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Introduction

The mathematical model of the chemostat has received a great attention in the literature for many years (see for instance [START_REF] Harmand | The Chemostat: Mathematical Theory of Microorganism Cultures[END_REF][START_REF] Smith | The Theory of the Chemostat, Dynamics of Microbial Competition[END_REF] and literature cited inside). Several extensions of the original model of the chemostat, considering spatial heterogeneity, have been proposed to better cope reality. Discrete spatial representations, such as the gradostat model [START_REF] Smith | The Theory of the Chemostat, Dynamics of Microbial Competition[END_REF][START_REF] Tang | Mathematical investigations of growth of microorganisms in the gradostat[END_REF], are a way to represent spatial heterogeneity. Serial configurations, are examples of gradostats, that have received a great interest in the literature in view of optimizing bioprocesses [START_REF] De Gooijer | Bioreactors in series: An overview of design procedures and practical applications[END_REF][START_REF] Haidar | Effects of spatial structure and diffusion on the performances of the chemostat[END_REF][START_REF] Harmand | Optimal design of two interconnected bioreactors-some new results[END_REF][START_REF] Hill | Minimum tank volumes for CFST bioreactors in series[END_REF][START_REF] Nelson | Evaluating the performance of a cascade of two bioreactors[END_REF][START_REF] Rapaport | Some non-intuitive properties of simple extensions of the chemostat model[END_REF][START_REF] Scuras | Optimization of activated sludge reactor configuration: kinetic considerations[END_REF][START_REF] Zambrano | Optimizing zone volumes in bioreactors described by Monod and Contois growth kinetics[END_REF]. A complete and deep analysis of the serial configuration of two chemostats was given in [START_REF] Dali Youcef | Study of performance criteria of serial configuration of two chemostats[END_REF][START_REF] Dali-Youcef | Performances study criteria of two interconnected chemostats with mortality[END_REF], and the performance of the serial configuration were compared to those of the single chemostat, for three criteria : the minimization of the output substrate concentration, the maximization of the biogas flow rate and the maximization of the productivity of the biomass. In [START_REF] Dali Youcef | Study of performance criteria of serial configuration of two chemostats[END_REF], it was proved that if a serial configuration is better than a single chemostat for one of these criteria, then it is also better for the other two criteria. More precisely, the serial chemostats have a smaller output substrate concentration than the single chemostat, if and only if it has a larger biogas flow rate (or productivity of the biomass). In fact, in [START_REF] Dali Youcef | Study of performance criteria of serial configuration of two chemostats[END_REF], where the model does not consider mortality rate of the biomass, the biomass productivity and the biogas flow rate are given by the same expression. Hence, it is not surprising that the maximization of the biogas flow rate and the maximization of the productivity of the biomass are characterized by the same operating conditions. However, when the mortality of the biomass is introduced in the equations of the model, then the biomass productivity and the biogas flow rate are no longer given by the same expression. In the case where the mortality is included in the model, it was shown in [START_REF] Dali-Youcef | Performances study criteria of two interconnected chemostats with mortality[END_REF] that the performance of the serial configuration, compared to a single chemostat, for the first and second criteria, lead to the same conclusions, i.e. the serial device has a smaller output substrate concentration than the single chemostat, if and only if it has a larger biogas flow rate. Characterizing the operating conditions for which the series device has a higher productivity than the single chemostat is a much more difficult problem. The aim of this article is to give the answer of this problem.

The paper is organized as follows. Section 2 describes the mathematical model corresponding to the serial configuration of two chemostats with mortality rate. The results on the existence and stability of the steady states obtained in [START_REF] Dali-Youcef | Performances study criteria of two interconnected chemostats with mortality[END_REF] are outlined and the definition of the productivity of each steady state is given. The section ends with the comparison of these productivities with the one of the single chemostat, in case without mortality. This is an extension of former results obtained in [START_REF] Dali Youcef | Study of performance criteria of serial configuration of two chemostats[END_REF]. Afterwards, Section 3 presents the comparison of these productivities with the one of the single chemostat, in the mortality case. Then, Section 4 considers the most efficient serial device when the two operating parameters (the input concentration of substrate and the dilution rate) are fixed. Section 5 provides illustrations of our results to the Monod growth function which is often used in the applications. However, our results are general and apply to a large class of growth functions, as illustrated in Appendix C. Finally, Section 6 contains a conclusion. Appendix A provides some results on the single chemostat that are used in this paper, while Appendix B gives the results on the existence and stability of the steady states of the model and its operating diagram. Some of the proofs are given in Section D.

The mathematical model

We consider two serial interconnected chemostats of volumes, V 1 and V 2 . The substrate and the biomass concentrations are respectively denoted S i and x i , where i = 1 in the first chemostat and i = 2 in the second one. The input substrate concentration in the first chemostat is designated S in , and Q is the flow rate, as shown in Figure 1.

The dilution rates in the chemostats are given by ( 1)

D 1 := Q V 1 = D r , D 2 := Q V 2 = D 1-r , S in Q Q Q S 1 x 1 S 2 x 2 V 1 V 2 Figure 1.
The serial configuration of two chemostats.

where

V = V 1 + V 2 is the total volume, r = V 1 /V and D = Q/V .
The mathematical model is given by the following equations:

(2)

Ṡ1 = D 1 (S in -S 1 ) -x 1 ẋ1 = -D 1 x 1 + f (S 1 )x 1 -ax 1 Ṡ2 = D 2 (S 1 -S 2 ) -f (S 2 )x 2 ẋ2 = D 2 (x 1 -x 2 ) + f (S 2 )x 2 -ax 2 ,
where a is the mortality rate of the microorganism and f its specific growth rate. Note that equations [START_REF] Dali Youcef | Study of performance criteria of serial configuration of two chemostats[END_REF] are not valid for r = 0 or r = 1. In these cases V 1 = 0 or V 2 = 0, and Figure 1 corresponds to a single chemostat of volume V = V 1 + V 2 and flow rate Q. Therefore, the dilution rate of this single chemostat is D = Q/V and its mathematical equations are given by

(3) Ṡ = D(S in -S) -f (S)x ẋ = -Dx + f (S)x -ax
where S and x denote respectively the substrate and the biomass concentration, see [START_REF] Harmand | The Chemostat: Mathematical Theory of Microorganism Cultures[END_REF][START_REF] Smith | The Theory of the Chemostat, Dynamics of Microbial Competition[END_REF]. We give in Appendix A the results on (3) that are necessary for the understanding of this paper. Note that singular perturbation theory shows that (3) is the reduced model associated with [START_REF] Dali Youcef | Study of performance criteria of serial configuration of two chemostats[END_REF] in the limiting cases r → 0 or r → 1.

In [START_REF] Dali Youcef | Study of performance criteria of serial configuration of two chemostats[END_REF], the input substrate concentration S in , the volume V and the flow rate Q are assumed to be fixed, together with the ratio r = V 1 /V . Therefore D = Q/V , S in and r are the operating parameters in the model, since they can be easily chosen and manipulated by the experimenter of the device. Apart from these parameters, all other parameters have biological meaning and can be fitted using experimental data from real measurements of concentrations of micro-organisms and substrates. To provide the experimenter useful tools, the results on the behavior of the model are discussed with respect of the operating parameters and are describe using the so-called operating diagram. The operating diagram is the bifurcation diagram for which the values of the biological parameters are fixed. The various regions of the operating diagram reflect qualitatively different dynamics. The importance of the operating diagrams for bioreactors was emphasized in [START_REF] Pavlou | Computing operating diagrams of bioreactors[END_REF]. Since it is not easy to visualize regions in the three-dimensional operating parameters space, D and S in are used as coordinates of the operating diagram, while r is kept constant. The effects of r are shown in a series of operating diagrams, see Figures 2,[START_REF] Harmand | Optimal design of two interconnected bioreactors-some new results[END_REF][START_REF] Polihronakis | Parameter adaptive control techniques for anaerobic digesters-real-life experiments[END_REF]13 and 16. Our aim is to compare the productivity of (2) with the productivity of (3). We make the following assumption and notation: Assumption 1. The function f is C 1 , with f (0) = 0 and f (S) > 0 for all S > 0.

Notation 1. Let λ : [0, m) → R + be the inverse function of f , where m := sup S>0 f (S). For D < m, S = λ(D) is called the break-even concentration. It is the unique solution of equation f (S) = D.

2.1.

The steady states and their stability. The existence and stability of the steady states of ( 2) is studied in [START_REF] Dali-Youcef | Performances study criteria of two interconnected chemostats with mortality[END_REF]. The system [START_REF] Dali Youcef | Study of performance criteria of serial configuration of two chemostats[END_REF] can have up to three steady states:

• The washout steady state E 0 = (S in , 0, S in , 0).

• The steady state E 1 = (S in , 0, S 2 , x 2 ) of washout in the first chemostat but not in the second one. • The steady state E 2 = (S * 1 , x * 1 , S * 2 , x * 2 ) of persistence of the species in both chemostats. For the description of the steady state E 2 , we need to define the auxiliary function h given by: [START_REF] De Gooijer | Bioreactors in series: An overview of design procedures and practical applications[END_REF] h(S 2 , S in ) = (D 2 + a) S * 1 -S 2

D 1 S in +aS * 1 D 1 +a -S 2
, where S * 1 = λ (D 1 + a)

Table 1. The steady states of [START_REF] Dali Youcef | Study of performance criteria of serial configuration of two chemostats[END_REF] and their conditions of existence and stability The steady states E 1 and E 2 of (2)

E 1 = (S in , 0, S 2 , x 2 ) S 2 = λ (D 2 + a) and x 2 = D 2 D 2 +a S in -S 2 E 2 = (S * 1 , x * 1 , S * 2 , x * 2 ) S * 1 = λ (D 1 + a), x * 1 = D 1 D 1 +a (S in -S * 1 ) S *
2 is the unique solution of equation h(S 2 , S in ) = f (S 2 ) and

x * 2 = D 2 D 2 +a (x * 1 + S * 1 -S * 2 )
Existence condition Stability condition E 0 Always exists

D 1 > f (S in ) -a and D 2 > f (S in ) -a E 1 D 2 < f (S in ) -a D 1 > f (S in ) -a E 2 D 1 < f (S in ) -a
Stable if it exists Theorem 1. [START_REF] Dali-Youcef | Performances study criteria of two interconnected chemostats with mortality[END_REF] Assume that Assumption 1 is satisfied. The components of the steady states of (2) and their conditions of existence and stability are given in Table 1.

For the uniqueness of the solution of equation h(S 2 , S in ) = f (S 2 ) and other useful properties of the steady states, the reader is referred to Appendix B.

2.2.

Productivity of the biomass. When a continuous culture system is viewed as a production process, its performance may be judged by the quantity of bacteria produced, which is called the productivity of biomass. The total output from a continuous culture unit in the steady state is equal to the product of flow-rate and concentration of organisms [START_REF] Herbert | The continuous culture of bacteria: a theoretical and experimental study[END_REF]. Therefore, for two serial interconnected chemostats, the production of biomass P 1 and P 2 , corresponding respectively to the steady states E 1 and E 2 , are given by ( 5)

P 1 := Qx 2 and P 2 := Qx * 2 ,
where x 2 and x * 2 are defined in Table 1. Using Q = V D, and the expressions of x 2 and x * 2 given in Table 1, it is deduced that the productivities (5) depend on the operating parameters S in , D and r and are given by the following formulas:

(6) P 1 (S in , D, r) = V D 2 D+(1-r)a S in -λ D 1-r + a . ( 7 
) P 2 (S in , D, r) = V D 2 D+(1-r)a D D+ra (S in -S * 1 ) + S * 1 -S * 2 .
where S * 1 = λ(D/r + a) and S * 2 is the unique solution of equation f (S 2 ) = h(S 2 , S in ). We recall that our aim is to compare the productivity of the serial configuration with the productivity of a single chemostat of total volume V = V 1 + V 2 . The equations of the single chemostat are given by [START_REF] Dali-Youcef | Performances study criteria of two interconnected chemostats with mortality[END_REF]. The productivity of the single chemostat, denoted by P , is given by ( 8)

P (S in , D) = Qx * = V D 2
D+a (S in -λ(D + a)). See Appendix A for details and complements.

2.3.

The case without mortality. The productivities of the serial configuration (2), in the case where a = 0, are given by:

P 1 (S in , D, r) = V D S in -λ D 1-r , (9) 
P 2 (S in , D, r) = V D S in -S * 2 . ( 10 
)
On the other hand, the productivity of the single chemostat (3), with a = 0, is [START_REF] Pavlou | Computing operating diagrams of bioreactors[END_REF] P (S in , D) = V D S in -λ(D) .

We have the following results.

Proposition 1. In the case a = 0, whenever the productivities are defined, we have

P 1 (S in , D, r) < P (S in , D), (12) 
P 1 (S in , D, r) < P 2 (S in , D, r), (13) 
P 2 (S in , D, r) > P (S in , D) ⇐⇒ S in > g r (D), ( 14 
)
where g r is given by

(15) g r (D) = λ(D) + λ(D/r)-λ(D) 1-r .
Proof. We have λ(D) < λ (D/(1 -r)). Hence (12) holds, whenever P 1 and P are both defined.

On the other hand, we have S * 2 < λ (D/(1 -r)), see Lemma 10 in the Appendix. Hence (13) holds, whenever P 1 and P 2 are both defined. Finally, ( 14) is a direct consequence of Theorem 2 in [START_REF] Dali Youcef | Study of performance criteria of serial configuration of two chemostats[END_REF].

When the mortality is added in the model, the surprising result is that P 1 can be larger than P . Our aim is to give the operating conditions for which P 1 > P and to extend [START_REF] Renard | Adaptive control of anaerobic digestion processes -a pilot-Scale application[END_REF] by giving the operating conditions for which P 2 > P . As a consequence we show that there are operating conditions for which P 1 > P 2 , i.e. ( 13) is no longer true when a > 0.

Performance

3.1.

The performance at steady state E 1 . The productivity P 1 is given by [START_REF] Harmand | The Chemostat: Mathematical Theory of Microorganism Cultures[END_REF]. The following result gives the operating conditions for which P 1 > P .

Theorem 2. Assume that Assumption 1 is satisfied. Let P 1 and P defined by (6) and (8) respectively. We have

(16) P 1 (S in , D, r) > P (S in , D) ⇐⇒ S in > p 1 (D, r),
where p 1 is given by

(17) p 1 (D, r) := λ(D + a) + D+a ra λ D 1-r + a -λ(D + a) .
The equivalence [START_REF] Smith | The Theory of the Chemostat, Dynamics of Microbial Competition[END_REF] holds when inequalities are replaced by equalities.

Proof. From ( 8) and ( 6) we deduce that P 1 (S in , D, r) > P (S in , D) if and only if

1 D+(1-r)a S in -λ D 1-r + a > 1 D+a (S in -λ(D + a)),
which is equivalent to S in > p 1 (D, r), where p 1 is defined by [START_REF] Tang | Mathematical investigations of growth of microorganisms in the gradostat[END_REF]. On the other hand, equality holds if and only if S in = p 1 (D, r).

Remark 1. The region where S in > p 1 (D, r) disappears when a → 0, which is consistent with [START_REF] Polihronakis | Parameter adaptive control techniques for anaerobic digesters-real-life experiments[END_REF]. Indeed, from [START_REF] Tang | Mathematical investigations of growth of microorganisms in the gradostat[END_REF] one has lim a→0 p 1 (D, r) = +∞.

