π2
r2

Sin
λ(a)

(a) r = 0.25

D
Φr

Φ1−r

Πr1

Π1
r2

Π2
r2

Sin
λ(a)

(b) r = 0.75

Figure 2. The operating diagram showing the curves Πr1 (in blue), Φ1−r and
Φr (in black), and Π1

r2 and Π2
r2 (in red), defined respectively by (18), (19), (20),

(31) and (32). The figure is done using f(S) = 4S/(5 + S) and a = 0.3.
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Note that the steady state E1 may have a greater productivity than the single chemostat and
be either stable or unstable. If the operating condition (Sin, D) is chosen at the right of Πr1

and at the left of Φr in Figure 2(a), then E1 exists and is stable, and satisfies P1 > P . In this
case E2 does not exist. On the other hand, if (Sin, D) is chosen at the right of Φr in Figure
2(a), then E1 exists and is unstable, and satisfies P1 > P . In this case E2 exists (and is stable).
In Figure 2(b), E1 is unstable whenever it exists and, for (Sin, D) at the right of Πr1 in Figure
2(b), one has P1 > P .

For the operating conditions, for which P1 > P , from the practical point of view, one should
simply consider a tank of volume (1 − r)V and obtain a productivity which is higher than the
productivity of the tank of volume V . The surprising result is that the productivity of the tank of
volume V is smaller than the productivity of the tank of volume (1−r)V . This surprising result
is due to the mortality in the chemostat. If there is no mortality, then P1(Sin, D, r) < P (Sin, D)
for any Sin, D and r, for which P1 and P are defined, as shown by (12) in Proposition 1.

3.2. The performance at steady state E2. Our aim in this section is to compare the pro-
ductivity P2 of E2 and the productivity P of the single chemostat. The productivity P2 is given
by (7). We need the following notations:

α = a2r(1−r)
(D+a)(D+ra) , β = ra

D+raS
∗
1 + D+(1−r)a

D+a λ(D + a),(22)

A = − αSin + β,(23)

h2(S2) = h
(
S2,

β−S2

α

)
,(24)

h1(Sin) = h(−αSin + β, Sin), f1(Sin) = f(−αSin + β).(25)

Lemma 1. Let P2 and P defined respectively by (7) and (8). The following conditions are
equivalent.

(1) P2(Sin, D, r) > P (Sin, D).
(2) S∗2 < A.
(3) h2(A) < f(A).
(4) h1(Sin) < f1(Sin).

These conditions are also equivalent if inequalities are replaced by equalities.

Proof. From (7) and (8) it is deduced that P2(Sin, D, r) > P (Sin, D) if and only if

1
D+(1−r)a

(
D

D+ra(Sin − S∗1) + S∗1 − S∗2
)
> 1

D+a(Sin − λ(D + a)),

which is equivalent to S∗2 < A, where A is defined by (23). This proves the equivalence of
the conditions (1) and (2) in the lemma. Recall that S∗2 is the unique solution of equation
h(S2, S

in) = f(S2), see Table 1. Since S2 7→ f(S2) is increasing and S2 7→ h(S2, S
in) is decreasing

then, the condition (2) is equivalent to

(26) h(A,Sin) < f(A).

Replacing Sin by Sin = (β − A)/α it is seen that the condition (26) is equivalent to h2(A) <
f(A), where h2 is defined by (24). This proves the equivalence of the conditions (2) and (3).
Similarly, replacing A by A = −αSin + β, it is seen that the condition (26) is equivalent to
h1(Sin) < f1(Sin), where h1 and f1 are defined by (25). This proves the equivalence of the
conditions (2) and (4). The proof of the equivalence of the conditions when inequalities are
replaced by equalities is the same. �

Therefore we must solve the equation h2(S2) = f(S2) where h2 is defined by (24). From (4),
it is seen that the function h is given by

(27) h(S2, S
in) := D+(1−r)a

1−r
S∗1−S2

DSin+raS∗1
D+ra

−S2

.

Using the expressions of α and β given by (22), straightforward computations give

(28) h2(S2) = ra2

D+ra
S∗1−S2

σ−S2
, with σ :=

Dλ(D+a)+raS∗1
D+ra .



8 MANEL DALI-YOUCEF AND TEWFIK SARI

The graph of h2 is an increasing hyperbola with y = ra2/(D+ ra) as horizontal asymptote and
S2 = σ as vertical asymptote. Let us show that this graph intersect the graph of the increasing
function f in at least two points, see Figure 3(a).

Lemma 2. The equation h2(S2) = f(S2) has two solutions S1
2(D, r) and S2

2(D, r), such that
0 < S2

2(D, r) < λ(D+a) < S1
2(D, r) < σ. Moreover, if 0 ≤ S2 < S2

2(D, r) or S1
2(D, r) < S2 < σ,

then we have h2(S2) > f(S2). In addition, assuming that there is no other solution, then we
have h2(S2) < f(S2) if and only if S2

2(D, r) < S2 < S1
2(D, r).

Proof. The function H(S2) := h2(S2) − f(S2) is defined for 0 < S2 < σ. One has H(σ) = +∞
and

H(0) =
ra2S∗1

Dλ(D+a)+raS∗1
> 0.

Notice that λ(D + a) < σ because σ is a convex combination of λ(D + a) and S∗1 , and S∗1 >
λ(D + a). Let us calculate H(λ(D + a)). From h2(λ(D + a)) = a and f(λ(D + a)) = D + a
it is deduced that H(λ(D + a)) = −D which is negative. Consequently, using the Intermediate
Value Theorem, one deduces that equation H(S2) = 0 admits a smallest solution, denoted by
S2

2(D, r), in the interval (0, λ(D + a)), and a largest one, denoted by S1
2(D, r), in the interval

(λ(D + a), σ). Therefore h2(S2) > f(S2) for S2 < S2
2(D, r) or S2 > S1

2(D, r). If there is no
other zero in the interval (S2

2(D, r), S1
2(D, r)) then the condition h2(S2) < f(S2) is equivalent

to S2
2(D, r) < S2 < S1

2(D, r), see Figure 3 (a). �

y

S2
0 S2

2(D, r) λ(D + a) S1
2(D, r)

D + a

a

y = f(S2)

y = h2(S2)

(a)

y
y = h1(Sin)

y = f1(Sin)

f(β)

D + a

a

Sin

0 p12(D, r) p22(D, r)Sin0 (D, r) β
α

(b)

Figure 3. (a): The solutions S1
2(D, r) and S2

2(D, r) of h2(S2) = f(S2). (b): The
solutions p1

2(D, r) and p2
2(D, r) of h1(Sin) = f1(Sin).

We make the following assumption, which is satisfied by any concave growth function but
also by any Hill function, see Section C.

Assumption 2. Equation h2(S2) = f(S2) admits only two solutions.

Notation 2. Let S1
2(D, r) and S2

2(D, r) be the solutions of equation h2(S2) = f(S2), such that
S2

2(D, r) < λ(D + a) < S1
2(D, r).

Lemma 3. Assume that Assumption 2 holds. Equation h1(Sin) = f1(Sin), where h1 and f1

are defined by (25) admits two solutions p1
2(D, r) and p2

2(D, r) defined for 0 < r < 1 and
0 ≤ D < r(m − a), such that λ(D + a) < p1

2(D, r) < Sin0 (D, r) < p2
2(D, r) < β/α, where α and

β are given by (22) and

Sin0 (D, r) := β−λ(D+a)
α = λ

(
D
r + a

)
+ D+ra

a(1−r)
(
λ
(
D
r + a

)
− λ(D + a)

)
.

Moreover we have h1(Sin) < f1(Sin) if and only if p1
2(D, r) < Sin < p2

2(D, r).
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Proof. According to Lemma 2, S1
2(D, r) and S2

2(D, r) defined in Notation 2 satisfy the condition:
h2(S2) < f(S2) if and only if S2

2(D, r) < S2 < S1
2(D, r). Let p1

2 and p2
2 be defined by

(29) p1
2(D, r) =

β−S1
2(D,r)
α and p2

2(D, r) =
β−S2

2(D,r)
α .

From the condition 0 < S2
2(D, r) < λ(D + a) < S1

2(D, r) < σ, it is deduced that

λ(D + a) < p1
2(D, r) < Sin0 (D, r) < p2

2(D, r) < β/α.

We deduce that the condition h1(Sin) < f1(Sin) is equivalent to p1
2(D, r) < Sin < p2

2(D, r), see
Figure 3 (b). �

The following result gives the operating conditions for which P2 > P .

Theorem 3. Assume that Assumptions 1 and 2 hold. Let P2 and P be defined by (7) and (8)
respectively. We have

(30) P2(Sin, D, r) > P (Sin, D)⇐⇒ max(λ(D/r + a), p1
2(D, r)) < Sin < p2

2(D, r),

where p1
2(D, r) and p2

2(D, r) are given in Lemma 3. If p1
2(D, r) ≥ λ(D/r+ a), then, the equality

P2(Sin, D, r) = P (Sin, D) holds if and only if Sin = p1
2(D, r) or Sin = p2

2(D, r).

Proof. The result is a consequence of Lemmas 1 and 3. �

According to the Theorem 3, the set Πr2 = Π1
r2 ∪Π2

r2, where Π1
r2 and Π2

r2 curves are given by

Π1
r2 =

{
(Sin, D) : Sin = p1

2(D, r)
}
,(31)

Π2
r2 =

{
(Sin, D) : Sin = p2

2(D, r)
}
,(32)

is the set of operating conditions for which P2(Sin, D, r) = P (Sin, D). The result of Theorem
3 asserts that for all (Sin, D) at the right of Π1

r2 and the left of Π2
r2, then if E2 exists, we have

P2(Sin, D, r) > P (Sin, D).
To have a better description of this set of operating conditions for which P2 > P we plot the

curve Π1
r2 and Π2

r2 in the operating diagram, together with the curves Πr1, Φ1−r and Φr, see
Figure 2. Before analyzing the features depicted by this example, let us give some details on
the relative positions of curves Π1

r2, Π2
r2 and Φr in the general case.

Proposition 3. The curves Π1
r2 and Π2

r2, pass through point (λ(a), 0), where Φr and Φ1−r
intersect. For D > 0, the curve Π2

r2 is at the right of the curve Φr. The curve Π1
r2 may intersect

the curve Φr, with D > 0. If such an intersection exists then necessarily one has 0 < r < 1/2
and Φr ∩Π1

r2 = Φr ∩Πr1.

Proof. Note that if D = 0 then equation h(S2) = f(S2) has the unique solution S2 = λ(a), since
h2(λ(a)) = f(λ(a)) = a, see Figure 3(a). Therefore, S1

2(0, r) = S2
2(0, r) = λ(a). Hence, using

the fact that if D = 0 we have α = 1− r and β = (2− r)λ(a), from (29), it is deduced that

p1
2(0, r) = p2

2(0, r) = β−λ(a)
α = (2−r)λ(a)−λ(a)

1−r = λ(a).

This proves that Π1
r2 and Π2

r2, pass through point (λ(a), 0). From the definition of Sin0 in Lemma

3, it is seen that p2
2(D, r) > Sin0 (D, r) > λ

(
D
r + a

)
. Therefore from (20) and (32) we deduce

that for D > 0, Π2
r2 is at the right of Φr. On the other hand, the curve Φr corresponds to

a transcritical bifurcation of E1 and E2, see Remark 1 in [3]. Hence, on this curve, one has
E1 = E2, so that P1 = P2, which proves that Φr ∩Πr1 = Φr ∩Π1

r2. �

Remark 2. If (Sin, D) is chosen at the right of Π2
r2, then E2 exists (since (Sin, D) is necessarily

at the right of Φr), and satisfies P2 < P . If (Sin, D) is chosen at the right of Φr and between
curves Π1

r2 and Π2
r2, then E2 exists and satisfies P2 > P .

Therefore, for (Sin, D) at the right of Φr and at the left of Π2
r2 in Figure 2(a), one has P2 > P .

For (Sin, D) at the right of Π1
r2 and at the left of Π2

r2 in Figure 2(b), one has P2 > P . Similarly,
for (Sin, D) at the right of Π2

r2 in Figure 2, one has P2 < P . The surprising result is that the
productivity P2 may be smaller than the productivity P1. Indeed, suppose that point (Sin, D) is
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located at the right of Π2
r2 in Figure 2, then its lies also at the right of Πr1, and, from Theorems

2 and 3, it is deduced that

P2(Sin, D, r) < P (Sin, D) < P1(Sin, D, r).

This result is surprising since, the productivity P1 corresponds to the steady state E1, where
species x1 is washed out in the first tank, is greater than the productivity P2 of the steady state
E2 of coexistence. This surprising result is due to the mortality in the chemostat. If there is no
mortality, then P1(Sin, D, r) < P2(Sin, D, r) for any Sin, D and r, for which P1 and P2 are both
defined, as shown by (13) in Proposition 1. Let us show that the result of Theorem 3 extends
(14) in Proposition 1. We have the following result:

Proposition 4. Let p1
2 and p2

2 defined as in Lemma 3. We have

lim
a→0

p2
2(D, r) = +∞, lim

a→0
p1

2(D, r) = gr(D),

where gr is defined by (15).

Proof. Straightforward computations give

(33) h1(Sin) = η + ρ
Sin−λ(D+a)

, with η = ra2

D+ra , ρ = D(D+a)
D+ra

λ(D/r+a)−λ(D+a)
1−r .

Recall that p1
2 and p2

2 are the solutions of the equation f1(Sin) = h1(Sin), where f1(Sin) is given
by f1(Sin) = f(−αSin + β), see Lemma 3. Note that the graph of h1 is a decreasing hyperbola
with Sin = λ(D+a) as vertical asymptote and y = η as horizontal asymptote, while y = f1(Sin)
is a decreasing function from f1(0) = f(β) to f1(β/α) = 0, see Figure 3(b). Using the limits

lim
a→0

α = 0, lim
a→0

β = λ(D), lim
a→0

η = 0, lim
a→0

ρ = D λ(D/r)−λ(D)
1−r ,

it is seen that the graph of y = f1(Sin) converges toward the horizontal line y = f(λ(D)) = D,
while the graph of y = h1(Sin) converges toward the hyperbola

y = D
1−r

λ(D/r)−λ(D)
Sin−λ(D)

.

Therefore, p2
2(D, r), the largest solution of equation f1(Sin) = h1(Sin) converges toward +∞

and p1
2(D, r), the smallest solution, converges toward the solution of equation

D = D
1−r

λ(D/r)−λ(D)
Sin−λ(D)

.

The solution of this equation is Sin = gr(D), where gr is given by (15). Therefore, p1
2(D, r)

converges toward gr(D). �

Remark 3. When a → 0, the region between the curves Π1
r2 and Π2

r2, where P2(Sin, D, r) >
P (Sin, D) tends towards the region defined by Sin > gr(D), which is consistent with (14) in
Proposition 1.

3.3. The behavior of the productivity with respect of the dilution rate. To give a
better understanding of the behavior of the productivity we fix Sin > λ(a) and r ∈ (0, 1) and
we describe the functions D 7→ P1(Sin, D, r) and D 7→ P2(Sin, D, r). We compare them with
the function D 7→ P (Sin, D).

Lemma 4. Let Sin > λ(a) and r ∈ (0, 1) be fixed. The function D 7→ P1(Sin, D, r) is defined
for D ∈

[
0, δ1(Sin, r)

]
, where δ1(Sin, r) = (1− r)(f(Sin)− a). It satisfies

P1(Sin, 0, r) = P1(Sin, δ1(Sin, r), r) = 0.

The function D 7→ P2(Sin, D, r) is defined for D ∈
[
0, δ2(Sin, r)

]
, where δ2(Sin, r) = r(f(Sin)−

a). It satisfies P2(Sin, 0, r) = 0, and

P2(Sin, δ2(Sin, r), r) =

{
P1(Sin, δ2(Sin, r), r) if r ≤ 1/2,
0 if r ≥ 1/2.
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Proof. The productivity P1 is defined where the steady state E1 is also defined. Therefore P1

is defined if and only if 0 ≤ D ≤ (1− r)(f(Sin)− a). The productivity P2 is defined where the
steady state E2 is also defined. That is to say, P2 is defined if and only if 0 ≤ D ≤ r(f(Sin)−a).
From the definitions (6) and (7) we have

P1(Sin, 0, r) = P2(Sin, 0, r) = 0.

For D = δ1(Sin, r), there is a transcritical bifurcation of E1 and E0, see Remark 1 in [3]. There-
fore P1(Sin, δ1(Sin, r), r) = 0. Similarly, for D = δ2(Sin, r), there is a transcritical bifurcation of
E2 and E0, if r ≥ 1/2, and a transcritical bifurcation of E2 and E1, if r ≤ 1/2. This gives the
value of P2 for D = δ2(Sin, r). �

Note that p1(0, r) = λ(a) and, since limD→m λ(D) = +∞, we have

lim
D→(1−r)(m−a)

p1(D, r) = +∞.

Therefore, if the function D 7→ p1(D, r) is increasing, then it admits an inverse function Sin 7→
d1(Sin, r), and the equation Sin = p1(D, r) is equivalent to the equation D = d1(Sin, r). More
precisely, we add the following assumption which is satisfied by any concave growth function
but also by any Hill function, see Appendix C.

Assumption 3. For every r ∈ (0, 1), the function D 7→ p1(D, r) is increasing.

Notation 3. Let Sin 7→ d1(Sin, r) be the inverse function of the function D 7→ p1(D, r). It is
defined for Sin ≥ λ(a).

Theorem 4. Assume that Assumptions 1 and 3 are satisfied. Then P1(Sin, D, r) > P (Sin, D)
if and only if 0 < D < d1(Sin, r).

Proof. Let r ∈ (0, 1). The function D 7→ p1(D, r) is increasing. Therefore, the property 0 <
D < d1(Sin, r) is satisfied if and only if 0 < p1(D, r) < Sin. According to Theorem 2, this is
equivalent to P1(Sin, D, r) > P (Sin, D). �

D
Φ1−r

Φr

Πr1
Π1
r2

Π2
r2

Sin
λ(a)

(a) r = 0.25

d22

d12

d1

δ2

δ1

D
Φr

Φ1−r

Πr1

Π1
r2

Π2
r2

Sin
λ(a)

(b) r = 0.75

d22

d1
δ1

d12

δ2

Figure 4. For Sin = 2, the depiction of δ1(Sin, r) and δ2(Sin, r), defined in
Lemma 4, d1(Sin, r) defined in Notation 3, and d1

2(Sin, r), d2
2(Sin, r), defined in

Notation 4. The biological parameters are as in Figure 2.

Lemma 5. Let r ∈ (0, 1). The functions D 7→ p1
2(D, r) and D 7→ p2

2(D, r) are defined for
D ∈ [0, r(m− a)) and satisfy p1

2(0, r) = p2
2(0, r) = λ(a) and

lim
D→r(m−a)

p1
2(D, r) = lim

D→r(m−a)
p2

2(D, r) = +∞.

Proof. The functions D 7→ p1
2(D, r) and D 7→ p2

2(D, r) are defined where the steady state E2

is defined, i.e. for D/r + a < m, which is equivalent to D < r(m− a). From Lemma 3, the
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Productivity

(a) r = 0.25, Sin = 2

d22 δ2 d1 δ1
D

(b) Zoom of (a) showing d1, δ2 and d22

Productivity

d22 δ2 d1
D

Productivity

(c) Zoom of (b) showing d22

d22
D

Productivity

(d) r = 0.75, Sin = 2

d22d1 δ1 d12 δ2
D

Productivity

(e) Zoom of (d) showing d1 and d22

d22 d1
D

Productivity

(f) Zoom of (e) showing d22

d22
D

Figure 5. The functions D 7→ P1(Sin, D, r) (in blue), D 7→ P2(Sin, D, r) (in
red) and D 7→ P (Sin, D) (in black). The bifurcation values d1, d1

2, d2
2, δ1 and δ2

are depicted in Figure 4.

functions p1
2 and p2

2 are the solutions of equation f1(Sin) = h1(Sin). Recall that h1(Sin) is given
by (33) and f1(Sin) = f(−αSin + β, Sin). We have the limits

lim
D→r(m−a)

β = +∞, lim
D→r(m−a)

η = a2

m , lim
D→r(m−a)

ρ = +∞.

Therefore, the graph of y = f1(Sin) converges toward the horizontal line y = f(+∞) = m, while
the graph of y = h1(Sin), goes to infinity when D → r(m− a). Indeed, the curve y = h1(Sin)
is an hyperbola with fixed vertical asymptote Sin = λ(D + a) and its horizontal asymptote
converges to y = a2/m and, since ρ→∞, the hyperbola moves right and converges to infinity.
Therefore, p2

1(D, r) and p2
2(D, r), the solutions of equation f1(Sin) = h1(Sin), converge toward

+∞ when D → r(m− a). �

If the functions D 7→ p1
2(D, r) and D 7→ p2

2(D, r) are increasing, then they admit inverse
functions Sin 7→ d1

2(Sin, r), and Sin 7→ d2
2(Sin, r), respectively, and the equation Sin = pk2(D, r)

is equivalent to the equation D = dk2(Sin, r), k = 1, 2. More precisely, we add the following
assumption and notation.

Assumption 4. For every r ∈ (0, 1), the functions D 7→ pk2(D, r), k = 1, 2, are increasing.

Notation 4. Let Sin 7→ dk2(Sin, r), k = 1, 2, be the inverse functions of the functions D 7→
pk2(D, r), k = 1, 2, respectively. They are defined for Sin ≥ λ(a).

Theorem 5. Assume that Assumptions 1, 2 and 4 are satisfied. Then P2(Sin, D, r) > P (Sin, D)
if and only if d2

2(Sin, r) < D < min(δ2(Sin, r), d1
2(Sin, r)).

Proof. Let r ∈ (0, 1). The functions D 7→ p1
2(D, r) and D 7→ p2

2(D, r) are increasing. Therefore,
the property d2

2(Sin, r) < D < min(δ2(Sin, r), d1
2(Sin, r)) is satisfied if and only if max(λ(D/r+
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a), p1
2(D, r)) < Sin < p2

2(D, r). According to Theorem 3, this is equivalent to P2(Sin, D, r) >
P (Sin, D). �

Let us illustrate the results of Theorems 4 and 5 in the particular case corresponding to the
Figure 2. This figure is reproduced in Figure 4 with the addition of bifurcation values δ1 and δ2,
d1, d1

2 and d2
2, defined in Lemma 4, Assumption 3, and Assumption 4, respectively. The graphs

of the functions D 7→ P (Sin, D), P1(Sin, D, r) and P2(Sin, D, r), defined by (8), (6) and (7),
respectively, and corresponding to the value Sin = 2 are shown in Figure 5. The productivity
of a stable steady state is drawn in bold, while it is drawn in dotted line, when the steady state
is unstable. It appears that all inequalities P2 > P , P1 > P and P1 > P2 can take place.

In Figure 5, panel (a), and the zoom in panel (b), one sees that for 0 < D < δ2 one has
P1 > P and E1 is unstable, and for δ2 < D < d1 one has P1 > P and E1 is stable. One sees
also in panel (d), and the zoom in panel (e) that for 0 < D < d1 one has P1 > P and E1 is
unstable. Similarly, the zooms in panels (b) and (c) show that for d2

2 < D < δ2 one has P2 > P
and the zooms in panels (e), (f) show that for d2

2 < D < d1
2 one has P2 > P . Notice that when

P1 > P2 then necessarily E1 is unstable. On the other hand, the inequality P1 > P can be
satisfied whether E1 is stable or unstable.

In practice, and as already mentioned at the end of Section 3.1, if the operating parameters
are such that P1 > P or P1 > P2, to optimize biomass productivity, it is sufficient to take a
single tank of volume V2 = (1− r)V , i.e. of a volume less than the total volume V .

This surprising result is due to mortality, since as recalled in Proposition 1 it does not occur
when mortality is neglected. Another difference between the case without mortality and the case
with mortality is worth noting. In the case without mortality, it is proved that the productivity
P2 never exceed the maximal productivity of the single chemostat. Indeed we have

Proposition 5. [2] In the case a = 0, for any Sin > 0, r ∈ (0, 1) and D ∈ [0, rf(Sin)), we have
P2(Sin, D, r) < P (Sin), where P (Sin) = max

0≤D≤f(Sin)
P (Sin, D).

r

y
y = P 2(2, r)

P (2)

Figure 6. The map r 7→ P 2(Sin, r) with f(S) = 4S/(5 + S), a = 0.3 and Sin = 2.

It should be noted that in [2] the result of Proposition 5 was established for the biogas flow
rate, see Proposition 6 in [2]. However, in the case of no mortality, the biogas flow rate and the
productivity are given by the same expression. Therefore, the result of Proposition 6 of [2] also
applies to the productivity.

Remark 4. From Figure 5(d), it is questionable whether the introduction of mortality allows
P2 to take on larger values than the maximum, relative to D, of P . This behaviour does occur
as shown in Figure 6.

In Figure 6 we have fixed the biological parameters as in Figure 5 and for Sin = 2, we have
represented the function r 7→ P 2(Sin, r) defined by

P 2(Sin, r) = max
0≤D≤δ2(Sin,r)

P2(Sin, D, r).

It can be seen that there exists r∗(Sin) ∈ (0, 1) such that for any r ∈ (r∗(Sin), 1) we have

P 2(Sin, r) > P (Sin).
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It appears in Figure 6 that r∗(2) ≈ 0.784. Therefore for the case depicted in Figure 5(d), done
with r = 0.75, the maximum of P2 is smaller than the maximum P . However, for r = 0.85, for
example, the maximum of P2 will be larger than the maximum P .

When mortality is taken into account in the model, the biogas flow rate and the productivity
are no longer given by the same expression. It was shown in [3] that for the biogas flow rate,
the behaviour described in Figure 6 always occurs, i.e. there is r∗ ∈ (0, 1) such that for any
r ∈ (r∗, 1), the maximum, relative to D, of G2(Sin, D, r) will be larger than the maximum
G(Sin, D). Here G2(Sin, D, r) is the biogas flow rate of the serial configuration at steady state
E2 and G(Sin, D) is the biogas flow rate of the single chemostat, see [1, 3]. This result was
obtained by showing that the first partial derivative in r = 1 (at left) of

G2(Sin, r) = max
D

G2(Sin, D, r)

is zero and its second partial derivative is positive, see Proposition 8 in [3]. We were not able to
calculate partial derivatives of the productivity, as in the case of biogas, because the calculations
are very complicated. We conjecture that such a result on the first and second partial derivatives
of P 2(Sin, r) is also true.

4. The most efficient serial device

In this section we address the following problem: assume that Sin and D are fixed. What is
the value of r which gives the highest value for the productivity of the serial configuration. As
we have seen in Theorems 2 and 3, maximum productivity can be achieved at steady state E1

or E2. Therefore we will consider the functions r 7→ P1(Sin, D, r) and r 7→ P2(Sin, D, r) and
look for the value of r that gives the maximum. The following lemmas describe the domain of
definition of the these functions.