Note that p 1 is defined on

dom(p 1 ) := {(D, r) : 0 ≤ D < m -a, 0 < r < 1 -D/(m -a)} .
According to the Theorem 2, the curve Π r1 defined by ( 18)

Π r1 = (S in , D) : S in = p 1 (D, r)
is the set of operating conditions for which P 1 (S in , D, r) = P (S in , D). The result of Theorem 2 asserts that for all (S in , D) at the right of the curve Π r1 , P 1 (S in , D, r) > P (S in , D). To have a better description of this set of operating conditions for which P 1 > P we plot the curve Π r1 in the operating diagram, together with the curves

Φ 1-r = (S in , D) ∈ R 2 + : S in = λ D 1-r + a )} , (19) Φ r = (S in , D) ∈ R 2 + : S in = λ D r + a )} , (20) 
which determine the domain of existence and stability of E 1 , see Appendix B.2. The Figure 2 shows a typical situation obtained with a specific Monod function. The red curves depicted in Figure 2 are the curves where P 2 = P and will be described in the next section. The Figure 2 shows a situation where the curves Π r1 and Φ r do not intersect. The case where these curves can intersect is investigated in Appendix C. Let us give more details on the relative positions of the curves Π r1 , Φ r and Φ 1-r .

Proposition 2. The curve Π r1 passes through point (λ(a), 0), where Φ r and Φ 1-r intersect. For D > 0, the curve Π r1 is at the right of the curve Φ 1-r . The curve Π r1 may intersect the curve Φ r , with D > 0. If such an intersection exists then necessarily one has 0 < r < 1/2 and D is a solution of equation

(21) (D + a)λ D 1-r + a -(D + a(1 -r))λ (D + a) -arλ D r + a = 0.
Proof. From [START_REF] Tang | Mathematical investigations of growth of microorganisms in the gradostat[END_REF], it is seen that p 1 (0, r) = λ(a). Thus Π r1 passes through point (λ(a), 0). From [START_REF] Tang | Mathematical investigations of growth of microorganisms in the gradostat[END_REF], it is deduced that

p 1 (D, r) = λ D 1-r + a + D+a(1-r) ra λ D 1-r + a -λ (D + a) .
Hence, for D > 0 one has p 1 (D, r) > λ D 1-r + a . From (19), it is deduced that Π r1 is at the right of Φ 1-r . If r > 1/2 then Φ 1-r is at the right of Φ r , so that Π r1 cannot intersect Φ r . From [START_REF] Zambrano | Optimizing zone volumes in bioreactors described by Monod and Contois growth kinetics[END_REF] and (20) it is deduced that the intersection points of Π r1 and Φ r are the solutions of equation p 1 (D, r) = λ (D/r + a), which is equivalent to (21). r2 and Π 2 r2 (in red), defined respectively by ( 18), ( 19), ( 20), (31) and (32). The figure is done using f (S) = 4S/(5 + S) and a = 0.3.

D Φ 1-r Φr Π r1 Π 1 r2 Π 2 r2 S in λ(a) (a) r = 0.25 D Φr Φ 1-r Π r1 Π 1 r2 Π 2 r2 S in λ(a) (b) r = 0.75
Note that the steady state E 1 may have a greater productivity than the single chemostat and be either stable or unstable. If the operating condition (S in , D) is chosen at the right of Π r1 and at the left of Φ r in Figure 2(a), then E 1 exists and is stable, and satisfies P 1 > P . In this case E 2 does not exist. On the other hand, if (S in , D) is chosen at the right of Φ r in Figure 2(a), then E 1 exists and is unstable, and satisfies P 1 > P . In this case E 2 exists (and is stable). In Figure 2(b), E 1 is unstable whenever it exists and, for (S in , D) at the right of Π r1 in Figure 2(b), one has P 1 > P .

For the operating conditions, for which P 1 > P , from the practical point of view, one should simply consider a tank of volume (1 -r)V and obtain a productivity which is higher than the productivity of the tank of volume V . The surprising result is that the productivity of the tank of volume V is smaller than the productivity of the tank of volume (1 -r)V . This surprising result is due to the mortality in the chemostat. If there is no mortality, then P 1 (S in , D, r) < P (S in , D) for any S in , D and r, for which P 1 and P are defined, as shown by [START_REF] Polihronakis | Parameter adaptive control techniques for anaerobic digesters-real-life experiments[END_REF] in Proposition 1.

3.2.

The performance at steady state E 2 . Our aim in this section is to compare the productivity P 2 of E 2 and the productivity P of the single chemostat. The productivity P 2 is given by [START_REF] Harmand | Optimal design of two interconnected bioreactors-some new results[END_REF]. We need the following notations:

α = a 2 r(1-r) (D+a)(D+ra) , β = ra D+ra S * 1 + D+(1-r)a D+a λ(D + a), (22) 
A = -αS in + β, (23) h 2 (S 2 ) = h S 2 , β-S 2 α , (24) h 1 (S in ) = h(-αS in + β, S in ), f 1 (S in ) = f (-αS in + β). (25) 
Lemma 1. Let P 2 and P defined respectively by [START_REF] Harmand | Optimal design of two interconnected bioreactors-some new results[END_REF] and [START_REF] Herbert | The continuous culture of bacteria: a theoretical and experimental study[END_REF]. The following conditions are equivalent.

(1) P 2 (S in , D, r) > P (S in , D).

(

) S * 2 < A. (3) h 2 (A) < f (A). (4) h 1 (S in ) < f 1 (S in ). 2 
These conditions are also equivalent if inequalities are replaced by equalities.

Proof. From [START_REF] Harmand | Optimal design of two interconnected bioreactors-some new results[END_REF] and [START_REF] Herbert | The continuous culture of bacteria: a theoretical and experimental study[END_REF] it is deduced that P 2 (S in , D, r) > P (S in , D) if and only if

1 D+(1-r)a D D+ra (S in -S * 1 ) + S * 1 -S * 2 > 1 D+a (S in -λ(D + a)), which is equivalent to S * 2 < A,
where A is defined by (23). This proves the equivalence of the conditions (1) and (2) in the lemma. Recall that S * 2 is the unique solution of equation h(S 2 , S in ) = f (S 2 ), see Table 1. Since S 2 → f (S 2 ) is increasing and S 2 → h(S 2 , S in ) is decreasing then, the condition (2) is equivalent to

(26) h(A, S in ) < f (A).
Replacing S in by S in = (β -A)/α it is seen that the condition (26) is equivalent to h 2 (A) < f (A), where h 2 is defined by (24). This proves the equivalence of the conditions (2) and (3). Similarly, replacing A by A = -αS in + β, it is seen that the condition (26) is equivalent to h 1 (S in ) < f 1 (S in ), where h 1 and f 1 are defined by (25). This proves the equivalence of the conditions (2) and (4). The proof of the equivalence of the conditions when inequalities are replaced by equalities is the same.

Therefore we must solve the equation h 2 (S 2 ) = f (S 2 ) where h 2 is defined by (24). From (4), it is seen that the function h is given by

(27) h(S 2 , S in ) := D+(1-r)a 1-r S * 1 -S 2 DS in +raS * 1 D+ra -S 2 .
Using the expressions of α and β given by (22), straightforward computations give

(28) h 2 (S 2 ) = ra 2 D+ra S * 1 -S 2 σ-S 2 , with σ := Dλ(D+a)+raS * 1 D+ra .
The graph of h 2 is an increasing hyperbola with y = ra 2 /(D + ra) as horizontal asymptote and S 2 = σ as vertical asymptote. Let us show that this graph intersect the graph of the increasing function f in at least two points, see Figure 3(a).

Lemma 2. The equation h 2 (S 2 ) = f (S 2 ) has two solutions S 1 2 (D, r) and S 2 2 (D, r), such that 0 < S 2 2 (D, r) < λ(D + a) < S 1 2 (D, r) < σ. Moreover, if 0 ≤ S 2 < S 2 2 (D, r) or S 1 2 (D, r) < S 2 < σ, then we have h 2 (S 2 ) > f (S 2 ). In addition, assuming that there is no other solution, then we have h 2 (S 2 ) < f (S 2 ) if and only if S 2 2 (D, r) < S 2 < S 1 2 (D, r).

Proof. The function H(S 2 ) := h 2 (S 2 ) -f (S 2 ) is defined for 0 < S 2 < σ. One has H(σ) = +∞ and We make the following assumption, which is satisfied by any concave growth function but also by any Hill function, see Section C. .

H(0) =
From the condition 0 < S 2 2 (D, r) < λ(D + a) < S 1 2 (D, r) < σ, it is deduced that λ(D + a) < p 1 2 (D, r) < S in 0 (D, r) < p 2 2 (D, r) < β/α. We deduce that the condition h 1 (S in ) < f 1 (S in ) is equivalent to p 1 2 (D, r) < S in < p 2 2 (D, r), see Figure 3 (b).

The following result gives the operating conditions for which P 2 > P .

Theorem 3. Assume that Assumptions 1 and 2 hold. Let P 2 and P be defined by [START_REF] Harmand | Optimal design of two interconnected bioreactors-some new results[END_REF] and (8) respectively. We have 

(
Π 2 r2 = (S in , D) : S in = p 2 2 (D, r) , (32) 
is the set of operating conditions for which P 2 (S in , D, r) = P (S in , D). The result of Theorem 3 asserts that for all (S in , D) at the right of Π 1 r2 and the left of Π 2 r2 , then if E 2 exists, we have P 2 (S in , D, r) > P (S in , D).

To have a better description of this set of operating conditions for which P 2 > P we plot the curve Π 1 r2 and Π 2 r2 in the operating diagram, together with the curves Π r1 , Φ 1-r and Φ r , see Figure 2. Before analyzing the features depicted by this example, let us give some details on the relative positions of curves Π 1 r2 , Π 2 r2 and Φ r in the general case. Proposition 3. The curves Π 1 r2 and Π 2 r2 , pass through point (λ(a), 0), where Φ r and Φ 1-r intersect. For D > 0, the curve Π 2 r2 is at the right of the curve Φ r . The curve Π 1 r2 may intersect the curve Φ r , with D > 0. If such an intersection exists then necessarily one has 0 < r < 1/2 and Φ r ∩ Π 1 r2 = Φ r ∩ Π r1 . Proof. Note that if D = 0 then equation h(S 2 ) = f (S 2 ) has the unique solution S 2 = λ(a), since h 2 (λ(a)) = f (λ(a)) = a, see Figure 3(a). Therefore, S 1 2 (0, r) = S 2 2 (0, r) = λ(a). Hence, using the fact that if D = 0 we have α = 1 -r and β = (2 -r)λ(a), from (29), it is deduced that

p 1 2 (0, r) = p 2 2 (0, r) = β-λ(a) α = (2-r)λ(a)-λ(a) 1-r = λ(a).
This proves that Π 1 r2 and Π 2 r2 , pass through point (λ(a), 0). From the definition of S in 0 in Lemma 3, it is seen that p 2 2 (D, r) > S in 0 (D, r) > λ D r + a . Therefore from (20) and (32) we deduce that for D > 0, Π 2 r2 is at the right of Φ r . On the other hand, the curve Φ r corresponds to a transcritical bifurcation of E 1 and E 2 , see Remark 1 in [START_REF] Dali-Youcef | Performances study criteria of two interconnected chemostats with mortality[END_REF]. Hence, on this curve, one has

E 1 = E 2 , so that P 1 = P 2 , which proves that Φ r ∩ Π r1 = Φ r ∩ Π 1 r2 . Remark 2. If (S in , D) is chosen at the right of Π 2 r2
, then E 2 exists (since (S in , D) is necessarily at the right of Φ r ), and satisfies P 2 < P . If (S in , D) is chosen at the right of Φ r and between curves Π 1 r2 and Π 2 r2 , then E 2 exists and satisfies P 2 > P . Therefore, for (S in , D) at the right of Φ r and at the left of Π 2 r2 in Figure 2(a), one has P 2 > P . For (S in , D) at the right of Π 1 r2 and at the left of Π 2 r2 in Figure 2(b), one has P 2 > P . Similarly, for (S in , D) at the right of Π 2 r2 in Figure 2, one has P 2 < P . The surprising result is that the productivity P 2 may be smaller than the productivity P 1 . Indeed, suppose that point (S in , D) is located at the right of Π 2 r2 in Figure 2, then its lies also at the right of Π r1 , and, from Theorems 2 and 3, it is deduced that P 2 (S in , D, r) < P (S in , D) < P 1 (S in , D, r). This result is surprising since, the productivity P 1 corresponds to the steady state E 1 , where species x 1 is washed out in the first tank, is greater than the productivity P 2 of the steady state E 2 of coexistence. This surprising result is due to the mortality in the chemostat. If there is no mortality, then P 1 (S in , D, r) < P 2 (S in , D, r) for any S in , D and r, for which P 1 and P 2 are both defined, as shown by [START_REF] Rapaport | Some non-intuitive properties of simple extensions of the chemostat model[END_REF] in Proposition 1. Let us show that the result of Theorem 3 extends (14) in Proposition 1. We have the following result:

Proposition 4. Let p 1
2 and p 2 2 defined as in Lemma 3. We have

lim a→0 p 2 2 (D, r) = +∞, lim a→0 p 1 2 (D, r) = g r (D),
where g r is defined by [START_REF] Scuras | Optimization of activated sludge reactor configuration: kinetic considerations[END_REF].

Proof. Straightforward computations give (33) h 1 (S in ) = η + ρ S in -λ(D+a) , with η = ra 2 D+ra , ρ = D(D+a) D+ra λ(D/r+a)-λ(D+a) 1-r .
Recall that p 1 2 and p 2 2 are the solutions of the equation

f 1 (S in ) = h 1 (S in ), where f 1 (S in ) is given by f 1 (S in ) = f (-αS in + β), see Lemma 3.
Note that the graph of h 1 is a decreasing hyperbola with S in = λ(D + a) as vertical asymptote and y = η as horizontal asymptote, while

y = f 1 (S in ) is a decreasing function from f 1 (0) = f (β) to f 1 (β/α) = 0, see Figure 3(b). Using the limits lim a→0 α = 0, lim a→0 β = λ(D), lim a→0 η = 0, lim a→0 ρ = D λ(D/r)-λ(D) 1-r , it is seen that the graph of y = f 1 (S in ) converges toward the horizontal line y = f (λ(D)) = D, while the graph of y = h 1 (S in ) converges toward the hyperbola y = D 1-r λ(D/r)-λ(D) S in -λ(D) .
Therefore, p 2 2 (D, r), the largest solution of equation f 1 (S in ) = h 1 (S in ) converges toward +∞ and p 1 2 (D, r), the smallest solution, converges toward the solution of equation

D = D 1-r λ(D/r)-λ(D) S in -λ(D) .
The solution of this equation is S in = g r (D), where g r is given by [START_REF] Scuras | Optimization of activated sludge reactor configuration: kinetic considerations[END_REF]. Therefore, p 1 2 (D, r) converges toward g r (D).

Remark 3. When a → 0, the region between the curves Π 1 r2 and Π 2 r2 , where P 2 (S in , D, r) > P (S in , D) tends towards the region defined by S in > g r (D), which is consistent with ( 14) in Proposition 1.

3.3.

The behavior of the productivity with respect of the dilution rate. To give a better understanding of the behavior of the productivity we fix S in > λ(a) and r ∈ (0, 1) and we describe the functions D → P 1 (S in , D, r) and D → P 2 (S in , D, r). We compare them with the function D → P (S in , D). Lemma 4. Let S in > λ(a) and r ∈ (0, 1) be fixed. The function

D → P 1 (S in , D, r) is defined for D ∈ 0, δ 1 (S in , r) , where δ 1 (S in , r) = (1 -r)(f (S in ) -a). It satisfies P 1 (S in , 0, r) = P 1 (S in , δ 1 (S in , r), r) = 0.
The function D → P 2 (S in , D, r) is defined for D ∈ 0, δ 2 (S in , r) , where δ 2 (S in , r) = r(f (S in )a). It satisfies P 2 (S in , 0, r) = 0, and

P 2 (S in , δ 2 (S in , r), r) = P 1 (S in , δ 2 (S in , r), r) if r ≤ 1/2, 0 if r ≥ 1/2.
Proof. The productivity P 1 is defined where the steady state E 1 is also defined. Therefore P 1 is defined if and only if 0

≤ D ≤ (1 -r)(f (S in ) -a).
The productivity P 2 is defined where the steady state E 2 is also defined. That is to say, P 2 is defined if and only if 0 ≤ D ≤ r(f (S in ) -a).