Lemma 6. Let (Sin, D) such that f(Sin) > D + a. Then the function r 7→ P1(Sin, D, r) is
defined for 0 ≤ r ≤ 1− r0(Sin, D), where r0(Sin, D) = D

f(Sin)−a . Moreover

P1(Sin, D, 0) = P (Sin, D), P1(Sin, D, 1− r0(Sin, D)) = 0.

Proof. The productivity P1 is defined where the steady state E1 is also defined. That is to say,

P1 is defined if and only if Sin ≥ λ
(

D
1−r + a

)
, which is equivalent to the condition 0 ≤ D ≤

(1 − r)(f(Sin) − a). Therefore, if (Sin, D) is such that f(Sin) > D + a, then P1(Sin, D, r) is
defined for r ∈

[
0, 1− r0(Sin, D)

]
, where r0(Sin, D) is as in the lemma. If r = 0, then from

the definitions (8) and (6) of P and P1, respectively, it is seen that P1(Sin, D, 0) = P (Sin, D).
On the other hand, if r = 1 − r0(Sin, D), then x2 = 0, so that P1(Sin, D, r) = 0. This case
corresponds to a transcritical bifurcation of E1 and E0, see Remark 1 in [3]. �

Lemma 7. Let (Sin, D) such that f(Sin) > D + a. Then the function r 7→ P2(Sin, D, r) is
defined for r0(Sin, D) ≤ r ≤ 1, where r0 is as in Lemma 6. Moreover, P2(Sin, D, 1) = P (Sin, D)
and

P2(Sin, D, r0(Sin, D)) =

{
P1(Sin, D, r0(Sin, D)) if r ≤ 1/2
0 if r ≥ 1/2

Proof. The productivity P2 is defined where the steady state E2 is also defined. That is to
say, P2 is defined if and only if Sin ≥ λ

(
D
r + a

)
, which is equivalent to the condition 0 ≤

D ≤ r(f(Sin) − a). Therefore, if (Sin, D) is such that f(Sin) > D + a, then P2 is defined
for r ∈

[
r0(Sin, D), 1

]
, where r0 = D

f(Sin)−a . One has limr→1 S
∗
2 = λ(D + a), see Lemma 3 in

[3]. Hence, if r = 1, then from S∗1 = λ(D + a), and the definitions (8) and (7) of P and P2,
respectively, it is seen that P2(Sin, D, 1) = P (Sin, D). On the other hand, if r = r0(Sin, D),
then two cases must be distinguished. If r ≥ 1/2, then x∗2 = 0, so that P2(Sin, D, r) = 0. If
r ≤ 1/2, then x∗2 = x2, so that P2(Sin, D, r) = P1(Sin, D, r). The first case corresponds to a
transcritical bifurcation of E2 and E0, and the second one to a transcritical bifurcation of E2

and E1, see Remark 1 in [3]. �
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4.1. The most efficient serial configurations. We consider the optimization problems: given
a total volume V of two chemostats in series, find the optimal volume distribution that maximize
the productivity Pi, i = 1, 2, subject to the constraints V1 ≥ 0, V2 ≥ 0 and V1 + V2 = V . Using
the variable r = V1/V ∈ [0, 1] and the domains of definitions of P1 and P2 given in Lemmas 6
and 7, these problems are written:

max
0≤r≤1−r0(Sin,D)

P1(Sin, D, r) and max
r0(Sin,D)≤r≤1

P2(Sin, D, r).

We denote by ropti (Sin, D), i = 1, 2 the sets of most efficient configurations, i.e.,

(34) ropt1 (Sin, D) = argmax
0≤r≤1−r0(Sin,D)

P1(Sin, D, r)

(35) ropt2 (Sin, D) = argmax
r0(Sin,D)≤r≤1

P2(Sin, D, r).

It is difficult to determine analytically these sets of most efficient configurations. However, when
the biological parameters of the model are known and the operating parameters Sin and D are
fixed, it is easy to plot the graphs of the functions r 7→ P1(Sin, D, r) and r 7→ P2(Sin, D, r) and
determine the values of r which give the maximum of P1 and P2, see Figures 9, 15 and 18.

4.2. The case without mortality. The determination of the most efficient serial device is
solved in [2] in the case without mortality. For the convenience of the reader and for comparison
purposes, the main characteristics are given here. Let g defined by

(36) g(D) = λ(D + a) +Dλ′(D + a),

It is proved in [2] that if Sin ≤ g(D) then for any r ∈ (0, 1), P2(Sin, D, r) < P (Sin, D). On the
other hand, if Sin > g(D) then it is possible to find r ∈ (0, 1) such that P2(Sin, D, r) > P (Sin, D).
More precisely, we assume that the function r 7→ gr(D), where gr(D) is defined by (15) is
decreasing. Let r = r2(Sin, D) the solution of equation Sin = gr(D). Then P2(Sin, D, r) >
P (Sin, D) if and only if r2(Sin, D) < r < 1. These results, together with the formula (12) of
Proposition 1 allow us to describe the most efficient serial device:

Proposition 6. When a = 0 we have ropt1 (Sin, D) = {0} for all (Sin, D) and

ropt2 (Sin, D) = {1} if Sin ≤ g(D), ropt2 (Sin, D) ⊂ (r2(Sin, D), 1) if Sin ≤ g(D).

The curves Φ1 and Φ1/2 together with the curve Γ of equation Sin = g(D), divide the set of

operating parameters (Sin, D) in five regions Jk, k = 0, . . . , 4, see Figure 6 in [2]. When (Sin, D)
satisfies Sin ≤ λ(D), which correspond to (Sin, D) ∈ J0, the only steady state of the series
device is E0, so that there is no productivity for all r ∈ (0, 1). Apart from this case, there are
only four possible cases, as depicted in Figure 8 of [2]. Consequently, it is only in the regions J2

and J3, i.e. for (Sin, D) located on the right of the curve Γ, that there are values of r for which
P2(Sin, D, r) > P (Sin, D).

4.3. The case with mortality. When the mortality is included in the model, the situation is
much more complicated, precisely because mortality allows the inequalities P1 > P2 and P1 > P .
Let us give some results in this direction.

Lemma 8. Let D ∈ [0,m− a). The function r 7→ p1(D, r) is defined for r ∈
(

0, 1− D
m−a

)
and

satisfies

lim
r→0

p1(D, r) = π1(D), lim
r→1− D

m−a

p1(D, r) = +∞,

where

(37) π1(D) := λ(D + a) + D(D+a)
a λ′(D + a).



16 MANEL DALI-YOUCEF AND TEWFIK SARI

Proof. The function r 7→ p1(D, r) is defined when (D, r) ∈ dom(p1), that is to say for D ∈
[0,m− a) and 0 < r < 1− D

m−a . The first limit is obtained using L’Hôpital’s rule. From (17) it
is seen that:

lim
r→0

p1(D, r) = λ(D + a) + D+a
a lim

r→0

D
(1−r)2λ

′
(

D
1−r + a

)
= λ(D + a) + D(D+a)

a λ′(D + a).

The second limit follows from limD→m λ(D) = +∞. �

If the function r 7→ p1(D, r) is increasing, then it admits an inverse function Sin 7→ r1(Sin, D),
and the equation Sin = p1(D, r) is equivalent to the equation r = r1(Sin, D). More precisely,
we add the following assumption which is satisfied by any concave growth function but also by
any Hill function, see Section C.

Assumption 5. For every D ∈ [0,m− a), the function r 7→ p1(D, r) is increasing.

Notation 5. Let Sin 7→ r1(Sin, D) be the inverse function of the function r 7→ p1(D, r). It is
defined for Sin ≥ π1(D).

Proposition 7. Assume that Assumptions 1 and 5 are satisfied.

• If Sin ≤ π1(D) then for any r ∈ (0, 1), P1(Sin, D, r) < P (Sin, D).
• If Sin > π1(D) then P1(Sin, D, r) > P (Sin, D) if and only if 0 < r < r1(Sin, D). In

addition, P1(Sin, D, r) = P (Sin, D) for r = 0 or r = r1(Sin, D).

Proof. From Assumption 5, the function r 7→ p1(D, r) is increasing. Thus, for any r ∈ (0, 1),
one has p1(D, r) > π1(D). If Sin ≤ π1(D) then one has Sin < p1(D, r). According to Theorem
2 one deduces that P1(Sin, D, r) < P (Sin, D), which proves the first item of the proposition.
If Sin > π1(D) then Sin > p1(D, r) if and only if 0 < r < r1(Sin, D). Thus, according to the
Theorem 2 one deduces that P1(Sin, D, r) > P (Sin, D) if and only if 0 < r < r1(Sin, D). Notice
that the equality P1(Sin, D, r) = P (Sin, D) for the limiting case r = 0 follows from the definitions
(8) and (6) of P and P1, respectively. In addition, if r = r1(Sin, D) then Sin = p1(D, r), which
is equivalent to P1(Sin, D, r) = P (Sin, D). �

The result of Proposition 7 allows us to describe the most efficient serial device for P1:

Proposition 8. We have ropt1 (Sin, D) = {0} if Sin ≤ π1(D) and ropt1 (Sin, D) ⊂ (0, r1(Sin, D))
if Sin > π1(D).

The novelty compared to the case without mortality (see Proposition 6) is the possibility to
have a better biomass productivity P1 of the serial device than the single chemostat. Now we
consider the optimal device for the productivity P2.

Lemma 9. Let D ∈ [0,m − a). The functions r 7→ p1
2(D, r) and r 7→ p2

2(D, r) are defined for

r ∈
(

D
m−a , 1

)
and satisfy

lim
r→1

p1
2(D, r) = π(D), lim

r→ D
m−a

p1
2(D, r) = +∞

lim
r→1

p2
2(D, r) = lim

r→ D
m−a

p2
2(D, r) = +∞,

where

(38) π(D) = λ(D + a) + D(D+a)
D+2a λ′(D + a).

Proof. The functions r 7→ p1
2(D, r) and r 7→ p2

2(D, r) are defined where the steady state E2 is

defined. That is to say, for D/r + a < m, which is equivalent to r > D
m−a . From Lemma 3, the

functions p1
2 and p2

2 are the solutions of equation f1(Sin) = h1(Sin). Recall that h1(Sin) is given
by (33) and f1(Sin) = f(−αSin + β, Sin). We have the limits

lim
r→1

α = 0, lim
r→1

β = λ(D + a), lim
r→1

η = a2

D+a .
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Moreover, using L’Hôpital’s rule we have

lim
r→1

ρ = D lim
r→1

λ(D/r+a)−λ(D+a)
1−r = D2λ′(D + a).

Therefore, the graph of y = f1(Sin) converges toward the horizontal line y = f(λ(D+a)) = D+a,
while the graph of y = h1(Sin) converges toward the hyperbola

y = a2

D+a + D2λ′(D+a)
Sin−λ(D+a)

.

Hence, p2
2(D, r), the largest solution of equation f1(Sin) = h1(Sin) converges toward +∞ and

p1
2(D, r), the smallest solution, converges toward the solution of equation

D + a = a2

D+a + D2λ′(D+a)
Sin−λ(D+a)

.

The solution of this equation is Sin = π(D), where π(D) is given by (38). Therefore p1
2(D, r)

converges to π(D) when r → 1. On the other hand, using the limits

lim
r→ D

m−a

β = +∞, lim
r→ D

m−a

η = a2

m , lim
r→ D

m−a

ρ = +∞,

it is seen that the graph of y = f1(Sin) converges toward the horizontal line y = f(+∞) = m,
while the graph of y = h1(Sin), goes to infinity when r → D

m−a . Indeed, the curve

y = h1(Sin) = η + ρ
Sin−λ(D+a)

is an hyperbola with fixed vertical asymptote Sin = λ(D + a) and its horizontal asymptote
converges to y = a2/m. Since ρ → ∞, the hyperbola moves right and converges to infinity.
Therefore, p1

2(D, r) and p2
2(D, r), the solutions of equation f1(Sin) = h1(Sin) converges toward

+∞ when r → D
m−a . �

Remark 5. From the definitions (37) and (38) of π1 and π, respectively, it is seen that π1(0) =
π(0) = λ(a), and, for all D ∈ (0,m− a), one has π1(D) > π(D) > λ(D + a).

If the function r 7→ p1
2(D, r) is decreasing, then it admits an inverse function Sin 7→ r2(Sin, D),

and the equation Sin = p1
2(D, r) is equivalent to the equation r = r2(Sin, D). On the other hand

the function r 7→ p2
2(D, r) is positive and tends toward infinity when r → D/(m− a) or r → 1.

It admits a minimum value reached for r = r(D). If the function r 7→ p2
2(D, r) is decreasing

on
(

D
m−a , r(D)

)
, then it admits an inverse function Sin 7→ r3(Sin, D) on this interval. If

the function r 7→ p2
2(D, r) is increasing on (r(D), 1), then it admits also an inverse function

Sin 7→ r4(Sin, D) on this interval. Notice that the equation Sin = p2
2(D, r) is then equivalent to

the equations r = r3(Sin, D) and r = r4(Sin, D).
More precisely, we add the following assumptions which can be graphically checked whenever

the growth function f is specified, see Section C.

Assumption 6. For every D ∈ [0,m− a), the function r 7→ p1
2(D, r) is decreasing.

Notation 6. Let Sin 7→ r2(Sin, D) be the inverse function of the function r 7→ p1
2(D, r). It is

defined for Sin ≥ π(D).

Assumption 7. For everyD ∈ [0,m−a), the function r 7→ p2
2(D, r) is decreasing on

(
D

m−a , r(D)
)

and increasing on (r(D), 1).

Notation 7. Let π2(D) be the minimum value of the function r 7→ p2
2(D, r):

(39) π2(D) = p2
2 (D, r(D)) .

Let Sin 7→ r3(Sin, D) and Sin 7→ r4(Sin, D) be the inverse functions of the function r 7→ p2
2(D, r)

on the intervals
(

D
m−a , r(D)

)
and (r(D), 1), respectively. They are defined for Sin ≥ π2(D).

Remark 6. If Assumptions (6) and (7) are satisfied then, for all D ∈ (r(m − a), 1), one has
π2(D) > π(D). Indeed we have π2(D) = p2

2 (D, r(D)) > p1
2 (D, r(D)) > π(D).
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Proposition 9. Assume that Assumptions 1, 2, 6 and 7 are satisfied.

• If Sin ≤ π(D) then for any r ∈ (r0(Sin, D), 1), P2(Sin, D, r) < P (Sin, D).
• If π2(D) > Sin > π(D) then P2(Sin, D, r) > P (Sin, D) if and only if

max(r0(Sin, D), r2(Sin, D)) < r < 1.

In addition, if r2(Sin, D) > r0(Sin, D), then P2(Sin, D, r) = P (Sin, D) for r = 1 or
r = r2(Sin, D).
• If Sin > π2(D) then P2(Sin, D, r) > P (Sin, D) if and only if

max(r0(Sin, D), r2(Sin, D)) < r < r3(Sin, D) or r4(Sin, D) < r < 1.

In addition, if r2(Sin, D) > r0(Sin, D), then P2(Sin, D, r) = P (Sin, D) for r = 1, or
r = rk(S

in, D), k = 2, 3, 4.

Proof. From Assumption 6, the function r 7→ p1
2(D, r) is decreasing. Thus, for any r ∈ (0, 1), one

has p1
2(D, r) > π2(D). If Sin ≤ π2(D) then one has Sin < p1

2(D, r) and according to Theorem 3
one deduces that P2(Sin, D, r) < P (Sin, D), which proves the first item of the proposition.
If π2(D) > Sin > π(D) then p2

2(D, r) > Sin > p1
2(D, r) if and only if r2(Sin, D) < r < 1.

Thus, according to the Theorem 3 one deduces that P2(Sin, D, r) > P (Sin, D) if and only if
r2(Sin, D) < r < 1. If Sin > π2(D) then p2

2(D, r) > Sin > p1
2(D, r) if and only if r2(Sin, D) <

r < r3(Sin, D) or r4(Sin, D) < r < 1. Thus, according to the Theorem 3, one deduces that
P2(Sin, D, r) > P (Sin, D) if and only if r > r0(Sin, D) and r2(Sin, D) < r < r3(Sin, D) or
r4(Sin, D) < r < 1. Notice that the equality P1(Sin, D, r) = P (Sin, D) for the limiting case r = 1
follows from Lemma (7). In addition, if r2(Sin, D) > r0(Sin, D) and r = rk(S

in, D), k = 2, 3, 4,
then Sin = p1

2(D, r) or Sin = p2
2(D, r), which is equivalent to P2(Sin, D, r) = P (Sin, D). �

The result of Proposition 9 allows us to describe the most efficient serial device for P2:

Proposition 10. We have ropt2 (Sin, D) = {1} if Sin ≤ π(D). If Sin > π(D) we have

ropt2 (Sin, D) ⊂ (max(r0(Sin, D), r2(Sin, D)), 1)

or

ropt2 (Sin, D) ⊂ (max(r0(Sin, D), r2(Sin, D)), r3(Sin, D)) ∪ (r4(Sin, D), 1).

Combining the results of the Propositions 7 and 9 we see that the curves Φ1 and Φ1/2 together

with the curves Π1, Π and Π2 of equations Sin = π1(D), Sin = π(D) and Sin = π2(D), defined
by (37), (38) and (39), respectively, divide the set of operating parameters (Sin, D) in several
regions where the functions r 7→ P1(Sin, D, r) and r 7→ P2(Sin, D, r) have different behaviors.
We will not try to make a general study, as in the case without mortality. However, in the
following section, we will describe some typical cases to show the richness of possible behaviors.

Remark 7. The number of regions in the operating plane depends on the relative position of
these curves. From Remarks 5 and 6 it is seen that curve Π is located at the right of curve Φ1

and at the left of curve Π1, and that curve Π2 is at the right of curve Π.

5. Application to Monod growth functions

The aim of this section is to give some illustrations of our results for Monod growth functions,
and to provide numerical simulations. However, our result are general and apply to a large class
of growth functions. We illustrate this in Appendix C for linear and Hill growth functions.

5.1. Sufficient conditions for Assumptions 2, 3 and 5 to be satisfied. We first give
sufficient conditions that will allow us to verify that the assumptions of our general study are
satisfied for the considered growth function.

Proposition 11. For a growth function f satisfying Assumption 1 (i.e. f ′ > 0) we have the
following properties:

• If f is twice derivable and f ′′ ≤ 0 then Assumptions 2, 3 and 5 are satisfied.
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• If f is twice derivable and, for all a ≥ 0 and S > λ(a), f ′′a (S) > 0, where

(40) fa(S) := 1
f(S)−a ,

then Assumptions 2 and 5 are satisfied.

Proof. The proof is given in Section D.2. �

With regard to Assumptions 4, 6 and 7, which concern the p1
2 and p2

2 functions, we have not
been able to find sufficient conditions on the growth function f that imply these assumptions.
Indeed, as the p1

2 and p2
2 functions are not determined explicitly, but only implicitly as the

solutions of the equation f1(Sin) = h1(Sin), it is difficult to analyze their partial derivatives
with respect to r and D, as we did for the p1 function. However, once the growth function f is
specified, it is easy to check graphically that Assumptions 4, 6 and 7 are satisfied.

5.2. Monod Growth function. We consider the Monod growth function

(41) f(S) = mS
K+S

Note that m = supS>0 f(S). Since f ′(S) = mK/(K + S)2 > 0 and f ′′(S) = −2mK(K +
S)2 < 0, then using the Proposition 11, it is seen that Assumptions 1, 2, 3 and 5 are satisfied.
The Assumptions 4, 6 and 7 will be checked graphically. Let us first determine the possible
intersection points of curves Πr1 and Φr, as shown in Figure 7.

Proposition 12. Curves Πr1 and Φr intersect at (λ(a), 0), and at most at two points Q1 =
(p1(d1, r), d1) and Q2 = (p1(d2, r), d2) where d2 < d1 are defined by

d1 = r(m−2a)+
√

∆
2 , d2 = r(m−2a)−

√
∆

2 ,

with ∆ = r2(m − 2a)2 − 4a(m − a)(r2 − 3r + 1). More precisely, let r∗ = 2a(m−a)√
∆1+3a(m−a)

, where

∆1 = a(m− a)(m2 + a(m− a)) > 0. Then r∗ <
3−
√

5
2 is satisfied for all a ∈ (0,m) and equality

occurs when a = m/2. Apart from point (λ(a), 0), the intersection points of curves Πr1 and Φr

are given as follows:

• Assume that 0 < a < m/2. If 0 < r < r∗, then curves Πr1 and Φr do not intersect;

if r = r∗, then curves Πr1 and Φr intersect at point Q1 = Q2; if r∗ < r < 3−
√

5
2 , then

curves Πr1 and Φr intersect at two points Q1 6= Q2; if 3−
√

5
2 ≤ r < 1

2 , then curves Πr1

and Φr intersect at point Q1.

• Assume that m/2 ≤ a < m. If 0 < r ≤ 3−
√

5
2 , then curves Πr1 and Φr do not intersect;

if 3−
√

5
2 < r < 1

2 , then curves Πr1 and Φr intersect at point Q1.

Proof. The proof is given in Appendix D.3 �

Let us illustrate these results for the biological values of the parameters m = 4, K = 5 and
a = 0.3 that have been used in Figure 2. For these parameter values we have a < m/2 and
r∗ = 0.289. Therefore for r < 0.289 or r ≥ 1/2 curves Πr1 and Φr have no other point of
intersection than the point (λ(a), 0). This has been illustrated with r = 0.25 and r = 0.75 in

Figure 2. For 0.289 < r < 3−
√

5
2 , curves Πr1 and Φr have two points of intersection Q1 and Q2,

as illustrated in the case r = 0.3 in Figure 7(a,b,c). For r = 0.3 we have Q1 = (10.87, 0.732) and

Q2 = (2.3, 0.29). For 3−
√

5
2 ≤ r < 1/2, curves Πr1 and Φr have only one point of intersection Q1,

as illustrated in the case r = 0.39 in Figure 7(d,e,f). For r = 0.39 we have Q1 = (71.33, 1.34).

Note that when r = r∗ we have Q1 = Q2, when r = 3−
√

5
2 the point Q2 merges with the point

(λ(a), 0) and when r tends to 1/2 the point Q1 tends to infinity.
The functions p1

2 and p2
2 which are defined implicitly as solutions of the equation f1 = h1, can

be given explicitly, as shown in the following proposition.

Proposition 13. The functions p1
2 and p2

2 can be given by explicit formulas.

Proof. The proof is given in Appendix D.4. �
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Figure 7. The operating diagram for f(S) = 4S/(5 + S) and a = 0.3 showing
curves Φr and Φ1−r (in black), Πr1 (in blue), Π1

r2 and Π2
r2 (in red) and the

intersection points of Φr, Πr1 and Π1
r2.

Table 2. f Monod
f(S) = mS

K+S

λ(D) = KD
m−D

p1(D, r) = Km−a
a

(D+a)(D+a−ar)
(m−D−a)(m−D−a−(m−a)r)

π1(D) = Km−a
a

(
D+a

m−D−a

)2

π(D) = K 2(m−a)−D
D+2a

(
D+a

m−D−a

)2

r0(Sin, D) = D(K+Sin)
mSin−a(K+Sin)

r1(Sin, D) = K(m−a)(D+a)2−a(m−D−a)2Sin

a(m−a)(K(D+a)−(m−D−a)Sin)

Proposition 14. The curve Φ1/2 lies to the right of Π. The curves Φ1/2 and Π1 intersect at

point Q = (SinQ , DQ) where

DQ = m−2a
2 , SinQ = λ(m− a).

Moreover Φ1/2 lies to the left of Π1 for 0 < D < DQ and to the right of Π1 for D > DQ.

Proof. The function φ(D) := π(D)− λ(2D + a) is given by

φ(D) = KDm(D2+a(m−a))
(D+2a)(m−D−a)2(m−2D−a)

.

One has φ(D) > 0 for all D ∈
(
0, m−a2

)
. Therefore Φ1/2 lies to the right of Π.

The function φ1(D) := λ(2D + a)− π1(D) is given by

φ1(D) = KmD2(m−2D−2a)
a(m−D−a)2(m−2D−a)

.
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One has φ1 (DQ) = 0, φ1(D) > 0 for D ∈ (0, DQ) and φ1(D) < 0 for D ∈
(
DQ,

m−a
2

)
. Therefore

Φ1/2 and Π1 intersect at point Q = (SinQ , DQ) and SinQ = λ(2DQ + a) = λ(m− a). Their relative
position is as in the lemma. �

Remark 8. The result of Proposition 14 complements the one given in Remark 7. The relative
position of curve Π2 (which is only known to be to the right of curve Π) in relation to the other
curves, gives a complete description of all possible cases. Once the biological parameters are
fixed, the curve Π2 can be determined numerically and plotted in the operating diagram with
the other curves Φ1, Φ1/2, Π1 and Π.

We assume that f(S) = 4S/(5+S) and a = 0.3, as in Figure 7, and the curve Π2 is represented
numerically, see Figure 8 (a) and (b). It can be seen that curve Π2 lies to the right of curve Π1

and Φ1/2. Therefore the six curves Φ1, Φ1/2, Π1, Π and Π2 divide the operating plane in seven

regions labeled Jk, k = 0..6. Let us illustrate the behavior of the productivities P1(Sin, D, r)
and P2(Sin, D, r), as a function of r, for the operating points ok ∈ Jk, k = 1..6, shown in Figure
8 (a) and (b). We do not consider a point in J0 since, for such a point, the chemostat and the
serial device are washed out.

D
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J4J3

J6J2
↘
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(a)

D Φ1
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Π
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J2J1
J0

(b): Zoom of (a)

Sin Sin = p22(0.7, r)

Sin = p12(0.7, r)
r↙↘

r52 r42

r3 r32
r4

(c)

Sin

Sin = p12(1.85, r)

r
r62 r

2
2

(d)

Figure 8. (a) and (b): The curves Φ1, Φ1/2 (in black), Π1 (in blue), Π and
Π2 (in red) divide the operating plane in seven regions, Jk, k = 0..6 and the
operating points ok ∈ Jk, k = 1..6. (c): The graphical depiction of Assumptions
6 and 7, for D = 0.7, showing the values rk2 = r2(Sin, D), corresponding to ok,
k = 3..5, respectively, and the values of r3 and r4 corresponding to o5. (d):
The graphical depiction of Assumptions 6, for D = 1.85, showing the values
rk2 = r2(Sin, D), corresponding to ok, k = 2, 6, respectively. The operating points
are o1 = (8, 1.85), o2 = (40, 1.85), o3 = (5, 0.7), o4 = (40, 0.7), o5 = (95, 0.7). and
o6 = (95, 1.85).
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Figure 9. The curves of the functions r 7→ P2(Sin, D, r) (in red) and r 7→
P1(Sin, D, r) (in blue), for Sin and D fixed and the corresponding value of
P (Sin, D) (in black). The rk values are given in Table 3.