From the definitions ( 6) and ( 7) we have

P 1 (S in , 0, r) = P 2 (S in , 0, r) = 0.
For D = δ 1 (S in , r), there is a transcritical bifurcation of E 1 and E 0 , see Remark 1 in [START_REF] Dali-Youcef | Performances study criteria of two interconnected chemostats with mortality[END_REF]. Therefore P 1 (S in , δ 1 (S in , r), r) = 0. Similarly, for D = δ 2 (S in , r), there is a transcritical bifurcation of E 2 and E 0 , if r ≥ 1/2, and a transcritical bifurcation of E 2 and E 1 , if r ≤ 1/2. This gives the value of P 2 for D = δ 2 (S in , r).

Note that p 1 (0, r) = λ(a) and, since lim D→m λ(D) = +∞, we have lim

D→(1-r)(m-a) p 1 (D, r) = +∞.
Therefore, if the function D → p 1 (D, r) is increasing, then it admits an inverse function S in → d 1 (S in , r), and the equation

S in = p 1 (D, r) is equivalent to the equation D = d 1 (S in , r).
More precisely, we add the following assumption which is satisfied by any concave growth function but also by any Hill function, see Appendix C.

Assumption 3. For every r ∈ (0, 1), the function D → p 1 (D, r) is increasing. Proof. Let r ∈ (0, 1). The function D → p 1 (D, r) is increasing. Therefore, the property 0 < D < d 1 (S in , r) is satisfied if and only if 0 < p 1 (D, r) < S in . According to Theorem 2, this is equivalent to P 1 (S in , D, r) > P (S in , D). Therefore, the graph of y = f 1 (S in ) converges toward the horizontal line y = f (+∞) = m, while the graph of y = h 1 (S in ), goes to infinity when D → r(m -a). Indeed, the curve y = h 1 (S in ) is an hyperbola with fixed vertical asymptote S in = λ(D + a) and its horizontal asymptote converges to y = a 2 /m and, since ρ → ∞, the hyperbola moves right and converges to infinity. Therefore, p 2 1 (D, r) and p 2 2 (D, r), the solutions of equation

Notation 3. Let S in → d 1 (S in , r) be the inverse function of the function D → p 1 (D, r). It is defined for S in ≥ λ(a).
D Φ 1-r Φr Π r1 Π 1 r2 Π 2 r2 S in λ(a) (a) r = 0.25 d 2 2 d 1 2 d 1 δ 2 δ 1 D Φr Φ 1-r Π r1 Π 1 r2 Π 2 r2 S in λ(a) (b) r = 0.75 d 2 2 d 1 δ 1 d 1 2 δ 2
f 1 (S in ) = h 1 (S in ), converge toward +∞ when D → r(m -a).
If the functions D → p 1 2 (D, r) and D → p 2 2 (D, r) are increasing, then they admit inverse functions S in → d 1 2 (S in , r), and S in → d 2 2 (S in , r), respectively, and the equation

S in = p k 2 (D, r) is equivalent to the equation D = d k 2 (S in , r), k = 1, 2.
More precisely, we add the following assumption and notation. 

d 2 2 (S in , r) < D < min(δ 2 (S in , r), d 1 2 (S in , r)). Proof. Let r ∈ (0, 1). The functions D → p 1 2 (D, r) and D → p 2 2 (D, r) are increasing. Therefore, the property d 2 2 (S in , r) < D < min(δ 2 (S in , r), d 1 2 (S in , r)) is satisfied if and only if max(λ(D/r + a), p 1 2 (D, r)) < S in < p 2 2 (D, r).
According to Theorem 3, this is equivalent to P 2 (S in , D, r) > P (S in , D).

Let us illustrate the results of Theorems 4 and 5 in the particular case corresponding to the Figure 2. This figure is reproduced in Figure 4 with the addition of bifurcation values δ 1 and δ 2 , d 1 , d 1 2 and d 2 2 , defined in Lemma 4, Assumption 3, and Assumption 4, respectively. The graphs of the functions D → P (S in , D), P 1 (S in , D, r) and P 2 (S in , D, r), defined by ( 8), ( 6) and [START_REF] Harmand | Optimal design of two interconnected bioreactors-some new results[END_REF], respectively, and corresponding to the value S in = 2 are shown in Figure 5. The productivity of a stable steady state is drawn in bold, while it is drawn in dotted line, when the steady state is unstable. It appears that all inequalities P 2 > P , P 1 > P and P 1 > P 2 can take place.

In Figure 5, panel (a), and the zoom in panel (b), one sees that for 0 < D < δ 2 one has P 1 > P and E 1 is unstable, and for δ 2 < D < d 1 one has P 1 > P and E 1 is stable. One sees also in panel (d), and the zoom in panel (e) that for 0 < D < d 1 one has P 1 > P and E 1 is unstable. Similarly, the zooms in panels (b) and (c) show that for d 2 2 < D < δ 2 one has P 2 > P and the zooms in panels (e), (f) show that for d 2 2 < D < d 1 2 one has P 2 > P . Notice that when P 1 > P 2 then necessarily E 1 is unstable. On the other hand, the inequality P 1 > P can be satisfied whether E 1 is stable or unstable.

In practice, and as already mentioned at the end of Section 3.1, if the operating parameters are such that P 1 > P or P 1 > P 2 , to optimize biomass productivity, it is sufficient to take a single tank of volume V 2 = (1 -r)V , i.e. of a volume less than the total volume V .

This surprising result is due to mortality, since as recalled in Proposition 1 it does not occur when mortality is neglected. Another difference between the case without mortality and the case with mortality is worth noting. In the case without mortality, it is proved that the productivity P 2 never exceed the maximal productivity of the single chemostat. Indeed we have Proposition 5. [START_REF] Dali Youcef | Study of performance criteria of serial configuration of two chemostats[END_REF] In the case a = 0, for any S in > 0, r ∈ (0, 1) and D ∈ [0, rf (S in )), we have P 2 (S in , D, r) < P (S in ), where P (S in ) = max 0≤D≤f (S in ) P (S in , D). It should be noted that in [START_REF] Dali Youcef | Study of performance criteria of serial configuration of two chemostats[END_REF] the result of Proposition 5 was established for the biogas flow rate, see Proposition 6 in [START_REF] Dali Youcef | Study of performance criteria of serial configuration of two chemostats[END_REF]. However, in the case of no mortality, the biogas flow rate and the productivity are given by the same expression. Therefore, the result of Proposition 6 of [2] also applies to the productivity. Remark 4. From Figure 5(d), it is questionable whether the introduction of mortality allows P 2 to take on larger values than the maximum, relative to D, of P . This behaviour does occur as shown in Figure 6.

In Figure 6 we have fixed the biological parameters as in Figure 5 and for S in = 2, we have represented the function r → P 2 (S in , r) defined by

P 2 (S in , r) = max 0≤D≤δ 2 (S in ,r) P 2 (S in , D, r).
It can be seen that there exists r * (S in ) ∈ (0, 1) such that for any r ∈ (r * (S in ), 1) we have

P 2 (S in , r) > P (S in ).
It appears in Figure 6 that r * (2) ≈ 0.784. Therefore for the case depicted in Figure 5(d), done with r = 0.75, the maximum of P 2 is smaller than the maximum P . However, for r = 0.85, for example, the maximum of P 2 will be larger than the maximum P . When mortality is taken into account in the model, the biogas flow rate and the productivity are no longer given by the same expression. It was shown in [START_REF] Dali-Youcef | Performances study criteria of two interconnected chemostats with mortality[END_REF] that for the biogas flow rate, the behaviour described in Figure 6 always occurs, i.e. there is r * ∈ (0, 1) such that for any r ∈ (r * , 1), the maximum, relative to D, of G 2 (S in , D, r) will be larger than the maximum G(S in , D). Here G 2 (S in , D, r) is the biogas flow rate of the serial configuration at steady state E 2 and G(S in , D) is the biogas flow rate of the single chemostat, see [START_REF] Dali-Youcef | Some non-intuitive properties of serial chemostats with and without mortality[END_REF][START_REF] Dali-Youcef | Performances study criteria of two interconnected chemostats with mortality[END_REF]. This result was obtained by showing that the first partial derivative in r = 1 (at left) of

G 2 (S in , r) = max D G 2 (S in , D, r)
is zero and its second partial derivative is positive, see Proposition 8 in [START_REF] Dali-Youcef | Performances study criteria of two interconnected chemostats with mortality[END_REF]. We were not able to calculate partial derivatives of the productivity, as in the case of biogas, because the calculations are very complicated. We conjecture that such a result on the first and second partial derivatives of P 2 (S in , r) is also true.

The most efficient serial device

In this section we address the following problem: assume that S in and D are fixed. What is the value of r which gives the highest value for the productivity of the serial configuration. As we have seen in Theorems 2 and 3, maximum productivity can be achieved at steady state E 1 or E 2 . Therefore we will consider the functions r → P 1 (S in , D, r) and r → P 2 (S in , D, r) and look for the value of r that gives the maximum. The following lemmas describe the domain of definition of the these functions.

Lemma 6. Let (S in , D) such that f (S in ) > D + a. Then the function r → P 1 (S in , D, r) is defined for 0 ≤ r ≤ 1 -r 0 (S in , D), where r 0 (S in , D) = D f (S in )-a . Moreover P 1 (S in , D, 0) = P (S in , D), P 1 (S in , D, 1 -r 0 (S in , D)) = 0.
Proof. The productivity P 1 is defined where the steady state E 1 is also defined. That is to say, P 1 is defined if and only if S in ≥ λ D 1-r + a , which is equivalent to the condition 0

≤ D ≤ (1 -r)(f (S in ) -a). Therefore, if (S in , D) is such that f (S in ) > D + a, then P 1 (S in , D, r) is defined for r ∈ 0, 1 -r 0 (S in , D)
, where r 0 (S in , D) is as in the lemma. If r = 0, then from the definitions ( 8) and ( 6) of P and P 1 , respectively, it is seen that P 1 (S in , D, 0) = P (S in , D). On the other hand, if r = 1 -r 0 (S in , D), then x 2 = 0, so that P 1 (S in , D, r) = 0. This case corresponds to a transcritical bifurcation of E 1 and E 0 , see Remark 1 in [START_REF] Dali-Youcef | Performances study criteria of two interconnected chemostats with mortality[END_REF].

Lemma 7. Let (S in , D) such that f (S in ) > D + a. Then the function r → P 2 (S in , D, r) is defined for r 0 (S in , D) ≤ r ≤ 1
, where r 0 is as in Lemma 6. Moreover, P 2 (S in , D, 1) = P (S in , D) and

P 2 (S in , D, r 0 (S in , D)) = P 1 (S in , D, r 0 (S in , D)) if r ≤ 1/2 0 if r ≥ 1/2
Proof. The productivity P 2 is defined where the steady state E 2 is also defined. That is to say, P 2 is defined if and only if

S in ≥ λ D r + a , which is equivalent to the condition 0 ≤ D ≤ r(f (S in ) -a). Therefore, if (S in , D) is such that f (S in ) > D + a, then P 2 is defined for r ∈ r 0 (S in , D), 1 , where r 0 = D f (S in )-a . One has lim r→1 S * 2 = λ(D + a), see Lemma 3 in [3]. Hence, if r = 1, then from S * 1 = λ(D + a)
, and the definitions ( 8) and ( 7) of P and P 2 , respectively, it is seen that P 2 (S in , D, 1) = P (S in , D). On the other hand, if r = r 0 (S in , D), then two cases must be distinguished. If r ≥ 1/2, then x * 2 = 0, so that P 2 (S in , D, r) = 0. If r ≤ 1/2, then x * 2 = x 2 , so that P 2 (S in , D, r) = P 1 (S in , D, r). The first case corresponds to a transcritical bifurcation of E 2 and E 0 , and the second one to a transcritical bifurcation of E 2 and E 1 , see Remark 1 in [START_REF] Dali-Youcef | Performances study criteria of two interconnected chemostats with mortality[END_REF].

4.1. The most efficient serial configurations. We consider the optimization problems: given a total volume V of two chemostats in series, find the optimal volume distribution that maximize the productivity

P i , i = 1, 2, subject to the constraints V 1 ≥ 0, V 2 ≥ 0 and V 1 + V 2 = V . Using the variable r = V 1 /V ∈ [0, 1]
and the domains of definitions of P 1 and P 2 given in Lemmas 6 and 7, these problems are written: max 0≤r≤1-r 0 (S in ,D) P 1 (S in , D, r) and max r 0 (S in ,D)≤r≤1

P 2 (S in , D, r).

We denote by r opt i (S in , D), i = 1, 2 the sets of most efficient configurations, i.e., (34)

r opt 1 (S in , D) = argmax 0≤r≤1-r 0 (S in ,D) P 1 (S in , D, r) (35) r opt 2 (S in , D) = argmax r 0 (S in ,D)≤r≤1 P 2 (S in , D, r).
It is difficult to determine analytically these sets of most efficient configurations. However, when the biological parameters of the model are known and the operating parameters S in and D are fixed, it is easy to plot the graphs of the functions r → P 1 (S in , D, r) and r → P 2 (S in , D, r) and determine the values of r which give the maximum of P 1 and P 2 , see Figures 9, 15 and 18.

4.2.

The case without mortality. The determination of the most efficient serial device is solved in [START_REF] Dali Youcef | Study of performance criteria of serial configuration of two chemostats[END_REF] in the case without mortality. For the convenience of the reader and for comparison purposes, the main characteristics are given here. Let g defined by

(36) g(D) = λ(D + a) + Dλ (D + a),
It is proved in [START_REF] Dali Youcef | Study of performance criteria of serial configuration of two chemostats[END_REF] that if S in ≤ g(D) then for any r ∈ (0, 1), P 2 (S in , D, r) < P (S in , D). On the other hand, if S in > g(D) then it is possible to find r ∈ (0, 1) such that P 2 (S in , D, r) > P (S in , D).

More precisely, we assume that the function r → g r (D), where g r (D) is defined by ( 15) is decreasing. Let r = r 2 (S in , D) the solution of equation S in = g r (D). Then P 2 (S in , D, r) > P (S in , D) if and only if r 2 (S in , D) < r < 1. These results, together with the formula (12) of Proposition 1 allow us to describe the most efficient serial device: Proposition 6. When a = 0 we have r opt 1 (S in , D) = {0} for all (S in , D) and

r opt 2 (S in , D) = {1} if S in ≤ g(D), r opt 2 (S in , D) ⊂ (r 2 (S in , D), 1) if S in ≤ g(D).
The curves Φ 1 and Φ 1/2 together with the curve Γ of equation S in = g(D), divide the set of operating parameters (S in , D) in five regions J k , k = 0, . . . , 4, see Figure 6 in [START_REF] Dali Youcef | Study of performance criteria of serial configuration of two chemostats[END_REF]. When (S in , D) satisfies S in ≤ λ(D), which correspond to (S in , D) ∈ J 0 , the only steady state of the series device is E 0 , so that there is no productivity for all r ∈ (0, 1). Apart from this case, there are only four possible cases, as depicted in Figure 8 of [START_REF] Dali Youcef | Study of performance criteria of serial configuration of two chemostats[END_REF]. Consequently, it is only in the regions J 2 and J 3 , i.e. for (S in , D) located on the right of the curve Γ, that there are values of r for which P 2 (S in , D, r) > P (S in , D).