Table 3. The values of rk, corresponding to the operating points o1, . . . o6 in
Figure 8.

r0 r1 r2 r3 r4

o6 = (95, 1.85) 0.529 0.657 10−1 0.546
o5 = (95, 0.7) 0.2 0.766 0.193 0.32 0.754
o4 = (40, 0.7) 0.215 0.701 0.202
o3 = (5, 0.7) 0.412 0.481
o2 = (40, 1.85) 0.568 0.633
o1 = (8, 1.85) 0.856

Figure 8 (c) shows the functions r 7→ p1
2(D, r) and r 7→ p2

2(D, r), for D = 0.7 corresponding
to the horizontal line D = 0.7 depicted in panels (a) and (b) of the figure. It appears that
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r 7→ p1
2(D, r) is decreasing and r 7→ p2

2(D, r) is decreasing and then increasing. Therefore the
Assumptions 6 and 7 are satisfied for f(S) = 4S/(5+S), a = 0.3 and D = 0.7. Figure 8 (c) shows
the values of r2(Sin, D) corresponding to the three operating points ok, k = 3, 4, 5 depicted in
panels (a) and (b). The figure shows also the values of r3(Sin, D) and r4(Sin, D) corresponding
to o5 = (4, 0.7). The numerical values of r2, r3 and r4, with three digits are collected in Table
3. This table gives also r0(Sin, D) and r1(Sin, D), whose expressions are known analytically, see
Table 2.

Figure 8 (d) shows the function r 7→ p1
2(D, r) for D = 1.85 corresponding to the horizontal line

D = 1.85 depicted in panels (a) and (b) of the figure. It appears that r 7→ p1
2(D, r) is decreasing.

Therefore the Assumption 6 is satisfied for f(S) = 4S/(5 + S), a = 0.3 and D = 1.85. Figure
14(d) shows the values of r2(Sin, D) corresponding to the two operating points ok, k = 2, 6
depicted in panels (a) and (b). The numerical values of r2, with three digits are collected in
Table 3.

Figure 9 shows P1(Sin, D, r) and P2(Sin, D, r), as functions of r, for the six operating points
ok, k = 1..6 shown in Figure 8 (a) and (b). Let us first recall the theoretical predictions.

Since o6 = (95, 1.85) ∈ J6, this operating point satisfies the condition π2(D) > λ(2D + a) >
Sin > π1(D) > π(D). Hence, from Proposition 7 it is deduced that P1(95, 1.85, r) > P (95, 1.85)
if and only if 0 < r < r1. Moreover, from Proposition 9 it is deduced that P2(95, 1.85, r) >
P (95, 1.85) if and only if r2 = max(r0, r2) < r < 1. This behavior is illustrated in Figure 9 (h),
showing the values r1, 1− r0, r0 and r2 and the zoom in panel (i) showing the value r1.

Since o5 = (95, 0.7) ∈ J5, this operating point satisfies the condition Sin > π2(D) > π1(D).
Hence, from Proposition 7 it is deduced that P1(95, 0.7, r) > P (95, 0.7) if and only if 0 < r < r1.
Moreover, from Proposition 9 it is deduced that P2(95, 0.7, r) > P (95, 0.7) if and only if r0 =
max(r0, r2) < r < r3 or r4 < r < 1. This behavior is illustrated in Figure 9 (a), the zoom in
panel (b) showing the values r0 and r3, and the zoom in panel (c), showing the values r4 and r1.

On the other hand, since o4 = (40, 0.7) ∈ J4, this operating point satisfies the condition
π2(D) > Sin > π1(D) > π(D). Hence, from Proposition 7 it is deduced that P1(40, 0.7, r) >
P (40, 0.7) if and only if 0 < r < r1, and, from Proposition 9 it is deduced that P2(40, 0.7, r) >
P (40, 0.7) if and only if r0 = max(r0, r2) < r < 1. This behavior is illustrated in Figure 9(d).

Since o3 = (5, 0.7) ∈ J3, this operating point satisfies the condition π1(D) > Sin > λ(2D +
a) > π(D). Hence, from Proposition 7 it is deduced that P1(5, 0.7, r) < P (5, 0.7) for any
r ∈ (0, 1 − r0). Moreover, from Proposition 9 it is deduced that P2(5, 0.7, r) > P (5, 0.7) if and
only if r2 = max(r0, r2) < r < 1. This behavior is illustrated in Figure 9(e), showing the values
r0, r2 and 1− r0.

Since o2 = (40, 1.85) ∈ J2, this operating point satisfies the condition π1(D) > λ(2D + a) >
Sin > π(D). Hence, from Proposition 7 it is deduced that P1(40, 1.85, r) < P (40, 1.85) for any
r ∈ (0, 1 − r0). Moreover, from Proposition 9 it is deduced that P2(40, 1.85, r) > P (40, 1.85) if
and only if r2 = max(r0, r2) < r < 1. This behavior is illustrated in Figure 9 (f), showing the
values 1− r0, r0 and r2.

Finally, since o1 = (8, 1.85) ∈ J1, this operating point satisfies the condition π1(D) > λ(2D+
a) > Sin > π(D). Hence, from Proposition 7 it is deduced that P1(8, 1.85, r) < P (8, 1.85) for
any r ∈ (0, 1 − r0). Moreover, from Proposition 9 it is deduced that P2(8, 1.85, r) < P (8, 1.85)
for any r0 < r < 1. This behavior is illustrated in Figure 9 (g), showing the values 1 − r0 and
r0.

Recall that when r0 < 1/2, then r0 corresponds to a transcritical bifurcation of E2 and E1,
while when r0 > 1/2, then r0 corresponds to a transcritical bifurcation of E2 and E0. The first
case can be seen in Figure 9 (a), (b), (d) and (e), and the second case can be seen in Figure 9
(g), (h) and (i). Recall also that 1− r0 corresponds to a transcritical bifurcation of E1 and E0,
which is observed in 9 (a), (d), (e), (f), (g) and (h).

Figure 9 shows that for the operating points o5 and o4 the most efficient device is obtained
for ropt1 (o5) ≈ 0.635 and ropt1 (o4) ≈ 0.528. For these operating points, the productivity P1 of

the unstable steady state E1 for r = ropt1 is significantly higher than the productivity P of the
single chemostat and the productivity P2 of the positive steady state E2. On the other hand,
for the operating points o3, o2 and o6, the most efficient device is obtained for ropt2 (o3) ≈ 0.694,
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ropt2 (o2) ≈ 0.782 and ropt2 (o6) ≈ 0.676. For these operating points, the productivity of the serial
device is obtained with the coexistence steady state E2.

6. Conclusion

The aim of this article was to generalize, to the case of mortality, the results obtained in [2] on
the productivity of two interconnected chemostats in series. The main question we have looked
at is:

Question 1. What are the three operating conditions, i.e. the distribution of the total vol-
ume between the two chemostats, the dilution rate and the input substrate concentration, for
which the productivity of the serial configuration is larger than the productivity of the single
chemostat ?

A first caveat is in order: the productivity of the biomass at the steady state where the species
is maintained in both chemostats is not always larger than the productivity of the biomass at
the steady state where the species in maintained only in the second chemostat, as it was the
case when there is no mortality in the model. Therefore, in Question 1 we need to specify in
which steady state the system is. We have answered this question for the both steady states
(see Theorems 2 and 3). In particular, the productivity at the steady state where the species
is maintained only in the second chemostat can be larger than the productivity of the single
chemostat. In the case of no mortality this never happens. The answer to this question allowed
us to consider and fully answer the following questions:

Question 2. Assuming that two operating parameters which are the distribution of the total
volume between the two chemostats and the input substrate concentration are fixed, what are
the values of the third operating parameter, i.e. the dilution rate, for which the productivities
(at both steady states) of the serial coexistence is larger than the productivity of the single
chemostat ?

Question 3. Assuming that two operating parameters which are the input substrate concen-
tration and the dilution rate are fixed, what are the values of the third operating parameter, i.e.
the distribution of the total volume between the two chemostats, for which the productivities
(at both steady states) of the serial coexistence is larger than the productivity of the single
chemostat ?

These questions are of biological importance since the answers give which type of bioreactor
(single or in series) is best suited for the productivity. Indeed, the conditions under which the
serial configuration is either beneficial or detrimental to the productivity of both steady states
are completely described.

We have answered Question 2 in Section 3.3 where we analyzed the behaviour of the produc-
tivity with respect of the dilution rate. We have answered Question 3 in Section 4 where we
analyzed the behavior of the productivity with respect of the distribution of the total volume
between the two chemostats.

Figures 9, 15 and 18 show that the answers to Questions 1, 2 and 3 are more subtle than in
the case without mortality. In particular, the productivity of the steady state where the species
is maintained in both chemostats can be larger than the productivity of the single chemostat
for configurations where the volume of the first reactor is either sufficiently small or sufficiently
large (close to the total volume). In the case of no mortality, this only occurs when the volume
of the first reactor is large enough.

What is also new compared to the case without mortality is that for a fixed input substrate
concentration, if the practitioner can choose the dilution rate then the series configuration
becomes the structure that should be considered. This property is due to mortality, because
in the case without mortality, it was shown in [2] that the productivity of the serial device is
always smaller than the maximum, relative to the dilution rate, of the productivity of the single
chemostat. When there is a mortality in the model, then Figure 6 gives numerical evidence that
the serial configuration can have a larger productivity than the maximum, with respect of the
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dilution rate, of the productivity of the single chemostat. This property was also shown for the
biogas flow rate in [3]. However it is an open question if the property is always true for the
productivity. We think this problem is difficult and warrants further work.
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Appendix A. The single chemostat

The mathematical equations representing the single chemostat are given by (3), where S
and x denote respectively the substrate and the biomass concentration, Sin the input substrate
concentration, a the mortality rate and D the dilution rate. It is well known (see [6]) that,
besides the washout F0 = (Sin, 0), that this system can have a positive steady state F1 =
(S∗(D), x∗(Sin, D), where

S∗ = λ(D + a) and x∗ = D
D+a(Sin − λ(D + a)).

See Figure 10(a) for the plot of the functions D 7→ S∗(D) and D 7→ x∗(Sin, D) for 0 ≤ D ≤ δ,
where δ = f(Sin)− a. The conditions of existence and stability of the steady states are given in
Table 4. Therefore, the curve Φ defined by

(42) Φ := {(Sin, D) : D = f(Sin)− a} = {(Sin, D) : Sin = λ(D + a)}.
splits the set of operating parameters (Sin, D) into two regions denoted I0 and I1 defined in
Table 4 and depicted in Figure 10(c). The asymptotic behaviour of the system in these regions
is as depicted in Table 4.

Table 4. The conditions of existence and stability of the steady states of (3)
and the asymptotic behavior in the regions I0 and I1 of the operating diagram.

Existence condition Stability condition
F0 Always exists D > f(Sin)− a
F1 D < f(Sin)− a Stable if it exists

F0 F1

I0 := {(Sin, D) : D ≥ f(Sin)− a} GAS
I1 := {(Sin, D) : D < f(Sin)− a} U GAS

D

y

y = S∗(D)

y = x∗(Sin, D)

λ(a)

Sin

δ

(a)

y

y = P (Sin, D)

D
Dopt

P opt

δ

(b)

D

Sin
λ(a)

I0

I1

Π

Dopt

δ

Φ

(c)

Figure 10. (a): The functions D 7→ S∗(D) (in blue) and D 7→ x∗(Sin, D) (in
black). (b): The function D 7→ P (Sin, D) with Dopt = Dopt(Sin) and P opt =
P (Sin, Dopt(Sin)). (c): The operating diagram and the curve Π. The figure is
done with f(S) = 4S/(5 + S), a = 0.3 and Sin = 5 in panels (a) and (b).

http://www.inra.fr/treasure
http://www.inra.fr/treasure
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The productivity of (3) at steady state F1 is given by (8), that we recall here

(43) P (Sin, D) := Qx∗ = V D2

D+a(Sin − λ(D + a)).

For Sin fixed, the function D 7→ P (Sin, D) is defined for 0 ≤ D ≤ δ := f(Sin)− a. It is positive
for 0 < D < f(Sin) − a and equal to 0 for D = 0 and D = δ, see Figure 10(b). Therefore it
attains a maximum for some value

(44) Dopt(Sin) := argmax
0≤D≤f(Sin)−a

P (Sin, D).

which is assumed to be unique.

Proposition 15. The dilution rate Dopt(Sin) defined by (44) is the solution of equation Sin =
π(D) where π is defined by (38).

Proof. For all D < f(Sin)− a we have

∂P
∂D (Sin, D) = V D(D+2a)

(D+a)2

(
Sin − λ(D + a)

)
− V D2

D+aλ
′(D + a) = V D(D+2a)

(D+a)2
(Sin − π(D)).

with π defined by (38). Therefore, ∂P
∂D (Sin, D) = 0 is verified if and only if Sin = π(D). �

Therefore, the curve Π defined by equation Sin = π(D) is the set of operating parameters for
which the productivity is maximal, see Figure 10(c).

We recall that the biogas flow rate of the single chemostat is defined by (see [1, 2, 3, 12, 14])

G(Sin, D) := V x∗f(S∗) = V D(Sin − λ(D + a)).

For the single chemostat, without mortality rate of the biomass, the biogas flow rate G(Sin, D)
and the productivity of the biomass are given by the same function of the operating parameters:

P (Sin, D) = V D(Sin − λ(D)) = G(Sin, D).

However, this is no longer the case when mortality is taken in consideration. For the study of
the biogas flow rate of the serial configuration, the reader can consult [3].

Appendix B. Some useful results on the serial configuration

B.1. Graphical interpretation of S∗2 . Let Sin be fixed such that f(Sin) < D1 + a. Figure
11(a) shows the graphs of functions S2 7→ f(S2) and S2 7→ h(S2, S

in), and the solution S∗2 of the
equation f(S2) = h(S2, S

in), which is unique since f is increasing and the graph of the function
S2 7→ h(S2, S

in) is a decreasing hyperbola. This proves the uniqueness, if it exists, of the steady
state E2.

Actually, the function h depends on all operating parameters Sin, D1 and D2. However, to
avoid unnecessary cumbersome notations, we have highlighted the dependence of h only on the
operating parameter Sin, because of its crucial importance for the property to be discussed,
namely that S∗2 decreases as Sin increases, see Figure 11(b).

y

0 S2S∗1S∗2

y=f(S2)

y=h(S2, S
in)h(0, Sin)

(a)

S2

y

0 S∗1

h(0, Sin2)

h(0, Sin1)

y=f(S2)

y=h(S2, S
in2)

y=h(S2, S
in1)

S∗12 S∗22 (b)

Figure 11. (a): Graphical illustration of equation h(S2, S
in) = f(S2), showing

the uniqueness of the solution S∗2 . (b): The function Sin 7→ S∗2(Sin) is decreasing.
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Remark 9. This result means that the effluent steady state concentration of substrate decreases
when the influent concentration of substrate increases. This behavior is very different from
the classical one bioreactor case, where the effluent steady state substrate concentration is
independent of the influent substrate concentration.

From Figure 11 it is seen that S∗2 < S∗1 = λ
(
D
r + a

)
. If a = 0 we also have S∗2 < λ

(
D

1−r

)
as

stated in the following lemma.

Lemma 10. Assume that a = 0. For all r ∈ (0, 1), Sin and D such that D < rf(Sin) we have
S∗2 < λ(D/(1− r)).

Proof. Assume that a = 0 and D < rf(Sin), i.e. λ(D/r) < Sin. Recall that S∗2 is the unique
solution of f(S2) = h(S2, S

in) where, in the case a = 0, h2 defined by (27) becomes :

h(S2, S
in) = D

1−r
S∗1−S2

Sin−S2
, where S∗1 = λ

(
D
r

)
.

If λ
(

D
1−r

)
≥ Sin then one has S∗2 < λ

(
D
r

)
< Sin ≤ λ

(
D

1−r

)
. Assume that λ

(
D

1−r

)
< Sin. We

have
S∗1−λ(

D
1−r )

Sin−λ( D
1−r )

< 1 =⇒ h
(
λ
(

D
1−r

))
< D

1−r = f
(
λ
(

D
1−r

))
=⇒ S∗2 < λ

(
D

1−r

)
The last implication follows from the fact that f is increasing and h2 is decreasing. �

(a) 0 < r < 1
2

Sin

D

0 λ(a)

I0(r)

I1(r)

I2(r)

Φr

Φ1−r

(b) 1
2 < r < 1

Sin

D

0 λ(a)

I0(r)

I3(r)

I2(r)

Φ1−r

Φr

Figure 12. The operating diagram of (2): (a) the region I3(r) is empty; (b) the
region I1(r) is empty.

B.2. Operating diagram. We fix r ∈ (0, 1) and we depict in the plane (Sin, D) the regions in
which the solution of system (2) globally converges towards one of the steady states E0, E1 or
E2. Let Φr be the curve defined by

(45) Φr =
{

(Sin, D) ∈ R2
+ : D = r(f(Sin)− a)

}
=
{

(Sin, D) ∈ R2
+ : Sin = λ

(
D
r + a

)}
Proposition 16. [3] The curves Φr and Φ1−r, defined by (45) separate the operating plane
(Sin, D), in the regions Ik(r), k = 0, 1, 2, 3, see Figure 12, and defined in the Table 5. The
behavior of the system, when the region is not empty, is given in Table 5

In Table 5, U means that the steady state is unstable, GAS means that the steady state is
globally asymptotically stable in the positive orthant and no letter means that the steady state
does not exist.

Appendix C. Applications to linear and Hill growth functions

C.1. Linear growth functions. In this section we apply our results to the linear growth
function f(S) = γS, with γ > 0. Note that m = supS>0 f(S) = +∞. Since f ′ = γ and
f ′′ = 0, then using the Proposition 11, it is seen that Assumptions 1, 2, 3 and 5 are satisfied.
The Assumptions 4, 6 and 7 will be checked graphically. Let us first determine the possible
intersection points of curves Πr1 and Φr, as shown in Figure 13.
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Table 5. Stability of the steady states in the various regions of the operating diagram.

Region E0 E1 E2

I0(r) =
{

(Sin, D) : max{r(f(Sin)− a), (1− r)(f(Sin)− a)} ≤ D
}

GAS

I1(r) =
{

(Sin, D) : r(f(Sin)− a) ≤ D and D < (1− r)(f(Sin)− a)
}

U GAS

I2(r) =
{

(Sin, D) : 0 < D < min{r(f(Sin)− a), (1− r)(f(Sin)− a)}
}

U U GAS

I3(r) =
{

(Sin, D) : (1− r)(f(Sin)− a) ≤ D and D < r(f(Sin)− a))
}

U GAS

D
Φ1−r Φr

Πr1

Π1
r2

Π2
r2

Sin
λ(a)

(a) r = 0.3

D Φ1−r

Φr

Πr1

Π1
r2

Π2
r2

Sin

(b) Zoom of (a)

Figure 13. (a) The operating diagram for f(S) = 4S, a = 0.3 showing curves
Φr and Φ1−r (in black), Πr1 (in blue), Π1

r2 and Π2
r2 (in red). (b): A zoom showing

the intersection point of Φr, Πr1 and Π1
r2.

Proposition 17. Apart from point (λ(a), 0), curves Πr1 and Φr can intersect at a positive point

if and only if 0 < r < 3−
√

5
2 . The intersection point is (p1(D0, r), D0), where D0 = 1−3r+r2

r a.

Proof. The equation (21) giving the intersection points of Πr1 and Φr curves is equivalent to the
algebraic equation

D
(
−a+ 3ra+Dr − r2a

)
= 0.

Therefore, apart from D = 0 which corresponds to the intersection point (λ(a), 0) of Πr1 and

Φr, these curves can intersect at point (p1(D0, r), D0), where D0 = 1−3r+r2

r a. This value of D is
in the domain of definition of the function D 7→ p1(D, r), which is [0,+∞), if and only if D ≥ 0,

that is, 0 < r < 3−
√

5
2 . �

Table 6. f linear
f(S) = γS
λ(D) = D/γ

p1(D, r) = (D+a)(D+a(1−r))
a(1−r)γ

π1(D) = (D+a)2

aγ

r0(Sin, D) = D
γSin−a

r1(Sin, D) = (D+a)2−aγSin
a(D+a−γSin)

p1
2(D, r) = D+a

2γr(1−r)a2

(
D2 + 2aD + 2a2r(1− r)−D

√
D2 + 4aD + 4a2r

)
p2

2(D, r) = D+a
2γr(1−r)a2

(
D2 + 2aD + 2a2r(1− r) +D

√
D2 + 4aD + 4a2r

)
π(D) = 2(D+a)2

γ(D+2a)

The functions p1
2 and p2

2 which are defined implicitly as solutions of the equation f1 = h1, can
be given explicitly, as shown in the following proposition.

Proposition 18. The functions p1
2 and p2

2 are given explicitly by the formulas in Table 6.
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DΦ1
Φ1/2

Π Π1

Π2

o5o4

Sin

J5

J4

J3

(a)

D Φ1 Φ1/2Π

Π1

Π2

o3o2o1

Sin
J5

J4

J3

↘
J2

J1

J0

(b): Zoom of (a)

Sin Sin = p22(0.4, r)

Sin = p12(0.4, r)

r
r52r

4
2 r32 r22r3 r4

(c)

Figure 14. (a) and (b): The curves Φ1, Φ1/2 (in black), Π1 (in blue), Π and Π2

(in red) divide the operating plane in six regions, Jk, k = 0..5 and the operating
points ok ∈ Jk, k = 1..5. (c): The graphical depiction of Assumptions 6 and 7,
for D = 0.4, showing the values rk2 = r2(Sin, D), corresponding to ok, k = 2..5,
respectively, and the values of r3 and r4 corresponding to o5. The operating
points are o1 = (0.21, 0.4), o2 = (0.26, 0.4), o3 = (0.32, 0.4), o4 = (1.5, 0.4) and
o5 = (4, 0.4).

Proof. The equation f(S2) = h2(S2) is equivalent to the algebraic quadratic equation

c2S
2
2 − c1S2 + c0 = 0,

with ci, i = 0, 1, 2 defined by

(46) c2 = γ2(D + ra), c1 = γ(D2 + 2aD + 2a2r), c0 = a2(D + ra).

The discriminant is positive:

(47) ∆ := c2
1 − 4c2c0 = D2γ2(D2 + 4aD + 4a2r).

As ci, i = 0, 1, 2 and ∆ are positive then f(S2) = h2(S2) admits two positive solutions that are
explicitly defined by:

S1
2(D) = D2+2aD+2a2r−D

√
D2+4aD+4a2r

2γ(D+ra) , S2
2(D) = D2+2aD+2a2r+D

√
D2+4aD+4a2r

2γ(D+ra) .

One deduces the expressions of p1
2(D, r) and p2

2(D, r) by using (29). �

Proposition 19. For all D > 0, we have π(D) < λ(2D + a) < π1(D).

Proof. The condition π(D) < λ(2D + a) is equivalent to 2(D+a)2

D+2a < 2D + a, which is equivalent

to 2(D + a)2 < (D + 2a)(2D + a), which is equivalent to aD > 0.

The condition λ(2D + a) < π1(D) is equivalent to 2D + a < (D+a)2

a , which is equivalent to

(2D + a)a < 2(D + a)2, which is true, since D > 0. �

Remark 10. From Proposition 19 it is seen that Φ1/2 lies to the right of Π and to the left
of Π1. This property complements the one given in Remark 7. The relative position of curve
Π2 (which is only known to be to the right of curve Π) in relation to the other curves, gives a
complete description of all possible cases.

In Figure 14, it is assumed that f(S) = 4S and a = 0.3, as in Figure 13, and the curve Π2

is represented numerically, as well as curves Φ1, Φ1/2, Π1 and Π, see Figure 14 (a), (b). It can
be seen that curve Π2 lies to the right of curve Π1. Therefore these curves divide the operating
plane in six regions labeled Jk, k = 0..5. Let us illustrate the behavior of the productivities
P1(Sin, D, r) and P2(Sin, D, r), as a function of r, for the operating points ok ∈ Jk, k = 0..5,
shown in Figure 14 (a), (b).
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Figure 15. The curves of the functions r 7→ P2(Sin, D, r) (in red) and r 7→
P1(Sin, D, r) (in blue), for Sin and D fixed and the corresponding value of
P (Sin, D) (in black). The rk, k = 0, . . . , 4 values are given in Table 7.

Table 7. The values of rk, corresponding to the operating points o1, . . . , o5 in
Figure 14.

r0 r1 r2 r3 r4

o5 = (4, 0.4) 0.255 10−1 0.939 0.203 10−1 0.252 0.728
o4 = (1.5, 0.4) 0.702 10−1 0.824 0.583 10−1

o3 = (0.32, 0.4) 0.408 0.506
o2 = (0.26, 0.4) 0.541 0.836
o1 = (0.21, 0.4) 0.741

Figure 14(c) shows the functions r 7→ p1
2(D, r) and r 7→ p2

2(D, r), for D = 0.4 corresponding to
the horizontal line D = 0.4 depicted in panels (a), (b) of the figure. It appears that r 7→ p1

2(D, r)
is decreasing and r 7→ p2

2(D, r) is decreasing and then increasing. Therefore the Assumptions
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6 and 7 are satisfied for f(S) = 4S, a = 0.3 and D = 0.4. Figure 14(c) shows the values of
r2(Sin, D) corresponding to the four operating points ok, k = 2, 3, 4, 5 depicted in panels (a) and
(b). The figure shows also the values of r3(Sin, D) and r4(Sin, D) corresponding to o5 = (4, 0.4).
The numerical values of r2, r3 and r4, with two digits are collected in Table 7. This table gives
also r0(Sin, D) and r1(Sin, D), whose expressions are known analytically, see Table 6.

Figure 15 shows P1(Sin, D, r) and P2(Sin, D, r), as functions of r, for the five operating points
ok, k = 1..5 shown in Figure 14 (a), (b). Let us first recall the theoretical predictions. Since
o5 = (4, 0.4) ∈ J5, this operating point satisfies the condition Sin > π2(D) > π1(D). Hence, from
Proposition 7 it is deduced that P1(4, 0.4, r) > P (4, 0.4) if and only if 0 < r < r1. Moreover, from
Proposition 9 it is deduced that P2(4, 0.4, r) > P (4, 0.4) if and only if r0 = max(r0, r2) < r < r3

or r4 < r < 1. This behavior is illustrated in Figure 15(a), the zoom in panel (b) showing the
values r0 and r3, and the zoom in panel (c), showing the values r4 and r1.

On the other hand, since o4 = (1.5, 0.4) ∈ J4, this operating point satisfies the condition
π2(D) > Sin > π1(D) > π(D). Hence, from Proposition 7 it is deduced that P1(1.5, 0.4, r) >
P (1.5, 0.4) if and only if 0 < r < r1. Moreover, from Proposition 9 it is deduced that
P2(1.5, 0.4, r) > P (1.5, 0.4) if and only if r0 = max(r0, r2) < r < 1. This behavior is illus-
trated in Figure 15(d) and the zoom in panel (e), showing the value r0.