4.3.

The case with mortality. When the mortality is included in the model, the situation is much more complicated, precisely because mortality allows the inequalities P 1 > P 2 and P 1 > P . Let us give some results in this direction. Proof. The function r → p 1 (D, r) is defined when (D, r) ∈ dom(p 1 ), that is to say for D ∈ [0, m -a) and 0 < r < 1 -D m-a . The first limit is obtained using L'Hôpital's rule. From ( 17) it is seen that: • If S in ≤ π 1 (D) then for any r ∈ (0, 1), P 1 (S in , D, r) < P (S in , D).

• If S in > π 1 (D) then P 1 (S in , D, r) > P (S in , D) if and only if 0 < r < r 1 (S in , D). In addition, P 1 (S in , D, r) = P (S in , D) for r = 0 or r = r 1 (S in , D).

Proof. From Assumption 5, the function r → p 1 (D, r) is increasing. Thus, for any r ∈ (0, 1), one has p 1 (D, r) > π 1 (D). If S in ≤ π 1 (D) then one has S in < p 1 (D, r). According to Theorem 2 one deduces that P 1 (S in , D, r) < P (S in , D), which proves the first item of the proposition. If S in > π 1 (D) then S in > p 1 (D, r) if and only if 0 < r < r 1 (S in , D). Thus, according to the Theorem 2 one deduces that P 1 (S in , D, r) > P (S in , D) if and only if 0 < r < r 1 (S in , D). Notice that the equality P 1 (S in , D, r) = P (S in , D) for the limiting case r = 0 follows from the definitions ( 8) and ( 6) of P and P 1 , respectively. In addition, if r = r 1 (S in , D) then S in = p 1 (D, r), which is equivalent to P 1 (S in , D, r) = P (S in , D).

The result of Proposition 7 allows us to describe the most efficient serial device for P 1 :

Proposition 8. We have

r opt 1 (S in , D) = {0} if S in ≤ π 1 (D) and r opt 1 (S in , D) ⊂ (0, r 1 (S in , D)) if S in > π 1 (D).
The novelty compared to the case without mortality (see Proposition 6) is the possibility to have a better biomass productivity P 1 of the serial device than the single chemostat. Now we consider the optimal device for the productivity P 2 . Proof. The functions r → p 1 2 (D, r) and r → p 2 2 (D, r) are defined where the steady state E 2 is defined. That is to say, for D/r + a < m, which is equivalent to r > D m-a . From Lemma 3, the functions p 1 2 and p 2 2 are the solutions of equation f 1 (S in ) = h 1 (S in ). Recall that h 1 (S in ) is given by (33) and f 1 (S in ) = f (-αS in + β, S in ). We have the limits

lim r→1 α = 0, lim r→1 β = λ(D + a), lim r→1 η = a 2
D+a .

Moreover, using L'Hôpital's rule we have

lim r→1 ρ = D lim r→1 λ(D/r+a)-λ(D+a) 1-r = D 2 λ (D + a).
Therefore, the graph of y = f 1 (S in ) converges toward the horizontal line y = f (λ(D+a)) = D+a, while the graph of y = h 1 (S in ) converges toward the hyperbola

y = a 2 D+a + D 2 λ (D+a)
S in -λ(D+a) . Hence, p 2 2 (D, r), the largest solution of equation f 1 (S in ) = h 1 (S in ) converges toward +∞ and p 1 2 (D, r), the smallest solution, converges toward the solution of equation

D + a = a 2 D+a + D 2 λ (D+a) S in -λ(D+a)
. The solution of this equation is S in = π(D), where π(D) is given by (38). Therefore p 1 2 (D, r) converges to π(D) when r → 1. On the other hand, using the limits

lim r→ D m-a β = +∞, lim r→ D m-a η = a 2 m , lim r→ D m-a ρ = +∞,
it is seen that the graph of y = f 1 (S in ) converges toward the horizontal line y = f (+∞) = m, while the graph of y = h 1 (S in ), goes to infinity when r → D m-a . Indeed, the curve

y = h 1 (S in ) = η + ρ S in -λ(D+a)
is an hyperbola with fixed vertical asymptote S in = λ(D + a) and its horizontal asymptote converges to y = a 2 /m. Since ρ → ∞, the hyperbola moves right and converges to infinity. Therefore, p 1 2 (D, r) and p 2 2 (D, r), the solutions of equation More precisely, we add the following assumptions which can be graphically checked whenever the growth function f is specified, see Section C. In addition, if r 2 (S in , D) > r 0 (S in , D), then P 2 (S in , D, r) = P (S in , D) for r = 1 or r = r 2 (S in , D). • If S in > π 2 (D) then P 2 (S in , D, r) > P (S in , D) if and only if max(r 0 (S in , D), r 2 (S in , D)) < r < r 3 (S in , D) or r 4 (S in , D) < r < 1.

f 1 (S in ) = h 1 (S in
In addition, if r 2 (S in , D) > r 0 (S in , D), then P 2 (S in , D, r) = P (S in , D) for r = 1, or r = r k (S in , D), k = 2, 3, 4.

Proof. From Assumption 6, the function r → p 1 2 (D, r) is decreasing. Thus, for any r ∈ (0, 1), one has p 1 2 (D, r) > π 2 (D). If S in ≤ π 2 (D) then one has S in < p 1 2 (D, r) and according to Theorem 3 one deduces that P 2 (S in , D, r) < P (S in , D), which proves the first item of the proposition. If π 2 (D) > S in > π(D) then p 2 2 (D, r) > S in > p 1 2 (D, r) if and only if r 2 (S in , D) < r < 1. Thus, according to the Theorem 3 one deduces that P 2 (S in , D, r) > P (S in , D) if and only if r 2 (S in , D) < r < 1. If S in > π 2 (D) then p 2 2 (D, r) > S in > p 1 2 (D, r) if and only if r 2 (S in , D) < r < r 3 (S in , D) or r 4 (S in , D) < r < 1. Thus, according to the Theorem 3, one deduces that P 2 (S in , D, r) > P (S in , D) if and only if r > r 0 (S in , D) and r 2 (S in , D) < r < r 3 (S in , D) or r 4 (S in , D) < r < 1. Notice that the equality P 1 (S in , D, r) = P (S in , D) for the limiting case r = 1 follows from Lemma [START_REF] Harmand | Optimal design of two interconnected bioreactors-some new results[END_REF]. In addition, if r 2 (S in , D) > r 0 (S in , D) and r = r k (S in , D), k = 2, 3, 4, then S in = p 1 2 (D, r) or S in = p 2 2 (D, r), which is equivalent to P 2 (S in , D, r) = P (S in , D). The result of Proposition 9 allows us to describe the most efficient serial device for P 2 :

Proposition 10. We have r opt 2 (S in , D) = {1} if S in ≤ π(D). If S in > π(D)
we have r opt 2 (S in , D) ⊂ (max(r 0 (S in , D), r 2 (S in , D)), 1) or r opt 2 (S in , D) ⊂ (max(r 0 (S in , D), r 2 (S in , D)), r 3 (S in , D)) ∪ (r 4 (S in , D), 1). Combining the results of the Propositions 7 and 9 we see that the curves Φ 1 and Φ 1/2 together with the curves Π 1 , Π and Π 2 of equations S in = π 1 (D), S in = π(D) and S in = π 2 (D), defined by (37), (38) and (39), respectively, divide the set of operating parameters (S in , D) in several regions where the functions r → P 1 (S in , D, r) and r → P 2 (S in , D, r) have different behaviors. We will not try to make a general study, as in the case without mortality. However, in the following section, we will describe some typical cases to show the richness of possible behaviors.

Remark 7. The number of regions in the operating plane depends on the relative position of these curves. From Remarks 5 and 6 it is seen that curve Π is located at the right of curve Φ 1 and at the left of curve Π 1 , and that curve Π 2 is at the right of curve Π.

Application to Monod growth functions

The aim of this section is to give some illustrations of our results for Monod growth functions, and to provide numerical simulations. However, our result are general and apply to a large class of growth functions. We illustrate this in Appendix C for linear and Hill growth functions. 5.1. Sufficient conditions for Assumptions 2, 3 and 5 to be satisfied. We first give sufficient conditions that will allow us to verify that the assumptions of our general study are satisfied for the considered growth function.

Proposition 11. For a growth function f satisfying Assumption 1 (i.e. f > 0) we have the following properties:

• If f is twice derivable and f ≤ 0 then Assumptions 2, 3 and 5 are satisfied.

• If f is twice derivable and, for all a ≥ 0 and S > λ(a), f a (S) > 0, where (40) f a (S) := 1 f (S)-a , then Assumptions 2 and 5 are satisfied.

Proof. The proof is given in Section D.2.

With regard to Assumptions 4, 6 and 7, which concern the p 1 2 and p 2 2 functions, we have not been able to find sufficient conditions on the growth function f that imply these assumptions. Indeed, as the p 1 2 and p 2 2 functions are not determined explicitly, but only implicitly as the solutions of the equation f 1 (S in ) = h 1 (S in ), it is difficult to analyze their partial derivatives with respect to r and D, as we did for the p 1 function. However, once the growth function f is specified, it is easy to check graphically that Assumptions 4, 6 and 7 are satisfied.

Monod Growth function. We consider the Monod growth function (41)

f (S) = mS K+S Note that m = sup S>0 f (S). Since f (S) = mK/(K + S) 2 > 0 and f (S) = -2mK(K + S) 2 < 0, then using the Proposition 11, it is seen that Assumptions 1, 2, 3 and 5 are satisfied. The Assumptions 4, 6 and 7 will be checked graphically. Let us first determine the possible intersection points of curves Π r1 and Φ r , as shown in Figure 7.

Proposition 12. Curves Π r1 and Φ r intersect at (λ(a), 0), and at most at two points

Q 1 = (p 1 (d 1 , r), d 1 ) and Q 2 = (p 1 (d 2 , r), d 2 )
where d 2 < d 1 are defined by

d 1 = r(m-2a)+ √ ∆ 2 , d 2 = r(m-2a)- √ ∆ 2 , with ∆ = r 2 (m -2a) 2 -4a(m -a)(r 2 -3r + 1). More precisely, let r * = 2a(m-a) √ ∆ 1 +3a(m-a) , where ∆ 1 = a(m -a)(m 2 + a(m -a)) > 0. Then r * < 3- √ 5 2
is satisfied for all a ∈ (0, m) and equality occurs when a = m/2. Apart from point (λ(a), 0), the intersection points of curves Π r1 and Φ r are given as follows:

• Assume that 0 < a < m/2. If 0 < r < r * , then curves Π r1 and Φ r do not intersect; if r = r * , then curves Π r1 and Φ r intersect at point

Q 1 = Q 2 ; if r * < r < 3- √ 5 
2 , then curves Π r1 and Φ r intersect at two points

Q 1 = Q 2 ; if 3- √ 5 2 ≤ r < 1 2 , then curves Π r1 and Φ r intersect at point Q 1 . • Assume that m/2 ≤ a < m. If 0 < r ≤ 3- √ 5 
2 , then curves Π r1 and Φ r do not intersect; if 3- √ 5 2 < r < 1 2 , then curves Π r1 and Φ r intersect at point Q 1 . Proof. The proof is given in Appendix D. [START_REF] Dali-Youcef | Performances study criteria of two interconnected chemostats with mortality[END_REF] Let us illustrate these results for the biological values of the parameters m = 4, K = 5 and a = 0.3 that have been used in Figure 2. For these parameter values we have a < m/2 and r * = 0.289. Therefore for r < 0.289 or r ≥ 1/2 curves Π r1 and Φ r have no other point of intersection than the point (λ(a), 0). This has been illustrated with r = 0.25 and r = 0.75 in Figure 2. For 0.289 < r < 3- √ 5

2 , curves Π r1 and Φ r have two points of intersection Q 1 and Q 2 , as illustrated in the case r = 0.3 in Figure 7(a,b,c). For r = 0.3 we have Q 1 = (10.87, 0.732) and

Q 2 = (2.3, 0.29). For 3- √ 5 2
≤ r < 1/2, curves Π r1 and Φ r have only one point of intersection Q 1 , as illustrated in the case r = 0.39 in Figure 7(d,e,f). For r = 0.39 we have Q 1 = (71.33, 1.34). Note that when r = r * we have

Q 1 = Q 2 , when r = 3- √ 5 2
the point Q 2 merges with the point (λ(a), 0) and when r tends to 1/2 the point Q 1 tends to infinity.

The functions p 1 2 and p 2 2 which are defined implicitly as solutions of the equation f 1 = h 1 , can be given explicitly, as shown in the following proposition.

Proposition 13. The functions p 1 2 and p 2 2 can be given by explicit formulas. Proof. The proof is given in Appendix D.4. 

D Φ 1-r Φr Π r1 Π 1 r2 Π 2 r2 S in Q 2 Q 1 λ(a) (a) r = 0.3 D Φ 1-r Φr Π r1 Π 1 r2 Π 2 r2 S in Q 2 λ(a) (b) Zoom of (a) D Φr Π r1 Π 1 r2 S in Q 1 (c) Zoom of (a) D Φ 1-r Φr Π r1 Π 1 r2 Π 2 r2 S in Q 1 λ(a) (d) r = 0.39 D Φ 1-r Φr Π r1 Π 1 r2 Π 2 r2 S in λ(a) (e) Zoom of (d) D Φr Π r1 Π 1 r2 S in Q 1 (f) Zoom of (d)
π 1 (D) = K m-a a D+a m-D-a 2 π(D) = K 2(m-a)-D D+2a D+a m-D-a 2 r 0 (S in , D) = D(K+S in ) mS in -a(K+S in ) r 1 (S in , D) = K(m-a)(D+a) 2 -a(m-D-a) 2 S in a(m-a)(K(D+a)-(m-D-a)S in ) Proposition 14. The curve Φ 1/2 lies to the right of Π. The curves Φ 1/2 and Π 1 intersect at point Q = (S in Q , D Q ) where D Q = m-2a 2 , S in Q = λ(m -a). Moreover
φ 1 (D) = KmD 2 (m-2D-2a) a(m-D-a) 2 (m-2D-a) . One has φ 1 (D Q ) = 0, φ 1 (D) > 0 for D ∈ (0, D Q ) and φ 1 (D) < 0 for D ∈ D Q , m-a 2 . Therefore Φ 1/2 and Π 1 intersect at point Q = (S in Q , D Q ) and S in Q = λ(2D Q + a) = λ(m -a)
. Their relative position is as in the lemma.

Remark 8. The result of Proposition 14 complements the one given in Remark 7. The relative position of curve Π 2 (which is only known to be to the right of curve Π) in relation to the other curves, gives a complete description of all possible cases. Once the biological parameters are fixed, the curve Π 2 can be determined numerically and plotted in the operating diagram with the other curves Φ 1 , Φ 1/2 , Π 1 and Π.

We assume that f (S) = 4S/(5+S) and a = 0.3, as in Figure 7, and the curve Π 2 is represented numerically, see Figure 8 (a) and (b). It can be seen that curve Π 2 lies to the right of curve Π 1 and Φ 1/2 . Therefore the six curves Φ 1 , Φ 1/2 , Π 1 , Π and Π 2 divide the operating plane in seven regions labeled J k , k = 0..6. Let us illustrate the behavior of the productivities P 1 (S in , D, r) and P 2 (S in , D, r), as a function of r, for the operating points o k ∈ J k , k = 1..6, shown in Figure 8 (a) and (b). We do not consider a point in J 0 since, for such a point, the chemostat and the serial device are washed out. (c) Zoom of (a) 3.