Since o3 = (0.32, 0.4) ∈ J3, this operating point satisfies the condition π1(D) > Sin >
λ(2D+a) > π(D). Hence, from Proposition 7 it is deduced that P1(0.32, 0.4, r) < P (0.32, 0.4) for
any r ∈ (0, 1−r0). Moreover, from Proposition 9 it is deduced that P2(0.32, 0.4, r) > P (0.32, 0.4)
if and only if r2 = max(r0, r2) < r < 1. This behavior is illustrated in Figure 15(f), showing the
values r0, r2 and 1− r0.

Since o2 = (0.26, 0.4) ∈ J2, this operating point satisfies the condition π1(D) > λ(2D + a) >
Sin > π(D). Hence, from Proposition 7 it is deduced that P1(0.26, 0.4, r) < P (0.26, 0.4) for any
r ∈ (0, 1− r0). Moreover, from Proposition 9 it is deduced that P2(0.26, 0.4, r) > P (0.26, 0.4) if
and only if r2 = max(r0, r2) < r < 1. This behavior is illustrated in Figure 15(g), showing the
values 1− r0, r0 and r2 and the zoom in panel (h), showing the value r2.

Finally, since o1 = (0.21, 0.4) ∈ J1, this operating point satisfies the condition π1(D) > λ(2D+
a) > Sin > π(D). Hence, from Proposition 7 it is deduced that P1(0.21, 0.4, r) < P (0.21, 0.4) for
any r ∈ (0, 1−r0). Moreover, from Proposition 9 it is deduced that P2(0.21, 0.4, r) < P (0.21, 0.4)
for any r0 < r < 1. This behavior is illustrated in Figure 15 (i), showing the values 1− r0 and
r0.

Recall that when r0 < 1/2, it corresponds to a transcritical bifurcation of E2 and E1, while
when r0 > 1/2, it corresponds to a transcritical bifurcation of E2 and E0. The first case can
be seen in Figures 15 (a), (b), (d), (e) and (f) and the second case can be seen in Figures 15
(g), (i). Recall also that 1− r0 corresponds to a transcritical bifurcation of E1 and E0, which is
observed in 15 (a), (d), (f), (g) and (i).

Remark 11. When a tends to 0, curves Π1 and Π2 tend towards the Sin-axis while curves Π
and Φ1/2 tend towards each other. Therefore, in the limiting case a = 0, there are only the
regions J0, J1 and J3, bounded by curves Φ1 and Φ1/2. This result is in agreement with the
results obtained in the no mortality case, see Section 5.1 of [2].

Figure 15 shows that for the operating points o5 and o4 the most efficient device is obtained
for ropt1 (o5) ≈ 0.789 and ropt1 (o4) ≈ 0.616. For these operating points, the maximum of the
productivity is obtained for the unstable steady state E1. On the other hand, for the operating
points o3 and o2, the most efficient device is obtained for ropt2 (o3) ≈ 0.707, ropt2 (o2) ≈ 0.912.
For these operating points, the productivity of the serial device is obtained with the coexistence
steady state E2.

C.2. Hill growth functions. In this section we apply our results to the Hill growth function
f(S) = mSp/(Kp+Sp). Note that m = supS>0 f(S). Since f ′(S) = mpKpSp−1/(Kp+Sp)2 > 0,
f satisfies Assumption 1. Moreover, it was proved in Section 5.3 of [3], that for the Hill function,
f ′′a (S) > 0 for all a ≥ 0 and all S > λ(a), where fa(S) = 1/(f(S)−a). Then using the Proposition
11, it is seen that Assumptions 2 and 5 are satisfied. Finally, it was also proved in Section 5.3
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of [3] that, for the Hill function,

f ′
(
λ
(
D
r + a

))
< 1

rf
′(λ(D + a)), for all r ∈ (0, 1).

Replacing r by 1−r, it is deduced that (48) is satisfied. Hence, using the Lemma 12 in Appendix
D.1, one deduces that Assumption 3 is satisfied. As for linear and Monod functions, Assumptions
4, 6 and 7 will be checked graphically.

D
Φ1−r

Φr

Πr1
Π1
r2

Π2
r2

Sin
λ(a)

(a) r = 0.3

D Φ1−r

Φr

Πr1
Π1
r2

Π2
r2

Sin
λ(a)

(b) Zoom of (a)

Figure 16. (a) The operating diagram for f(S) = 4S2/(25 + S2), a = 0.3
showing curves Φr and Φ1−r (in black), Πr1 (in blue), Π1

r2 and Π2
r2 (in red). (b):

A zoom showing the first intersection point of Φr, Πr1 and Π1
r2. (c): A zoom

showing the second intersection point of Φr, Πr1 and Π1
r2.

Table 8. f Hill
f(S) = mSp

Kp+Sp

λ(D) = K
(

D
m−D

) 1
p

p1(D, r) = K
ar

(
(D + a)

(
D+a(1−r)

(m−a)(1−r)−D

) 1
p − (D + (1− r)a)

(
D+a

m−D−a

) 1
p

)
π1(D) = K (m−pa)D+pa(m−a)

pa(D+a)

(
D+a

m−D−a

) 1
p

+1

π(D) = K−pD
2+(m(p+1)−3pa)D+2pa(m−a)

p(D+2a)(D+a)

(
D+a

m−D−a

) 1
p

+1

r0(Sin, D) = D(Kp+Sin
p
)

mSinp−a(Kp+Sinp)

Table 9. The values of rk, corresponding to the operating points o1, . . . , o6 in
Figure 17.

r0 r1 r2 r3 r4

o6 = (48, 1.9) 0.520 0.530 10−1 0.527
o5 = (20, 0.2) 0.577 10−1 0.936 0.542 10−1 0.119 0.860
o4 = (20, 0.9) 0.260 0.518 0.255
o3 = (7, 0.9) 0.383 0.450
o2 = (20, 1.9) 0.548 0.609
o1 = (7, 1.9) 0.809

In Figure 17, it is assumed that f(S) = 42S/(52 + S) and a = 0.3, and the curve Π2 is
represented numerically, as well as curves Φ1, Φ1/2, Π1 and Π, see Figure 17 (a) and (b). It
can be seen that curve Π2 lies to the right of curve Π1 and Φ1/2. Therefore these curves divide
the operating plane in seven regions labeled Jk, k = 0..6. Let us illustrate the behavior of
the productivities P1(Sin, D, r) and P2(Sin, D, r), as a function of r, for the operating points
ok ∈ Jk, k = 0..6, shown in Figure 17 (a) and (b).
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Figure 17. (a) and (b): The curves Φ1, Φ1/2 (in black), Π1 (in blue), Π and
Π2 (in red) divide the operating plane in seven regions, Jk, k = 0..6 and the
operating points ok ∈ Jk, k = 1..6. (c): The graphical depiction of Assumptions
6 and 7, for D = 0.2, showing the values r2 = r2(Sin, D), r3 = r3(Sin, D) and
r4 = r4(Sin, D), corresponding to o5. (d): The graphical depiction of Assumption
6, for D = 0.9 and D = 1.9, showing the values rk2 = r2(Sin, D), corresponding
to ok, k = 2, 3, 4, 6, respectively. The operating points are o1 = (8, 1.9), o2 =
(20, 1.9), o3 = (8, 0.9), o4 = (20, 0.9), o5 = (20, 0.2). and o6 = (48, 1.9).

Figure 17 (c) shows the function r 7→ p1
2(D, r) and r 7→ p2

2(D, r), for D = 0.2, corresponding
to the horizontal line D = 0.2 depicted in panels (a) and (b) of the figure. It appears that
r 7→ p1

2(D, r) is decreasing and r 7→ p2
2(D, r) is decreasing and then increasing. Therefore the

Assumptions 6 and 7 are satisfied. Figure 17 (c) shows the values of r2(Sin, D), r3(Sin, D) and
r4(Sin, D) corresponding to o5 = (20, 0.2). Figure 17 (d) shows the functions r 7→ p1

2(D, r) for
D = 0.9 and D = 1.9, corresponding to the horizontal lines D = 0.9 and D = 1.9 depicted
in panels (a) and (b) of the figure. It appears that r 7→ p1

2(D, r) is decreasing. Therefore the
Assumption 6 is satisfied. Figure 17(d) shows the values of r2(Sin, D) corresponding to the two
operating points ok, k = 2, 3, 4, 6 depicted in panels (a) and (b). The numerical values of r0,
r1, r2, r3 and r4, with three digits are collected in Table 9. Figure 18 shows P1(Sin, D, r) and
P2(Sin, D, r), as functions of r, for the six operating points ok, k = 1..6 shown in Figure 17 (a)
and (b). Let us first recall the theoretical predictions.

Since o6 = (48, 1.9) ∈ J6, this operating point satisfies the condition π2(D) > λ(2D + a) >
Sin > π1(D) > π(D). Hence, from Proposition 7 it is deduced that P1(48, 1.9, r) > P (48, 1.9) if
and only if 0 < r < r1. Moreover, from Proposition 9 it is deduced that P2(48, 1.9, r) > P (48, 1.9)
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Figure 18. The curves of the functions r 7→ P2(Sin, D, r) (in red) and r 7→
P1(Sin, D, r) (in blue), for Sin and D fixed and the corresponding value of
P (Sin, D) (in black). The rk, k = 0, . . . , 4 values are given in Table 9.

if and only if r2 = max(r0, r2) < r < 1. This behavior is illustrated in Figure 9 (h), showing the
values r1, 1− r0, r0 and r2 and the zoom in panel (i) showing the value r1.

Similarly, since o5 = (20, 0.2) ∈ J5, this operating point satisfies the condition Sin > π2(D) >
π1(D). Hence, from Proposition 7 it is deduced that P1(20, 0.2, r) > P (20, 0.2) if and only if
0 < r < r1. Moreover, from Proposition 9 it is deduced that P2(20, 0.2, r) > P (20, 0.2) if and
only if r0 = max(r0, r2) < r < r3 or r4 < r < 1. This behavior is illustrated in Figure 18 (a), the
zoom in panel (b) showing the values r0 and r3, and the zoom in panel (c), showing the values
r4 and r1.

On the other hand, since o4 = (20, 0.9) ∈ J4, this operating point satisfies the condition
π2(D) > Sin > π1(D) > π(D). Hence, from Proposition 7 it is deduced that P1(20, 0.9, r) >
P (20, 0.9) if and only if 0 < r < r1. Moreover, from Proposition 9 it is deduced that P2(20, 0.9, r) >
P (20, 0.9) if and only if r0 = max(r0, r2) < r < 1. This behavior is illustrated in Figure 18(d).
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Since o3 = (7, 0.9) ∈ J3, this operating point satisfies the condition π1(D) > Sin > λ(2D +
a) > π(D). Hence, from Proposition 7 it is deduced that P1(7, 0.9, r) < P (7, 0.9) for any
r ∈ (0, 1 − r0). Moreover, from Proposition 9 it is deduced that P2(7, 0.9, r) > P (7, 0.9) if and
only if r2 = max(r0, r2) < r < 1. This behavior is illustrated in Figure 9(e), showing the values
r0, r2 and 1− r0.

Since o2 = (20, 1.9) ∈ J2, this operating point satisfies the condition π1(D) > λ(2D + a) >
Sin > π(D). Hence, from Proposition 7 it is deduced that P1(20, 1.9, r) < P (20, 1.9) for any
r ∈ (0, 1 − r0). Moreover, from Proposition 9 it is deduced that P2(20, 1.9, r) > P (20, 1.9) if
and only if r2 = max(r0, r2) < r < 1. This behavior is illustrated in Figure 18 (f), showing the
values 1− r0, r0 and r2.

Finally, since o1 = (7, 1.9) ∈ J1, this operating point satisfies the condition π1(D) > λ(2D +
a) > Sin > π(D). Hence, from Proposition 7 it is deduced that P1(7, 1.9, r) < P (7, 1.9) for any
r ∈ (0, 1− r0). Moreover, from Proposition 9 it is deduced that P2(7, 1.9, r) < P (7, 1.9) for any
r0 < r < 1. This behavior is illustrated in Figure 18 (g), showing the values 1− r0 and r0.

Recall that when r0 < 1/2, then r0 corresponds to a transcritical bifurcation of E2 and E1,
while when r0 > 1/2, then r0 corresponds to a transcritical bifurcation of E2 and E0. The first
case can be seen in Figure 18 (a), (b), (d) and (e), and the second case can be seen in Figure 18
(g), (h) and (i). Recall also that 1− r0 corresponds to a transcritical bifurcation of E1 and E0,
which is observed in 18 (a), (d), (e), (f), (g) and (h).

Figure 18 shows that for the operating point o5 the most efficient device is obtained for
ropt1 (o5) ≈ 0.851. For these operating points, the maximum of the productivity is obtained for
the unstable steady state E1. On the other hand, for the operating points o4, o3, o2 and o6,
the most efficient device is obtained for ropt2 (o4) ≈ 0.544, ropt2 (o3) ≈ 0.676, ropt2 (o2) ≈ 0.764 and

ropt2 (o6) ≈ 0.687. For these operating points, the productivity of the serial device is obtained
with the coexistence steady state E2.

Appendix D. Proofs

D.1. Preliminary lemmas. We give some lemmas that provide sufficient conditions for our
assumptions to be satisfied. The following lemma provides sufficient conditions for Assumption
2 to be satisfied.

Lemma 11. Assumption 2 is satisfied for any increasing concave function f . It is satisfied also
for any increasing function f , such that 1/f is convex.

Proof. Assume that f is concave. Since h2 defined by (27) is strictly convex and increasing, its
graph can intersect the graph of the increasing concave function f in at most two points.
Assume now that 1/f is convex. The equation h2(S2) = f(S2) is equivalent to the equation

1
h2(S2) = 1

f(S2) . Since 1/h2 is strictly concave and decreasing, its graph can intersect the graph

of the decreasing convex function 1/f in at most two points. In both cases, from Lemma 2
one knows that there exists at least two intersection points. Therefore, we have exactly two
intersection points. �

The following Lemma provides a sufficient condition for Assumption 3 to be satisfied.

Lemma 12. Assume that

(48) f ′
(
λ
(

D
1−r + a

))
≤ 1

1−rf
′ (λ (D + a))

then ∂p1
∂D (D, r) > 0. If f ′ is decreasing, then the condition (48) is satisfied.

Proof. From (17) we deduce that

∂p1
∂D (D, r) = λ′(D + a) + D+a

ra

(
1

1−rλ
′
(

D
1−r + a

)
− λ′(D + a)

)
+ 1

ra

(
λ
(

D
1−r + a

)
− λ(D + a)

)
.

Notice that λ′(D + a) > 0 and λ
(

D
1−r + a

)
− λ(D + a) > 0. Therefore the condition

1
1−rλ

′
(

D
1−r + a

)
− λ′(D + a) ≥ 0
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is sufficient to have ∂p1
∂D (D, r) > 0. Using λ′(D) = 1/f ′(λ(D)), this condition is equivalent to

(48). Note that if f ′ is decreasing, then this condition is satisfied. Indeed, we have

f ′
(
λ
(

D
1−r + a

))
≤ f ′ (λ (D + a)) < 1

1−rf
′ (λ (D + a))

which is the condition (48). �

The following lemma provides a sufficient condition for Assumption 5 to be satisfied.

Lemma 13. Let D ∈ [0,m − a) and lD be defined on dom(lD) :=
[
0, 1− D

m−a

)
by lD(r) :=

λ
(

D
1−r + a

)
. The following conditions are equivalent.

a: For all (D, r) ∈ dom(p1), ∂p1
∂r (D, r) > 0.

b: For all (D, r) ∈ dom(p1), lD(r) < lD(0) + rl′D(r).

If, for D ∈ (0,m− a), lD is strictly convex on dom(lD), then the condition b is satisfied.
If f is twice derivable, then lD is twice derivable and the following conditions are equivalent.

1: For all D ∈ (0,m− a) and r ∈ dom(lD), l′′D(r) > 0.

2: For all S > λ(a), (f(S)− a)f ′′(S) < 2 (f ′(S))2.
3: For all S > λ(a), f ′′a (S) > 0, where fa(S) is defined by (40).

Proof. Notice first that, from (17), p1(D, r) can be written

p1(D, r) = lD(0) + D+a
ra (lD(r)− lD(0)) .

The partial derivative, with respect to r of p1 is given then by

(49) ∂p1
∂r (D, r) = −D+a

ar2
(lD(r)− lD(0)) + D+a

ra l′D(r).

Therefore ∂p1
∂r (D, r) > 0 if and only if lD(r) < lD(0) + rl′D(r). This proves the equivalence of the

conditions a and b of the lemma.
Assume that lD is strictly convex. For all s and r in dom(lD), if s 6= r, then

lD(s) > lD(r) + (s− r)l′D(r).

Taking s = 0 and r ∈ (0, 1−D/(m− a)) one obtains b. Assume now that f is twice derivable.
Then, so is lD. Using

λ′(D) = 1
f ′(λ(D)) and λ′′(D) = − f ′′(λ(D))

(f ′(λ(D)))3
,

we can write

l′′D(r) = 2D
(1−r)3λ

′
(

D
1−r + a

)
+ D2

(1−r)4λ
′′
(

D
1−r + a

)
= D

(1−r)3(f ′(λ( D
1−r+a)))

3

(
2
(
f ′
(
λ
(

D
1−r + a

)))2
− D

1−rf
′′
(
λ
(

D
1−r + a

)))
.

Therefore, the condition 1 in the lemma is equivalent to the following condition: For all D ∈
(0,m− a) and r ∈ [0, 1−D/(m− a)),

(50) D
1−rf

′′
(
λ
(

D
1−r + a

))
< 2f ′

(
λ
(

D
1−r + a

))2
.

Using the notation S = λ
(

D
1−r + a

)
, which is the same as D

1−r = f(S) − a, the condition (50)

is equivalent to : For all S > 0, (f(S) − a)f ′′(S) < 2 (f ′(S))2, which is the condition 2 in the
lemma. This proves the equivalence of the conditions 1 and 2 of the lemma. Straightforward
computation shows that

f ′′a (S) = 2f ′(S)2−f ′′(S)(f(S)−a)
(f(S)−a)3

.

Hence, f ′′a (S) > 0 if and only if (f(S)− a)f ′′(S) < 2f ′(S)2, which proves the equivalence of the
conditions 2 and 3 of the lemma. �
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D.2. Proof of Proposition 11. If f ′′ ≤ 0, then f is concave and by Lemma 11, Assumption
2 is satisfied. Moreover, f ′ is decreasing and, by Lemma 12, ∂p1

∂D > 0, so that Assumption 3 is
satisfied. Finally, the condition 2 in Lemma 13 is satisfied, which is equivalent to the fact that
l′′D(r) > 0. Therefore lD is strictly convex, which, according to the lemma, implies that ∂p1

∂r > 0,
so that Assumption 5 is satisfied.

If f ′′a > 0 for any a ≥ 0, then f0 = 1/f is (strictly) convex and by Lemma 11, Assumption 2
is satisfied. Moreover, the condition 3 in Lemma 13 is satisfied, which is equivalent to the fact
that l′′D(r) > 0. Therefore lD is strictly convex, which, according to the lemma, implies that
∂p1
∂r > 0, so that Assumption 5 is satisfied.

D.3. Proof of Proposition 12. The equation (21) giving the intersection points of Πr1 and
Φr curves is equivalent to the algebraic equation

D
(
D2 − bD + c

)
= 0, where b = r(m− 2a), c = a(m− a)(r2 − 3r + 1).

Therefore, apart from D = 0 which corresponds to the intersection point (λ(a), 0) of Πr1 and
Φr, these curves can intersect at points Qi = (p1(di, r), di), where di, i = 1, 2, are the solutions

of equation D2 − bD + c = 0, i.e. d1 = b+
√

∆
2 and d2 = b−

√
∆

2 , where ∆ = b2 − 4c. This
proves the formulas for d1 and d2 given in the proposition. The roots d1 and d2 correspond
to an intersection point whenever they are real and satisfy 0 < d2 ≤ d1 < (1 − r)(m − a), i.e.
(di, r) ∈ dom(p1), i = 1, 2. A necessary condition for this to be true is that r < 1/2. Note that
when r = 1/2 then d1 = m−a

2 and d2 < 0. This result is in agreement with Proposition 3 which
states that there is no intersection when r ∈ [1/2, 1). Therefore we must restrict our attention
to r ∈ (0, 1/2).

We obtain the signs of the roots of the polynomial of degree 2 in D by considering the signs
of its coefficients b and c and that of its discriminant ∆. First, note that b is positive if and only

if a < m/2 and c is negative if and only if r2 − 3r + 1 > 0, i.e. 3−
√

5
2 < r < 1

2 <
3+
√

5
2 . On the

other hand, the discriminant ∆ is written

∆ = (8a2 − 8am+m2)r2 + 12a(m− a)r − 4a(m− a).

The reduced discriminant of ∆, considered as a polynomial of degree 2 in r, is given by

36a2(m− a)2 + 4a(m− a)(8a2 − 8am+m2) = 4∆1 > 0,

where ∆1 is defined in the proposition. Therefore ∆ = 0 if and only if r = r1 or r = r2, where

r1 = 2
√

∆1−3a(m−a)
8a2−8am+m2 = 2a(m−a)√

∆1+3a(m−a)
, r2 = −2

√
∆1+3a(m−a)

8a2−8am+m2 .

The second expression for r1 is obtained by multiplying the numerator and the denominator of
r1 by the conjugate expression,

√
∆1 + 3a(m − a), of the numerator, or by using the relation

r1r2 = −4a(m−a)
8a2−8am+m2 . Hence r1 = r∗ > 0, is the value given in the proposition. Note that r2 > 0

for 8a2 − 8am+m2 < 0, which occurs if and only if

2−
√

2
4 m < a < 2+

√
2

4 m.

From the relation ∆ = b2 − 4c, it is seen that for all a ∈ (0,m), we have

∆ ≥ −4a(m− a)(r2 − 3r + 1)

and the equality holds if and only if a = m/2. Therefore, for all a ∈ (0,m), we have

0 < r1 ≤ 3−
√

5
2 , and the equality holds only for a = m/2.

This proves the condition on r∗ given in the proposition. On the other hand, we have:

for all a ∈
(

0, 2−
√

2
4 m

)
∪
(

2+
√

2
4 m,m

)
, r2 < 0,

for all a ∈
(

2−
√

2
4 m, 2+

√
2

4 m
)
, r2 ≥ 3−

√
5

2 .

In the first case, ∆ > 0 for r < r2 or r > r1, and in the second case, ∆ > 0 for r1 < r < r2.
Therefore, for all a ∈ (0,m), we have ∆ > 0 for all r ∈ (r∗, 1/2). From these results on the signs
of b = d1 + d2, c = d1d1 and ∆ we deduce the following results. Assume that 0 < a < m/2.
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• If 0 < r < r∗ then ∆ < 0, i.e. d1 and d2 are complex conjugate. There is no intersection
point.

• If r = r∗, then ∆ = 0, i.e. d1 = d2 = r∗(m−2a)
2 > 0. Q1 = Q2 is the unique intersection

point.

• If r∗ < r < 3−
√

5
2 , then ∆ > 0, d1 + d2 > 0 and d1d2 > 0, i.e. 0 < d2 < d1. Q1 and Q2

are the two intersection points.

• If r = 3−
√

5
2 , then ∆ > 0, d1 + d2 > 0 and d1d2 = 0, i.e. 0 = d2 < d1. Q1 is the unique

intersection point.

• If 3−
√

5
2 < r < 1

2 , then ∆ > 0 and d1d2 < 0, i.e. d2 < 0 < d1. Q1 is the unique
intersection point.

Similarly we see that when m/2 ≤ a < m, if 0 < r ≤ 3−
√

5
2 , then there is no intersection point

and, if 3−
√

5
2 < r < 1

2 , then Q1 is the unique intersection point.

D.4. Proof of Proposition 13. In the Monod case one has

λ(D + a) = K(D+a)
m−D−a , S∗1 = λ

(
D
r + a

)
= K(D+ra)

mr−D−ra .

Thus, one must have mr > D + ra, which also gives m > D + a. The equation f(S2) = h2(S2)
is equivalent to an algebraic quadratic equation. Therefore this equation has at most two real
solutions. We will show that this equation actually has exactly two positive solutions. This result
is obviously in agreement with the result of Lemma 2, which states that, for any increasing growth
function, the equation f(S2) = h2(S2) has at least two positive solutions, and with Assumption
2, satisfied by a Monod function, which states that there are only two solutions. The algebraic
quadratic equation resulting from the equation f(S2) = h2(S2) is

c2S
2
2 − c1S2 + c0 = 0

with ci, i = 0, 1, 2 defined by

(51)
c2 := (m− (D + a))(mr − (D + ra))(Dm− a2r + amr),
c1 := K(b2m

2 − b1m+ b0),
c0 := K2a2r(D + ra)(m− (D + a)),

where bi, i = 0, 1, 2 are given by

(52)
b2 := r(2Da+D2 + 2a2r),
b1 := 2raD2 + 4rDa2 +D3 + 2r2a2D + aD2 + 4r2a3,
b0 := 2a2r(D + a)(D + ra).

Remark that c2 and c0 are positive because mr > D + ra and m > D + a. In addition, remark
that b0, b1 and b2 are positive and ∂c1

∂m = K(2b2m − b1) is positive for all m > b2/2b1. This
computation shows that

D
r + a− b2

2b1
= 5D2a+3D3+12Da2r+4raD2+8r2a3+2r2a2D

2r(2aD+D2+2a2r)
.

is positive. Thus, c1 as a function of m is increasing for all m > D/r + a. In addition,

c1(D/r + a) = KaD2(D/r −D + a(1− r))
is positive. Consequently, c1(m) is positive for all m > D/r + a.

On the other hand, one has

(53) ∆ = c2
1 − 4c2c0 = D2K2m2∆1(m), with ∆1(m) = v2m

2 − v1m+ v0,

where vi, i = 0, 1, 2 are given by

(54)
v2 := r2(4a2r +D2 + 4aD),
v1 := 2r(2Da2r2 + 4a3r2 + 2D2ar + 6Da2r +D3 + 3D2a),
v0 := (D + a)(4a3r3 + 8Da2r2 + 4D2ar +D3 +D2a).

The discriminant of ∆1 is given by

∆0 = (v1/2)2 − v2v0 = 4D2r2a3(−1 + r)3(D + ra)
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and is negative. As v1 is positive we deduce that ∆1(m) > 0, for any m. Consequently, equation
f(S2) = h2(S2) admits two positive solutions S1

2(D) and S2
2(D), such that 0 < S1

2(D) < S2
2(D) <

σ. The explicit expressions of these two solutions are

S1
2(D, r) = c1−

√
∆

2c2
, S2

2(D, r) = c1+
√

∆
2c2

where c1 and c2 are defined in (51) and ∆ is given by (53). We deduce the expressions of p1
2(D, r)

and p2
2(D, r) from S1

2(D, r) and S2
2(D, r) by using (29).
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