D Φ 1 Φ 1/2 Π Π 1 Π 2 o 5 Q o 1 o 2 o 4 o 6 S in J 5 J 4 J 3 J 6 J 2 J 1 J 0 (a) D Φ 1 Φ 1/2 Π Π 1 Π 2 o 4 o 3 o 2 o 1 S in J 5 J 4 J 3 J 2 J 1 J 0 (b): Zoom of (a)
P 1 , P 2 r 0 r 1 1-r 0 r (d) (S in , D) = o 4 P 1 , P 2 r 0 r 2 1-r 0 r (e) (S in , D) = o 3 P 1 , P 2 r 0 r 2 1-r 0 r (f) (S in , D) = o 2 P 1 , P 2 r 0 1-r 0 r (g) (S in , D) = o 1 P 1 , P 2 r 0 r 2 r 1 1-r 0 r (h) (S in , D) = o 6 P 1 , P 2 r 1 r (i) Zoom of (h)
Table 3. The values of r k , corresponding to the operating points o 1 , . . . o 6 in Figure 8. 3. This table gives also r 0 (S in , D) and r 1 (S in , D), whose expressions are known analytically, see Table 2. 3.

Figure 9 shows P 1 (S in , D, r) and P 2 (S in , D, r), as functions of r, for the six operating points o k , k = 1..6 shown in Figure 8 (a) and (b). Let us first recall the theoretical predictions.

Since o 6 = (95, 1.85) ∈ J 6 , this operating point satisfies the condition π 2 (D) > λ(2D + a) > S in > π 1 (D) > π(D). Hence, from Proposition 7 it is deduced that P 1 (95, 1.85, r) > P (95, 1.85) if and only if 0 < r < r 1 . Moreover, from Proposition 9 it is deduced that P 2 (95, 1.85, r) > P (95, 1.85) if and only if r 2 = max(r 0 , r 2 ) < r < 1. This behavior is illustrated in Figure 9 (h), showing the values r 1 , 1 -r 0 , r 0 and r 2 and the zoom in panel (i) showing the value r 1 .

Since o 5 = (95, 0.7) ∈ J 5 , this operating point satisfies the condition S in > π 2 (D) > π 1 (D). Hence, from Proposition 7 it is deduced that P 1 (95, 0.7, r) > P (95, 0.7) if and only if 0 < r < r 1 . Moreover, from Proposition 9 it is deduced that P 2 (95, 0.7, r) > P (95, 0.7) if and only if r 0 = max(r 0 , r 2 ) < r < r 3 or r 4 < r < 1. This behavior is illustrated in Figure 9 On the other hand, since o 4 = (40, 0.7) ∈ J 4 , this operating point satisfies the condition π 2 (D) > S in > π 1 (D) > π(D). Hence, from Proposition 7 it is deduced that P 1 (40, 0.7, r) > P (40, 0.7) if and only if 0 < r < r 1 , and, from Proposition 9 it is deduced that P 2 (40, 0.7, r) > P (40, 0.7) if and only if r 0 = max(r 0 , r 2 ) < r < 1. This behavior is illustrated in Figure 9(d).

Since o 3 = (5, 0.7) ∈ J 3 , this operating point satisfies the condition π 1 (D) > S in > λ(2D + a) > π(D). Hence, from Proposition 7 it is deduced that P 1 (5, 0.7, r) < P (5, 0.7) for any r ∈ (0, 1 -r 0 ). Moreover, from Proposition 9 it is deduced that P 2 (5, 0.7, r) > P (5, 0.7) if and only if r 2 = max(r 0 , r 2 ) < r < 1. This behavior is illustrated in Figure 9(e), showing the values r 0 , r 2 and 1 -r 0 .

Since o 2 = (40, 1.85) ∈ J 2 , this operating point satisfies the condition π 1 (D) > λ(2D + a) > S in > π(D). Hence, from Proposition 7 it is deduced that P 1 (40, 1.85, r) < P (40, 1.85) for any r ∈ (0, 1 -r 0 ). Moreover, from Proposition 9 it is deduced that P 2 (40, 1.85, r) > P (40, 1.85) if and only if r 2 = max(r 0 , r 2 ) < r < 1. This behavior is illustrated in Figure 9 (f), showing the values 1 -r 0 , r 0 and r 2 .

Finally, since o 1 = (8, 1.85) ∈ J 1 , this operating point satisfies the condition π 1 (D) > λ(2D + a) > S in > π(D). Hence, from Proposition 7 it is deduced that P 1 (8, 1.85, r) < P (8, 1.85) for any r ∈ (0, 1 -r 0 ). Moreover, from Proposition 9 it is deduced that P 2 (8, 1.85, r) < P (8, 1.85) for any r 0 < r < 1. This behavior is illustrated in Figure 9 (g), showing the values 1 -r 0 and r 0 .

Recall that when r 0 < 1/2, then r 0 corresponds to a transcritical bifurcation of E 2 and E 1 , while when r 0 > 1/2, then r 0 corresponds to a transcritical bifurcation of E 2 and E 0 . The first case can be seen in Figure 9 (a), (b), (d) and (e), and the second case can be seen in Figure 9 (g), (h) and (i). Recall also that 1 -r 0 corresponds to a transcritical bifurcation of E 1 and E 0 , which is observed in 9 (a), (d), (e), (f), (g) and (h).

Figure 9 shows that for the operating points o 5 and o 4 the most efficient device is obtained for r opt 1 (o 5 ) ≈ 0.635 and r opt 1 (o 4 ) ≈ 0.528. For these operating points, the productivity P 1 of the unstable steady state E 1 for r = r opt 1 is significantly higher than the productivity P of the single chemostat and the productivity P 2 of the positive steady state E 2 . On the other hand, for the operating points o 3 , o 2 and o 6 , the most efficient device is obtained for r opt 2 (o 3 ) ≈ 0.694, r opt 2 (o 2 ) ≈ 0.782 and r opt 2 (o 6 ) ≈ 0.676. For these operating points, the productivity of the serial device is obtained with the coexistence steady state E 2 .

Conclusion

The aim of this article was to generalize, to the case of mortality, the results obtained in [START_REF] Dali Youcef | Study of performance criteria of serial configuration of two chemostats[END_REF] on the productivity of two interconnected chemostats in series. The main question we have looked at is: Question 1. What are the three operating conditions, i.e. the distribution of the total volume between the two chemostats, the dilution rate and the input substrate concentration, for which the productivity of the serial configuration is larger than the productivity of the single chemostat ?

A first caveat is in order: the productivity of the biomass at the steady state where the species is maintained in both chemostats is not always larger than the productivity of the biomass at the steady state where the species in maintained only in the second chemostat, as it was the case when there is no mortality in the model. Therefore, in Question 1 we need to specify in which steady state the system is. We have answered this question for the both steady states (see Theorems 2 and 3). In particular, the productivity at the steady state where the species is maintained only in the second chemostat can be larger than the productivity of the single chemostat. In the case of no mortality this never happens. The answer to this question allowed us to consider and fully answer the following questions: Question 2. Assuming that two operating parameters which are the distribution of the total volume between the two chemostats and the input substrate concentration are fixed, what are the values of the third operating parameter, i.e. the dilution rate, for which the productivities (at both steady states) of the serial coexistence is larger than the productivity of the single chemostat ? Question 3. Assuming that two operating parameters which are the input substrate concentration and the dilution rate are fixed, what are the values of the third operating parameter, i.e. the distribution of the total volume between the two chemostats, for which the productivities (at both steady states) of the serial coexistence is larger than the productivity of the single chemostat ?

These questions are of biological importance since the answers give which type of bioreactor (single or in series) is best suited for the productivity. Indeed, the conditions under which the serial configuration is either beneficial or detrimental to the productivity of both steady states are completely described.

We have answered Question 2 in Section 3.3 where we analyzed the behaviour of the productivity with respect of the dilution rate. We have answered Question 3 in Section 4 where we analyzed the behavior of the productivity with respect of the distribution of the total volume between the two chemostats.

Figures 9, 15 and 18 show that the answers to Questions 1, 2 and 3 are more subtle than in the case without mortality. In particular, the productivity of the steady state where the species is maintained in both chemostats can be larger than the productivity of the single chemostat for configurations where the volume of the first reactor is either sufficiently small or sufficiently large (close to the total volume). In the case of no mortality, this only occurs when the volume of the first reactor is large enough.

What is also new compared to the case without mortality is that for a fixed input substrate concentration, if the practitioner can choose the dilution rate then the series configuration becomes the structure that should be considered. This property is due to mortality, because in the case without mortality, it was shown in [START_REF] Dali Youcef | Study of performance criteria of serial configuration of two chemostats[END_REF] that the productivity of the serial device is always smaller than the maximum, relative to the dilution rate, of the productivity of the single chemostat. When there is a mortality in the model, then Figure 6 gives numerical evidence that the serial configuration can have a larger productivity than the maximum, with respect of the dilution rate, of the productivity of the single chemostat. This property was also shown for the biogas flow rate in [START_REF] Dali-Youcef | Performances study criteria of two interconnected chemostats with mortality[END_REF]. However it is an open question if the property is always true for the productivity. We think this problem is difficult and warrants further work.

Remark 9. This result means that the effluent steady state concentration of substrate decreases when the influent concentration of substrate increases. This behavior is very different from the classical one bioreactor case, where the effluent steady state substrate concentration is independent of the influent substrate concentration.

From Figure 11 it is seen that S * 2 < S * 1 = λ D r + a . If a = 0 we also have S * 2 < λ D 1-r as stated in the following lemma.

Lemma 10. Assume that a = 0. For all r ∈ (0, 1), S in and D such that D < rf (S in ) we have S * 2 < λ(D/(1 -r)). Proof. Assume that a = 0 and D < rf (S in ), i.e. λ(D/r) < S in . Recall that S * 2 is the unique solution of f (S 2 ) = h(S 2 , S in ) where, in the case a = 0, h 2 defined by (27) becomes :

h(S 2 , S in ) = D 1-r S * 1 -S 2 S in -S 2 , where S * 1 = λ D r . If λ D 1-r ≥ S in then one has S * 2 < λ D r < S in ≤ λ D 1-r . Assume that λ D 1-r < S in .
We have

S * 1 -λ( D 1-r ) S in -λ( D 1-r ) < 1 =⇒ h λ D 1-r < D 1-r = f λ D 1-r =⇒ S * 2 < λ D 1-r
The last implication follows from the fact that f is increasing and h 2 is decreasing. B.2. Operating diagram. We fix r ∈ (0, 1) and we depict in the plane (S in , D) the regions in which the solution of system (2) globally converges towards one of the steady states E 0 , E 1 or E 2 . Let Φ r be the curve defined by

(45) Φ r = (S in , D) ∈ R 2 + : D = r(f (S in ) -a) = (S in , D) ∈ R 2 + : S in = λ D r + a Proposition 16. [3]
The curves Φ r and Φ 1-r , defined by (45) separate the operating plane (S in , D), in the regions I k (r), k = 0, 1, 2, 3, see Figure 12, and defined in the Table 5. The behavior of the system, when the region is not empty, is given in Table 5 In Table 5, U means that the steady state is unstable, GAS means that the steady state is globally asymptotically stable in the positive orthant and no letter means that the steady state does not exist.

Appendix C. Applications to linear and Hill growth functions C.1. Linear growth functions. In this section we apply our results to the linear growth function f (S) = γS, with γ > 0. Note that m = sup S>0 f (S) = +∞. Since f = γ and f = 0, then using the Proposition 11, it is seen that Assumptions 1, 2, 3 and 5 are satisfied. The Assumptions 4, 6 and 7 will be checked graphically. Let us first determine the possible intersection points of curves Π r1 and Φ r , as shown in Figure 13.

Table 5. Stability of the steady states in the various regions of the operating diagram. Proof. The equation (21) giving the intersection points of Π r1 and Φ r curves is equivalent to the algebraic equation D -a + 3ra + Dr -r 2 a = 0. Therefore, apart from D = 0 which corresponds to the intersection point (λ(a), 0) of Π r1 and Φ r , these curves can intersect at point (p 1 (D 0 , r), D 0 ), where D 0 = 1-3r+r 2 r a. This value of D is in the domain of definition of the function

Region E 0 E 1 E 2 I 0 (r) = (S in , D) : max{r(f (S in ) -a), (1 -r)(f (S in ) -a)} ≤ D GAS I 1 (r) = (S in , D) : r(f (S in ) -a) ≤ D and D < (1 -r)(f (S in ) -a) U GAS I 2 (r) = (S in , D) : 0 < D < min{r(f (S in ) -a), (1 -r)(f (S in ) -a)} U U GAS I 3 (r) = (S in , D) : (1 -r)(f (S in ) -a) ≤ D and D < r(f (S in ) -a)) U GAS D Φ 1-r Φr Π r1 Π 1 r2 Π 2 r2 S in λ(a) (a) r = 0.3 D Φ 1-r Φr Π r1 Π 1 r2 Π 2 r2 S in ( 
D → p 1 (D, r), which is [0, +∞), if and only if D ≥ 0, that is, 0 < r < 3- √ 5 2 . Table 6. f linear f (S) = γS λ(D) = D/γ p 1 (D, r) = (D+a)(D+a(1-r)) a(1-r)γ π 1 (D) = (D+a) 2 aγ r 0 (S in , D) = D γS in -a r 1 (S in , D) = (D+a) 2 -aγS in a(D+a-γS in ) p 1 2 (D, r) = D+a 2γr(1-r)a 2 D 2 + 2aD + 2a 2 r(1 -r) -D √ D 2 + 4aD + 4a 2 r p 2 2 (D, r) = D+a 2γr(1-r)a 2 D 2 + 2aD + 2a 2 r(1 -r) + D √ D 2 + 4aD + 4a 2 r π(D) = 2(D+a) 2 γ(D+2a)
The functions p 1 2 and p 2 2 which are defined implicitly as solutions of the equation f 1 = h 1 , can be given explicitly, as shown in the following proposition.

Proposition 18. The functions p 1 2 and p 2 2 are given explicitly by the formulas in Table 6. The discriminant is positive:

DΦ 1 Φ 1/2 Π Π 1 Π 2 o 5 o 4 S in J 5 J 4 J 3 (a) D Φ 1 Φ 1/2 Π Π 1 Π 2 o 3 o 2 o 1 S in J 5 J 4 J 3 J 2 J 1 J 0 (b): Zoom of (a)
(47) ∆ := c 2 1 -4c 2 c 0 = D 2 γ 2 (D 2 + 4aD + 4a 2 r). As c i , i = 0, 1, 2 and ∆ are positive then f (S 2 ) = h 2 (S 2 ) admits two positive solutions that are explicitly defined by:

S 1 2 (D) = D 2 +2aD+2a 2 r-D √ D 2 +4aD+4a 2 r 2γ(D+ra) , S 2 2 (D) = D 2 +2aD+2a 2 r+D √ D 2 +4aD+4a 2 r 2γ(D+ra)
.

One deduces the expressions of p 1 2 (D, r) and p 2 2 (D, r) by using (29). Proposition 19. For all D > 0, we have π(D) < λ(2D + a) < π 1 (D).

Proof. The condition π(D) < λ(2D + a) is equivalent to 2(D+a) 2

D+2a < 2D + a, which is equivalent to 2(D + a) 2 < (D + 2a)(2D + a), which is equivalent to aD > 0. The condition λ(2D + a) < π 1 (D) is equivalent to 2D + a < (D+a) 2 a , which is equivalent to (2D + a)a < 2(D + a) 2 , which is true, since D > 0.

Remark 10. From Proposition 19 it is seen that Φ 1/2 lies to the right of Π and to the left of Π 1 . This property complements the one given in Remark 7. The relative position of curve Π 2 (which is only known to be to the right of curve Π) in relation to the other curves, gives a complete description of all possible cases.

In Figure 14, it is assumed that f (S) = 4S and a = 0.3, as in Figure 13, and the curve Π 2 is represented numerically, as well as curves Φ 1 , Φ 1/2 , Π 1 and Π, see Figure 14 (a), (b). It can be seen that curve Π 2 lies to the right of curve Π 1 . Therefore these curves divide the operating plane in six regions labeled J k , k = 0..5. Let us illustrate the behavior of the productivities P 1 (S in , D, r) and P 2 (S in , D, r), as a function of r, for the operating points o k ∈ J k , k = 0..5, shown in Figure 14 7.

Table 7. The values of r k , corresponding to the operating points o 1 , . . . , o 5 in Figure 14. The numerical values of r 2 , r 3 and r 4 , with two digits are collected in Table 7. This table gives also r 0 (S in , D) and r 1 (S in , D), whose expressions are known analytically, see Table 6.

Figure 15 shows P 1 (S in , D, r) and P 2 (S in , D, r), as functions of r, for the five operating points o k , k = 1..5 shown in Figure 14 (a), (b). Let us first recall the theoretical predictions. Since o 5 = (4, 0.4) ∈ J 5 , this operating point satisfies the condition S in > π 2 (D) > π 1 (D). Hence, from Proposition 7 it is deduced that P 1 (4, 0.4, r) > P (4, 0.4) if and only if 0 < r < r 1 . Moreover, from Proposition 9 it is deduced that P 2 (4, 0.4, r) > P (4, 0.4) if and only if r 0 = max(r 0 , r 2 ) < r < r 3 or r 4 < r < 1. This behavior is illustrated in Figure 15 On the other hand, since o 4 = (1.5, 0.4) ∈ J 4 , this operating point satisfies the condition π 2 (D) > S in > π 1 (D) > π(D). Hence, from Proposition 7 it is deduced that P 1 (1.5, 0.4, r) > P (1.5, 0.4) if and only if 0 < r < r 1 . Moreover, from Proposition 9 it is deduced that P 2 (1.5, 0.4, r) > P (1.5, 0.4) if and only if r 0 = max(r 0 , r 2 ) < r < 1. This behavior is illustrated in Figure 15(d) and the zoom in panel (e), showing the value r 0 .

Since o 3 = (0.32, 0.4) ∈ J 3 , this operating point satisfies the condition π 1 (D) > S in > λ(2D+a) > π(D). Hence, from Proposition 7 it is deduced that P 1 (0.32, 0.4, r) < P (0.32, 0.4) for any r ∈ (0, 1-r 0 ). Moreover, from Proposition 9 it is deduced that P 2 (0.32, 0.4, r) > P (0.32, 0.4) if and only if r 2 = max(r 0 , r 2 ) < r < 1. This behavior is illustrated in Figure 15(f), showing the values r 0 , r 2 and 1 -r 0 .

Since o 2 = (0.26, 0.4) ∈ J 2 , this operating point satisfies the condition π 1 (D) > λ(2D + a) > S in > π(D). Hence, from Proposition 7 it is deduced that P 1 (0.26, 0.4, r) < P (0.26, 0.4) for any r ∈ (0, 1 -r 0 ). Moreover, from Proposition 9 it is deduced that P 2 (0.26, 0.4, r) > P (0.26, 0.4) if and only if r 2 = max(r 0 , r 2 ) < r < 1. This behavior is illustrated in Figure 15(g), showing the values 1 -r 0 , r 0 and r 2 and the zoom in panel (h), showing the value r 2 .

Finally, since o 1 = (0.21, 0.4) ∈ J 1 , this operating point satisfies the condition π 1 (D) > λ(2D+ a) > S in > π(D). Hence, from Proposition 7 it is deduced that P 1 (0.21, 0.4, r) < P (0.21, 0.4) for any r ∈ (0, 1-r 0 ). Moreover, from Proposition 9 it is deduced that P 2 (0.21, 0.4, r) < P (0.21, 0.4) for any r 0 < r < 1. This behavior is illustrated in Figure 15 (i), showing the values 1 -r 0 and r 0 .

Recall that when r 0 < 1/2, it corresponds to a transcritical bifurcation of E 2 and E 1 , while when r 0 > 1/2, it corresponds to a transcritical bifurcation of E 2 and E 0 . The first case can be seen in Figures 15 (a), (b), (d), (e) and (f) and the second case can be seen in Figures 15 (g), (i). Recall also that 1 -r 0 corresponds to a transcritical bifurcation of E 1 and E 0 , which is observed in 15 (a), (d), (f), (g) and (i).

Remark 11. When a tends to 0, curves Π 1 and Π 2 tend towards the S in -axis while curves Π and Φ 1/2 tend towards each other. Therefore, in the limiting case a = 0, there are only the regions J 0 , J 1 and J 3 , bounded by curves Φ 1 and Φ 1/2 . This result is in agreement with the results obtained in the no mortality case, see Section 5.1 of [START_REF] Dali Youcef | Study of performance criteria of serial configuration of two chemostats[END_REF].

Figure 15 shows that for the operating points o 5 and o 4 the most efficient device is obtained for r opt 1 (o 5 ) ≈ 0.789 and r opt 1 (o 4 ) ≈ 0.616. For these operating points, the maximum of the productivity is obtained for the unstable steady state E 1 . On the other hand, for the operating points o 3 and o 2 , the most efficient device is obtained for r opt 2 (o 3 ) ≈ 0.707, r opt 2 (o 2 ) ≈ 0.912. For these operating points, the productivity of the serial device is obtained with the coexistence steady state E 2 . C.2. Hill growth functions. In this section we apply our results to the Hill growth function f (S) = mS p /(K p +S p ). Note that m = sup S>0 f (S). Since f (S) = mpK p S p-1 /(K p +S p ) 2 > 0, f satisfies Assumption 1. Moreover, it was proved in Section 5.3 of [START_REF] Dali-Youcef | Performances study criteria of two interconnected chemostats with mortality[END_REF], that for the Hill function, f a (S) > 0 for all a ≥ 0 and all S > λ(a), where f a (S) = 1/(f (S)-a). Then using the Proposition 11, it is seen that Assumptions 2 and 5 are satisfied. Finally, it was also proved in Section 5.3 of [START_REF] Dali-Youcef | Performances study criteria of two interconnected chemostats with mortality[END_REF] that, for the Hill function,

f λ D r + a < 1 r f (λ(D + a)
), for all r ∈ (0, 1). Replacing r by 1-r, it is deduced that (48) is satisfied. Hence, using the Lemma 12 in Appendix D.1, one deduces that Assumption 3 is satisfied. As for linear and Monod functions, Assumptions 4, 6 and 7 will be checked graphically. Table

D Φ 1-r Φr Π r1 Π 1 r2 Π 2 r2 S in λ(a) (a) r = 0.3 D Φ 1-r Φr Π r1 Π 1 r2 Π 2 r2 S in λ(a) (b) Zoom of (a)
8. f Hill f (S) = mS p K p +S p λ(D) = K D m-D 1 p p 1 (D, r) = K ar (D + a) D+a(1-r) (m-a)(1-r)-D 1 p -(D + (1 -r)a) D+a m-D-a 1 p π 1 (D) = K (m-pa)D+pa(m-a) pa(D+a) D+a m-D-a 1 p +1 π(D) = K -pD 2 +(m(p+1)-3pa)D+2pa(m-a) p(D+2a)(D+a) D+a m-D-a 1 p +1 r 0 (S in , D) = D(K p +S in p ) mS in p -a(K p +S in p )
Table 9. The values of r k , corresponding to the operating points o 1 , . . . , o 6 in Figure 17. r 0 r 1 r 2 r 3 r 4 o 6 = (48, 1.9) 0.520 0.530 10 -1 0.527 o 5 = (20, 0.2) 0.577 10 -1 0.936 0.542 10 -1 0.119 0.860 o 4 = (20, 0.9) 0.260 0.518 0.255 o 3 = (7, 0.9) 0.383 0.450 o 2 = (20, 1.9) 0.548 0.609 o 1 = (7, 1.9) 0.809

In Figure 17, it is assumed that f (S) = 4 2 S/(5 2 + S) and a = 0.3, and the curve Π 2 is represented numerically, as well as curves Φ 1 , Φ 1/2 , Π 1 and Π, see Figure 17 (a) and (b). It can be seen that curve Π 2 lies to the right of curve Π 1 and Φ 1/2 . Therefore these curves divide the operating plane in seven regions labeled J k , k = 0..6. Let us illustrate the behavior of the productivities P 1 (S in , D, r) and P 2 (S in , D, r), as a function of r, for the operating points o k ∈ J k , k = 0..6, shown in Figure 17 2 (D, r) is decreasing and r → p 2 2 (D, r) is decreasing and then increasing. Therefore the Assumptions 6 and 7 are satisfied. Figure 17 (c) shows the values of r 2 (S in , D), r 3 (S in , D) and r 4 (S in , D) corresponding to o 5 = (20, 0.2). Figure 17 (d) shows the functions r → p 1 2 (D, r) for D = 0.9 and D = 1.9, corresponding to the horizontal lines D = 0.9 and D = 1.9 depicted in panels (a) and (b) of the figure. It appears that r → p 1 2 (D, r) is decreasing. Therefore the Assumption 6 is satisfied. Figure 17(d) shows the values of r 2 (S in , D) corresponding to the two operating points o k , k = 2, 3, 4, 6 depicted in panels (a) and (b). The numerical values of r 0 , r 1 , r 2 , r 3 and r 4 , with three digits are collected in Table 9. Figure 18 shows P 1 (S in , D, r) and P 2 (S in , D, r), as functions of r, for the six operating points o k , k = 1..6 shown in Figure 17 Since o 6 = (48, 1.9) ∈ J 6 , this operating point satisfies the condition π 2 (D) > λ(2D + a) > S in > π 1 (D) > π(D). Hence, from Proposition 7 it is deduced that P 1 (48, 1.9, r) > P (48, 1.9) if and only if 0 < r < r 1 . Moreover, from Proposition 9 it is deduced that P 2 (48, 1.9, r) > P (48, 1.9) (c) Zoom of (a) 9.

Φ 1 Φ 1/2 Π Π 1 Π 2 o 1 o 2 o 3 o 4 o 5 o 6 S in J 5 J 4 J 3 J 6 J 2 J 1 J 0 (a) D Φ 1 Φ 1/2 Π Π 1 Π 2 o 3 S in J 5 J 4 J 3 J 2 J 1 J 0 (b) S in S in = p 2 2 (0.2, r) S in = p 1 2 (0.2, r) r 2 r 3 r 4 r ( 
P 1 , P 2 r 0 r 1 1-r 0 r (d) (S in , D) = o 4 P 1 , P 2 r 0 r 2 1-r 0 r (e) (S in , D) = o 3 P 1 , P 2 r 0 r 2 1-r 0 r (f) (S in , D) = o 2 P 1 , P 2 r 0 1-r 0 r (g) (S in , D) = o 1 P 1 , P 2 r 0 ↓ r 2 r 1 1-r 0 r (h) (S in , D) = o 6 P 1 , P 2 r 1 r (i) Zoom of (h)
if and only if r 2 = max(r 0 , r 2 ) < r < 1. This behavior is illustrated in Figure 9 (h), showing the values r 1 , 1 -r 0 , r 0 and r 2 and the zoom in panel (i) showing the value r 1 . Similarly, since o 5 = (20, 0.2) ∈ J 5 , this operating point satisfies the condition S in > π 2 (D) > π 1 (D). Hence, from Proposition 7 it is deduced that P 1 (20, 0.2, r) > P (20, 0.2) if and only if 0 < r < r 1 . Moreover, from Proposition 9 it is deduced that P 2 (20, 0.2, r) > P (20, 0.2) if and only if r 0 = max(r 0 , r 2 ) < r < r 3 or r 4 < r < 1. This behavior is illustrated in Figure 18 On the other hand, since o 4 = (20, 0.9) ∈ J 4 , this operating point satisfies the condition π 2 (D) > S in > π 1 (D) > π(D). Hence, from Proposition 7 it is deduced that P 1 (20, 0.9, r) > P (20, 0.9) if and only if 0 < r < r 1 . Moreover, from Proposition 9 it is deduced that P 2 (20, 0.9, r) > P (20, 0.9) if and only if r 0 = max(r 0 , r 2 ) < r < 1. This behavior is illustrated in Figure 18(d).

Since o 3 = (7, 0.9) ∈ J 3 , this operating point satisfies the condition π 1 (D) > S in > λ(2D + a) > π(D). Hence, from Proposition 7 it is deduced that P 1 (7, 0.9, r) < P (7, 0.9) for any r ∈ (0, 1 -r 0 ). Moreover, from Proposition 9 it is deduced that P 2 (7, 0.9, r) > P (7, 0.9) if and only if r 2 = max(r 0 , r 2 ) < r < 1. This behavior is illustrated in Figure 9(e), showing the values r 0 , r 2 and 1 -r 0 .

Since o 2 = (20, 1.9) ∈ J 2 , this operating point satisfies the condition π 1 (D) > λ(2D + a) > S in > π(D). Hence, from Proposition 7 it is deduced that P 1 (20, 1.9, r) < P (20, 1.9) for any r ∈ (0, 1 -r 0 ). Moreover, from Proposition 9 it is deduced that P 2 (20, 1.9, r) > P (20, 1.9) if and only if r 2 = max(r 0 , r 2 ) < r < 1. This behavior is illustrated in Figure 18 (f), showing the values 1 -r 0 , r 0 and r 2 .

Finally, since o 1 = (7, 1.9) ∈ J 1 , this operating point satisfies the condition π 1 (D) > λ(2D + a) > S in > π(D). Hence, from Proposition 7 it is deduced that P 1 (7, 1.9, r) < P (7, 1.9) for any r ∈ (0, 1 -r 0 ). Moreover, from Proposition 9 it is deduced that P 2 (7, 1.9, r) < P (7, 1.9) for any r 0 < r < 1. This behavior is illustrated in Figure 18 (g), showing the values 1 -r 0 and r 0 .

Recall that when r 0 < 1/2, then r 0 corresponds to a transcritical bifurcation of E 2 and E 1 , while when r 0 > 1/2, then r 0 corresponds to a transcritical bifurcation of E 2 and E 0 . The first case can be seen in Figure 18 (a), (b), (d) and (e), and the second case can be seen in Figure 18 (g), (h) and (i). Recall also that 1 -r 0 corresponds to a transcritical bifurcation of E 1 and E 0 , which is observed in 18 (a), (d), (e), (f), (g) and (h).

Figure 18 shows that for the operating point o 5 the most efficient device is obtained for r opt 1 (o 5 ) ≈ 0.851. For these operating points, the maximum of the productivity is obtained for the unstable steady state E 1 . On the other hand, for the operating points o 4 , o 3 , o 2 and o 6 , the most efficient device is obtained for r opt 2 (o 4 ) ≈ 0.544, r opt 2 (o 3 ) ≈ 0.676, r opt 2 (o 2 ) ≈ 0.764 and r opt 2 (o 6 ) ≈ 0.687. For these operating points, the productivity of the serial device is obtained with the coexistence steady state E 2 .

Appendix D. Proofs D.1. Preliminary lemmas. We give some lemmas that provide sufficient conditions for our assumptions to be satisfied. The following lemma provides sufficient conditions for Assumption 2 to be satisfied.

Lemma 11. Assumption 2 is satisfied for any increasing concave function f . It is satisfied also for any increasing function f , such that 1/f is convex.

Proof. Assume that f is concave. Since h 2 defined by ( 27) is strictly convex and increasing, its graph can intersect the graph of the increasing concave function f in at most two points. Assume now that 1/f is convex. The equation h 2 (S 2 ) = f (S 2 ) is equivalent to the equation

1 h 2 (S 2 ) = 1 f (S 2 )
. Since 1/h 2 is strictly concave and decreasing, its graph can intersect the graph of the decreasing convex function 1/f in at most two points. In both cases, from Lemma 2 one knows that there exists at least two intersection points. Therefore, we have exactly two intersection points.

The following Lemma provides a sufficient condition for Assumption 3 to be satisfied. which is the condition (48).

The following lemma provides a sufficient condition for Assumption 5 to be satisfied. If, for D ∈ (0, m -a), l D is strictly convex on dom(l D ), then the condition b is satisfied. If f is twice derivable, then l D is twice derivable and the following conditions are equivalent.

1: For all D ∈ (0, m -a) and r ∈ dom(l D ), l D (r) > 0.

2: For all S > λ(a), (f (S) -a)f (S) < 2 (f (S)) 2 .

3: For all S > λ(a), f a (S) > 0, where f a (S) is defined by (40).

Proof. Notice first that, from [START_REF] Tang | Mathematical investigations of growth of microorganisms in the gradostat[END_REF], p 1 (D, r) can be written Using the notation S = λ D 1-r + a , which is the same as D 1-r = f (S) -a, the condition (50) is equivalent to : For all S > 0, (f (S) -a)f (S) < 2 (f (S)) 2 , which is the condition 2 in the lemma. This proves the equivalence of the conditions 1 and 2 of the lemma. Straightforward computation shows that f a (S) = 2f (S) 2 -f (S)(f (S)-a) (f (S)-a) 3 . Hence, f a (S) > 0 if and only if (f (S) -a)f (S) < 2f (S) 2 , which proves the equivalence of the conditions 2 and 3 of the lemma. D.2. Proof of Proposition 11. If f ≤ 0, then f is concave and by Lemma 11, Assumption 2 is satisfied. Moreover, f is decreasing and, by Lemma 12, ∂p 1 ∂D > 0, so that Assumption 3 is satisfied. Finally, the condition 2 in Lemma 13 is satisfied, which is equivalent to the fact that l D (r) > 0. Therefore l D is strictly convex, which, according to the lemma, implies that ∂p 1 ∂r > 0, so that Assumption 5 is satisfied.

If f a > 0 for any a ≥ 0, then f 0 = 1/f is (strictly) convex and by Lemma 11, Assumption 2 is satisfied. Moreover, the condition 3 in Lemma 13 is satisfied, which is equivalent to the fact that l D (r) > 0. Therefore l D is strictly convex, which, according to the lemma, implies that (d i , r) ∈ dom(p 1 ), i = 1, 2. A necessary condition for this to be true is that r < 1/2. Note that when r = 1/2 then d 1 = m-a 2 and d 2 < 0. This result is in agreement with Proposition 3 which states that there is no intersection when r ∈ [1/2, 1). Therefore we must restrict our attention to r ∈ (0, 1/2).

We obtain the signs of the roots of the polynomial of degree 2 in D by considering the signs of its coefficients b and c and that of its discriminant ∆. First, note that b is positive if and only if a < m/2 and c is negative if and only if r 2 -3r + 1 > 0, i.e. The reduced discriminant of ∆, considered as a polynomial of degree 2 in r, is given by 36a 2 (m -a) 2 + 4a(m -a)(8a 2 -8am + m 2 ) = 4∆ 1 > 0, where ∆ 1 is defined in the proposition. Therefore ∆ = 0 if and only if r = r 1 or r = r 2 , where

r 1 = 2 √ ∆ 1 -3a(m-a) 8a 2 -8am+m 2 = 2a(m-a) √ ∆ 1 +3a(m-a) , r 2 = -2 √ ∆ 1 +3a(m-a)
8a 2 -8am+m 2 . The second expression for r 1 is obtained by multiplying the numerator and the denominator of r 1 by the conjugate expression, √ ∆ 1 + 3a(m -a), of the numerator, or by using the relation r 1 r 2 = -4a(m-a) 8a 2 -8am+m 2 . Hence r 1 = r * > 0, is the value given in the proposition. Note that r 2 > 0 for 8a 2 -8am + m 2 < 0, which occurs if and only if 2 . In the first case, ∆ > 0 for r < r 2 or r > r 1 , and in the second case, ∆ > 0 for r 1 < r < r 2 . Therefore, for all a ∈ (0, m), we have ∆ > 0 for all r ∈ (r * , 1/2). From these results on the signs of b = d 1 + d 2 , c = d 1 d 1 and ∆ we deduce the following results. Assume that 0 < a < m/2. and is negative. As v 1 is positive we deduce that ∆ 1 (m) > 0, for any m. Consequently, equation f (S 2 ) = h 2 (S 2 ) admits two positive solutions S 1 2 (D) and S 2 2 (D), such that 0 < S 1 2 (D) < S 2 2 (D) < σ. The explicit expressions of these two solutions are

S 1 2 (D, r) = c 1 - √ ∆ 2c 2 , S 2 2 (D, r) = c 1 + √ ∆ 2c 2
where c 1 and c 2 are defined in (51) and ∆ is given by (53). We deduce the expressions of p 1 2 (D, r) and p 2 2 (D, r) from S 1 2 (D, r) and S 2 2 (D, r) by using (29).

Figure 2 .

 2 Figure 2. The operating diagram showing the curves Π r1 (in blue), Φ 1-r and Φ r (in black), and Π 1r2 and Π 2 r2 (in red), defined respectively by (18), (19), (20), (31) and (32). The figure is done using f (S) = 4S/(5 + S) and a = 0.3.

ra 2 S * 1 Dλ(D+a)+raS * 1 > 0 .

 110 Notice that λ(D + a) < σ because σ is a convex combination of λ(D + a) and S * 1 , and S * 1 > λ(D + a). Let us calculate H(λ(D + a)). From h 2 (λ(D + a)) = a and f (λ(D + a)) = D + a it is deduced that H(λ(D + a)) = -D which is negative. Consequently, using the Intermediate Value Theorem, one deduces that equation H(S 2 ) = 0 admits a smallest solution, denoted by S 2 2 (D, r), in the interval (0, λ(D + a)), and a largest one, denoted by S 1 2 (D, r), in the interval (λ(D + a), σ). Therefore h 2 (S 2 ) > f (S 2 ) for S 2 < S 2 2 (D, r) or S 2 > S 1 2 (D, r). If there is no other zero in the interval (S 2 2 (D, r), S 1 2 (D, r)) then the condition h 2 (S 2 ) < f (S 2 ) is equivalent to S 2 2 (D, r) < S 2 < S 1 2 (D, r), see Figure 3 (a).

y = h 2 (S 2 )Figure 3 .

 223 Figure 3. (a): The solutions S 1 2 (D, r) and S 2 2 (D, r) of h 2 (S 2 ) = f (S 2 ). (b): The solutions p 1 2 (D, r) and p 2 2 (D, r) of h 1 (S in ) = f 1 (S in ).

Assumption 2 .Lemma 3 .

 23 Equation h 2 (S 2 ) = f (S 2 ) admits only two solutions. Notation 2. Let S 1 2 (D, r) and S 2 2 (D, r) be the solutions of equation h 2 (S 2 ) = f (S 2 ), such that S 2 2 (D, r) < λ(D + a) < S 1 2 (D, r). Assume that Assumption 2 holds. Equation h 1 (S in ) = f 1 (S in ), where h 1 and f 1 are defined by (25) admits two solutions p 1 2 (D, r) and p 2 2 (D, r) defined for 0 < r < 1 and 0 ≤ D < r(m -a), such that λ(D + a) < p 1 2 (D, r) < S in 0 (D, r) < p 2 2 (D, r) < β/α, where α and β are given by (22) and S in 0 (D, r) := β-λ(D+a) α = λ D r + a + D+ra a(1-r) λ D r + a -λ(D + a) .

Theorem 4 .

 4 Assume that Assumptions 1 and 3 are satisfied. Then P 1 (S in , D, r) > P (S in , D) if and only if 0 < D < d 1 (S in , r).

Figure 4 .Lemma 5 . 2 2δ 2 d 1 δ 1 D 2 DFigure 5 .

 452125 Figure 4. For S in = 2, the depiction of δ 1 (S in , r) and δ 2 (S in , r), defined in Lemma 4, d 1 (S in , r) defined in Notation 3, and d 1 2 (S in , r), d 2 2 (S in , r), defined in Notation 4. The biological parameters are as in Figure 2.

Assumption 4 .

 4 For every r ∈ (0, 1), the functions D → p k 2 (D, r), k = 1, 2, are increasing. Notation 4. Let S in → d k 2 (S in , r), k = 1, 2, be the inverse functions of the functions D → p k 2 (D, r), k = 1, 2, respectively. They are defined for S in ≥ λ(a). Theorem 5. Assume that Assumptions 1, 2 and 4 are satisfied. Then P 2 (S in , D, r) > P (S in , D) if and only if

Figure 6 .

 6 Figure 6. The map r → P 2 (S in , r) with f (S) = 4S/(5 + S), a = 0.3 and S in = 2.

Lemma 8 .

 8 Let D ∈ [0, m -a). The function r → p 1 (D, r) is defined for r ∈ 0, 1 -D m-a and satisfies lim r→0 p 1 (D, r) = π 1 (D), lim r→1-D m-a p 1 (D, r) = +∞, where (37) π 1 (D) := λ(D + a) + D(D+a) a λ (D + a).

lim r→0 p 1 Assumption 5 .Proposition 7 .

 157 (D, r) = λ(D + a) + D+a a lim r→0 D (1-r) 2 λ D 1-r + a = λ(D + a) + D(D+a) a λ (D + a).The second limit follows from lim D→m λ(D) = +∞.If the function r → p 1 (D, r) is increasing, then it admits an inverse function S in → r 1 (S in , D), and the equation S in = p 1 (D, r) is equivalent to the equation r = r 1 (S in , D). More precisely, we add the following assumption which is satisfied by any concave growth function but also by any Hill function, see Section C. For every D ∈ [0, m -a), the function r → p 1 (D, r) is increasing.Notation 5. Let S in → r 1 (S in , D) be the inverse function of the function r → p 1 (D, r). It is defined for S in ≥ π 1 (D). Assume that Assumptions 1 and 5 are satisfied.

Lemma 9 .

 9 Let D ∈ [0, m -a). The functions r → p 1 2 (D, r) and r → p 2 2 (D, r) are defined for r ∈ ) = λ(D + a) + D(D+a) D+2a λ (D + a).

  ) converges toward +∞ when r → D m-a . Remark 5. From the definitions (37) and (38) of π 1 and π, respectively, it is seen that π 1 (0) = π(0) = λ(a), and, for all D ∈ (0, m -a), one has π 1 (D) > π(D) > λ(D + a). If the function r → p 1 2 (D, r) is decreasing, then it admits an inverse function S in → r 2 (S in , D), and the equation S in = p 1 2 (D, r) is equivalent to the equation r = r 2 (S in , D). On the other hand the function r → p 2 2 (D, r) is positive and tends toward infinity when r → D/(m -a) or r → 1. It admits a minimum value reached for r = r(D). If the function r → p 2 2 (D, r) is decreasing on D m-a , r(D) , then it admits an inverse function S in → r 3 (S in , D) on this interval. If the function r → p 2 2 (D, r) is increasing on (r(D), 1), then it admits also an inverse function S in → r 4 (S in , D) on this interval. Notice that the equation S in = p 2 2 (D, r) is then equivalent to the equations r = r 3 (S in , D) and r = r 4 (S in , D).

Assumption 6 .Assumption 7 .Notation 7 .Proposition 9 .

 6779 For every D ∈ [0, m -a), the function r → p 1 2 (D, r) is decreasing. Notation 6. Let S in → r 2 (S in , D) be the inverse function of the function r → p 1 2 (D, r). It is defined for S in ≥ π(D). For every D ∈ [0, m-a), the function r → p 2 2 (D, r) is decreasing on D m-a , r(D) and increasing on (r(D), 1). Let π 2 (D) be the minimum value of the function r → p 2 2 (D, r): (39) π 2 (D) = p 2 2 (D, r(D)) . Let S in → r 3 (S in , D) and S in → r 4 (S in , D) be the inverse functions of the function r → p 2 2 (D, r) on the intervals D m-a , r(D) and (r(D), 1), respectively. They are defined for S in ≥ π 2 (D). Remark 6. If Assumptions (6) and (7) are satisfied then, for all D ∈ (r(m -a), 1), one has π 2 (D) > π(D). Indeed we have π 2 (D) = p 2 2 (D, r(D)) > p 1 2 (D, r(D)) > π(D). Assume that Assumptions 1, 2, 6 and 7 are satisfied. • If S in ≤ π(D) then for any r ∈ (r 0 (S in , D), 1), P 2 (S in , D, r) < P (S in , D). • If π 2 (D) > S in > π(D) then P 2 (S in , D, r) > P (S in , D) if and only if max(r 0 (S in , D), r 2 (S in , D)) < r < 1.

Figure 7 .

 7 Figure 7. The operating diagram for f (S) = 4S/(5 + S) and a = 0.3 showing curves Φ r and Φ 1-r (in black), Π r1 (in blue), Π 1 r2 and Π 2 r2 (in red) and the intersection points of Φ r , Π r1 and Π 1 r2 .

2 .

 2 Φ 1/2 lies to the left of Π 1 for 0 < D < D Q and to the right of Π 1 for D > D Q . Proof. The function φ(D) := π(D) -λ(2D + a) is given by φ(D) = KDm(D 2 +a(m-a)) (D+2a)(m-D-a) 2 (m-2D-a) . One has φ(D) > 0 for all D ∈ 0, m-a Therefore Φ 1/2 lies to the right of Π. The function φ 1 (D) := λ(2D + a) -π 1 (D) is given by

Figure 8 .

 8 Figure 8. (a) and (b): The curves Φ 1 , Φ 1/2 (in black), Π 1 (in blue), Π and Π 2 (in red) divide the operating plane in seven regions, J k , k = 0..6 and the operating points o k ∈ J k , k = 1..6. (c): The graphical depiction of Assumptions 6 and 7, for D = 0.7, showing the values r k 2 = r 2 (S in , D), corresponding to o k , k = 3..5, respectively, and the values of r 3 and r 4 corresponding to o 5 . (d): The graphical depiction of Assumptions 6, for D = 1.85, showing the values r k 2 = r 2 (S in , D), corresponding to o k , k = 2, 6, respectively. The operating points are o 1 = (8, 1.85), o 2 = (40, 1.85), o 3 = (5, 0.7), o 4 = (40, 0.7), o 5 = (95, 0.7). and o 6 = (95, 1.85).

P 1 , P 2 r 0 r 3 r 4 r 1 ↑1-r 0 r 5 P 1

 121051 (a) (S in , D) = o

Figure 9 .

 9 Figure 9. The curves of the functions r → P 2 (S in , D, r) (in red) and r → P 1 (S in , D, r) (in blue), for S in and D fixed and the corresponding value of P (S in , D) (in black). The r k values are given in Table3.

  Figure 8 (c) shows the functions r → p 1 2 (D, r) and r → p 2 2 (D, r), for D = 0.7 corresponding to the horizontal line D = 0.7 depicted in panels (a) and (b) of the figure. It appears that

Figure 8 (

 8 d) shows the function r → p 1 2 (D, r) for D = 1.85 corresponding to the horizontal line D = 1.85 depicted in panels (a) and (b) of the figure. It appears that r → p 1 2 (D, r) is decreasing. Therefore the Assumption 6 is satisfied for f (S) = 4S/(5 + S), a = 0.3 and D = 1.85. Figure 14(d) shows the values of r 2 (S in , D) corresponding to the two operating points o k , k = 2, 6 depicted in panels (a) and (b). The numerical values of r 2 , with three digits are collected in Table

  (a), the zoom in panel (b) showing the values r 0 and r 3 , and the zoom in panel (c), showing the values r 4 and r 1 .

Figure 12 .

 12 Figure 12. The operating diagram of (2): (a) the region I 3 (r) is empty; (b) the region I 1 (r) is empty.
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 13175 Figure 13. (a) The operating diagram for f (S) = 4S, a = 0.3 showing curves Φ r and Φ 1-r (in black), Π r1 (in blue), Π 1 r2 and Π 2 r2 (in red). (b): A zoom showing the intersection point of Φ r , Π r1 and Π 1 r2 .

Figure 14 .

 14 Figure 14. (a) and (b): The curves Φ 1 , Φ 1/2 (in black), Π 1 (in blue), Π and Π 2 (in red) divide the operating plane in six regions, J k , k = 0..5 and the operating points o k ∈ J k , k = 1..5. (c): The graphical depiction of Assumptions 6 and 7, for D = 0.4, showing the values r k 2 = r 2 (S in , D), corresponding to o k , k = 2..5, respectively, and the values of r 3 and r 4 corresponding to o 5 . The operating points are o 1 = (0.21, 0.4), o 2 = (0.26, 0.4), o 3 = (0.32, 0.4), o 4 = (1.5, 0.4) and o 5 = (4, 0.4).

  (a), (b).
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 514123121115 Figure 15. The curves of the functions r → P 2 (S in , D, r) (in red) and r → P 1 (S in , D, r) (in blue), for S in and D fixed and the corresponding value of P (S in , D) (in black). The r k , k = 0, . . . , 4 values are given in Table7.

  Figure 14(c) shows the functions r → p 1 2 (D, r) and r → p 2 2 (D, r), for D = 0.4 corresponding to the horizontal line D = 0.4 depicted in panels (a), (b) of the figure. It appears that r → p 1 2 (D, r) is decreasing and r → p 2 2 (D, r) is decreasing and then increasing. Therefore the Assumptions

  (a), the zoom in panel (b) showing the values r 0 and r 3 , and the zoom in panel (c), showing the values r 4 and r 1 .

Figure 16 .

 16 Figure 16. (a) The operating diagram for f (S) = 4S 2 /(25 + S 2 ), a = 0.3 showing curves Φ r and Φ 1-r (in black), Π r1 (in blue), Π 1 r2 and Π 2 r2 (in red). (b): A zoom showing the first intersection point of Φ r , Π r1 and Π 1 r2 . (c): A zoom showing the second intersection point of Φ r , Π r1 and Π 1 r2 .

  (a) and (b).
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 17 Figure 17. (a) and (b): The curves Φ 1 , Φ 1/2 (in black), Π 1 (in blue), Π and Π 2 (in red) divide the operating plane in seven regions, J k , k = 0..6 and the operating points o k ∈ J k , k = 1..6. (c): The graphical depiction of Assumptions 6 and 7, for D = 0.2, showing the values r 2 = r 2 (S in , D), r 3 = r 3 (S in , D) and r 4 = r 4 (S in , D), corresponding to o 5 . (d): The graphical depiction of Assumption 6, for D = 0.9 and D = 1.9, showing the values r k 2 = r 2 (S in , D), corresponding to o k , k = 2, 3, 4, 6, respectively. The operating points are o 1 = (8, 1.9), o 2 = (20, 1.9), o 3 = (8, 0.9), o 4 = (20, 0.9), o 5 = (20, 0.2). and o 6 = (48, 1.9).

Figure 17 (

 17 Figure 17 (c) shows the function r → p 1 2 (D, r) and r → p 2 2 (D, r), for D = 0.2, corresponding to the horizontal line D = 0.2 depicted in panels (a) and (b) of the figure. It appears that r → p 12 (D, r) is decreasing and r → p 2 2 (D, r) is decreasing and then increasing. Therefore the Assumptions 6 and 7 are satisfied. Figure17 (c)shows the values of r 2 (S in , D), r 3 (S in , D) and r 4 (S in , D) corresponding to o 5 = (20, 0.2). Figure17 (d)shows the functions r → p 1 2 (D, r) for D = 0.9 and D = 1.9, corresponding to the horizontal lines D = 0.9 and D = 1.9 depicted in panels (a) and (b) of the figure. It appears that r → p 1 2 (D, r) is decreasing. Therefore the Assumption 6 is satisfied. Figure17(d)shows the values of r 2 (S in , D) corresponding to the two operating points o k , k = 2, 3, 4, 6 depicted in panels (a) and (b). The numerical values of r 0 , r 1 , r 2 , r 3 and r 4 , with three digits are collected in Table9. Figure18shows P 1 (S in , D, r) and P 2 (S in , D, r), as functions of r, for the six operating points o k , k = 1..6 shown in Figure17(a) and (b). Let us first recall the theoretical predictions.Since o 6 = (48, 1.9) ∈ J 6 , this operating point satisfies the condition π 2 (D) > λ(2D + a) > S in > π 1 (D) > π(D). Hence, from Proposition 7 it is deduced that P 1 (48, 1.9, r) > P (48, 1.9) if and only if 0 < r < r 1 . Moreover, from Proposition 9 it is deduced that P 2 (48, 1.9, r) > P (48, 1.9)

  Figure 17 (c) shows the function r → p 1 2 (D, r) and r → p 2 2 (D, r), for D = 0.2, corresponding to the horizontal line D = 0.2 depicted in panels (a) and (b) of the figure. It appears that r → p 12 (D, r) is decreasing and r → p 2 2 (D, r) is decreasing and then increasing. Therefore the Assumptions 6 and 7 are satisfied. Figure17 (c)shows the values of r 2 (S in , D), r 3 (S in , D) and r 4 (S in , D) corresponding to o 5 = (20, 0.2). Figure17 (d)shows the functions r → p 1 2 (D, r) for D = 0.9 and D = 1.9, corresponding to the horizontal lines D = 0.9 and D = 1.9 depicted in panels (a) and (b) of the figure. It appears that r → p 1 2 (D, r) is decreasing. Therefore the Assumption 6 is satisfied. Figure17(d)shows the values of r 2 (S in , D) corresponding to the two operating points o k , k = 2, 3, 4, 6 depicted in panels (a) and (b). The numerical values of r 0 , r 1 , r 2 , r 3 and r 4 , with three digits are collected in Table9. Figure18shows P 1 (S in , D, r) and P 2 (S in , D, r), as functions of r, for the six operating points o k , k = 1..6 shown in Figure17(a) and (b). Let us first recall the theoretical predictions.Since o 6 = (48, 1.9) ∈ J 6 , this operating point satisfies the condition π 2 (D) > λ(2D + a) > S in > π 1 (D) > π(D). Hence, from Proposition 7 it is deduced that P 1 (48, 1.9, r) > P (48, 1.9) if and only if 0 < r < r 1 . Moreover, from Proposition 9 it is deduced that P 2 (48, 1.9, r) > P (48, 1.9)
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 18 Figure 18. The curves of the functions r → P 2 (S in , D, r) (in red) and r → P 1 (S in , D, r) (in blue), for S in and D fixed and the corresponding value of P (S in , D) (in black). The r k , k = 0, . . . , 4 values are given in Table9.

  (a), the zoom in panel (b) showing the values r 0 and r 3 , and the zoom in panel (c), showing the values r 4 and r 1 .

Lemma 12 .

 12 Assume that (48) f λ D 1-r + a ≤ 1 1-r f (λ (D + a))then ∂p 1 ∂D (D, r) > 0. If f is decreasing, then the condition (48) is satisfied. Proof. From[START_REF] Tang | Mathematical investigations of growth of microorganisms in the gradostat[END_REF] we deduce that∂p 1 ∂D (D, r) = λ (D + a) + D+a ra 1 1-r λ D 1-r + a -λ (D + a) + 1 ra λ D 1-r + a -λ(D + a) .Notice that λ (D + a) > 0 and λ D 1-r + a -λ(D + a) > 0. Therefore the condition1 1-r λ D 1-r + a -λ (D + a) ≥ 0 is sufficient to have ∂p 1 ∂D (D, r) > 0. Using λ (D) = 1/f (λ(D)), this condition is equivalent to (48). Note that if f is decreasing, then this condition is satisfied. Indeed, we have f λ D 1-r + a ≤ f (λ (D + a)) < 1 1-r f (λ (D + a))

Lemma 13 .

 13 Let D ∈ [0, m -a) and l D be defined on dom(l D ) := 0, 1 -D m-a by l D (r) := λ D 1-r + a . The following conditions are equivalent. a: For all (D, r) ∈ dom(p 1 ), ∂p 1 ∂r (D, r) > 0. b: For all (D, r) ∈ dom(p 1 ), l D (r) < l D (0) + rl D (r).

p 1 ( 3 2 f λ D 1 -r + a 2 -D 1 -+ a < 2f λ D 1 -r + a 2 .

 1312112 D, r) = l D (0) + D+a ra (l D (r) -l D (0)) . The partial derivative, with respect to r of p 1 is given then by (49)∂p 1 ∂r (D, r) = -D+a ar 2 (l D (r) -l D (0)) + D+a ra l D (r).Therefore ∂p 1 ∂r (D, r) > 0 if and only if l D (r) < l D (0) + rl D (r). This proves the equivalence of the conditions a and b of the lemma.Assume that l D is strictly convex. For all s and r in dom(l D ), if s = r, then l D (s) > l D (r) + (s -r)l D (r).Taking s = 0 and r ∈ (0, 1 -D/(m -a)) one obtains b. Assume now that f is twice derivable. Then, so is l D . Usingλ (D) = 1 f (λ(D)) and λ (D) = -f (λ(D)) (f (λ(D))) 3 , we can write l D (r) = 2D (1-r) 3 λ D 1-r + a + D 2 (1-r) r f λ D 1-r + a .Therefore, the condition 1 in the lemma is equivalent to the following condition: For all D ∈ (0, m -a) and r ∈ [0, 1 -D/(m -a)),

∂p 1 ∂r 2 and d 2

 122 > 0, so that Assumption 5 is satisfied. D.3. Proof of Proposition 12. The equation (21) giving the intersection points of Π r1 and Φ r curves is equivalent to the algebraic equationD D 2 -bD + c = 0, where b = r(m -2a), c = a(m -a)(r 2 -3r + 1).Therefore, apart from D = 0 which corresponds to the intersection point (λ(a), 0) of Π r1 and Φ r , these curves can intersect at pointsQ i = (p 1 (d i , r), d i ), where d i , i = 1, 2, are the solutions of equation D 2 -bD + c = 0, i.e. d 1 = b+ √ ∆ = b- √ ∆ 2 ,where ∆ = b 2 -4c. This proves the formulas for d 1 and d 2 given in the proposition. The roots d 1 and d 2 correspond to an intersection point whenever they are real and satisfy 0 < d 2 ≤ d 1 < (1 -r)(m -a), i.e.

5 2

 5 . On the other hand, the discriminant ∆ is written ∆ = (8a 2 -8am + m 2 )r 2 + 12a(m -a)r -4a(m -a).

5 2,

 5 From the relation ∆ = b 2 -4c, it is seen that for all a ∈ (0, m), we have∆ ≥ -4a(m -a)(r 2 -3r + 1)and the equality holds if and only if a = m/2. Therefore, for all a ∈ (0, m), we have 0 < r 1 ≤ 3- √ and the equality holds only for a = m/2. This proves the condition on r * given in the proposition. On the other hand, we have: for all a ∈ 0,2- 
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The mathematical equations representing the single chemostat are given by [START_REF] Dali-Youcef | Performances study criteria of two interconnected chemostats with mortality[END_REF], where S and x denote respectively the substrate and the biomass concentration, S in the input substrate concentration, a the mortality rate and D the dilution rate. It is well known (see [START_REF] Harmand | The Chemostat: Mathematical Theory of Microorganism Cultures[END_REF]) that, besides the washout F 0 = (S in , 0), that this system can have a positive steady state 4. Therefore, the curve Φ defined by

splits the set of operating parameters (S in , D) into two regions denoted I 0 and I 1 defined in Table 4 and depicted in Figure 10(c). The asymptotic behaviour of the system in these regions is as depicted in Table 4.

Table 4. The conditions of existence and stability of the steady states of (3) and the asymptotic behavior in the regions I 0 and I 1 of the operating diagram. Existence condition Stability condition The productivity of (3) at steady state F 1 is given by ( 8), that we recall here ( 43) which is assumed to be unique.

Proposition 15. The dilution rate D opt (S in ) defined by (44) is the solution of equation S in = π(D) where π is defined by (38).

Proof. For all D < f (S in ) -a we have

). with π defined by (38). Therefore, ∂P ∂D (S in , D) = 0 is verified if and only if S in = π(D). Therefore, the curve Π defined by equation S in = π(D) is the set of operating parameters for which the productivity is maximal, see Figure 10(c).

We recall that the biogas flow rate of the single chemostat is defined by (see [START_REF] Dali-Youcef | Some non-intuitive properties of serial chemostats with and without mortality[END_REF][START_REF] Dali Youcef | Study of performance criteria of serial configuration of two chemostats[END_REF][START_REF] Dali-Youcef | Performances study criteria of two interconnected chemostats with mortality[END_REF][START_REF] Polihronakis | Parameter adaptive control techniques for anaerobic digesters-real-life experiments[END_REF][START_REF] Renard | Adaptive control of anaerobic digestion processes -a pilot-Scale application[END_REF])

For the single chemostat, without mortality rate of the biomass, the biogas flow rate G(S in , D) and the productivity of the biomass are given by the same function of the operating parameters:

However, this is no longer the case when mortality is taken in consideration. For the study of the biogas flow rate of the serial configuration, the reader can consult [START_REF] Dali-Youcef | Performances study criteria of two interconnected chemostats with mortality[END_REF].

Appendix B. Some useful results on the serial configuration

Let S in be fixed such that f (S in ) < D 1 + a. Figure 11(a) shows the graphs of functions S 2 → f (S 2 ) and S 2 → h(S 2 , S in ), and the solution S * 2 of the equation f (S 2 ) = h(S 2 , S in ), which is unique since f is increasing and the graph of the function S 2 → h(S 2 , S in ) is a decreasing hyperbola. This proves the uniqueness, if it exists, of the steady state E 2 .

Actually, the function h depends on all operating parameters S in , D 1 and D 2 . However, to avoid unnecessary cumbersome notations, we have highlighted the dependence of h only on the operating parameter S in , because of its crucial importance for the property to be discussed, namely that S * 2 decreases as S in increases, see Figure 11(b). • If 0 < r < r * then ∆ < 0, i.e. d 1 and d 2 are complex conjugate. There is no intersection point.

2 , then there is no intersection point and, if 3-

, then Q 1 is the unique intersection point. D.4. Proof of Proposition 13. In the Monod case one has

mr-D-ra . Thus, one must have mr > D + ra, which also gives m > D + a. The equation f (S 2 ) = h 2 (S 2 ) is equivalent to an algebraic quadratic equation. Therefore this equation has at most two real solutions. We will show that this equation actually has exactly two positive solutions. This result is obviously in agreement with the result of Lemma 2, which states that, for any increasing growth function, the equation f (S 2 ) = h 2 (S 2 ) has at least two positive solutions, and with Assumption 2, satisfied by a Monod function, which states that there are only two solutions. The algebraic quadratic equation resulting from the equation f The discriminant of ∆ 1 is given by ∆ 0 = (v 1 /2) 2 -v 2 v 0 = 4D 2 r 2 a 3 (-1 + r) 3 (D + ra)