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Abstract—The Internet of Things (IoT) devices market has
shown strong growth in recent years. Time to market has
become essential to be competitive, the faster a competitor
develops and integrates his/her product, the more likely he/she
is to dominate the market. This competition leads to critical
software problems in the systems due to lack of testing or short
development times. Lots present some vulnerabilities that can
be exploited by attacks via botnets or malwares. Moreover,
they are subject to huge number of 0-days that need quick
intervention to maintain the security of the environment in
which the IoT device is deployed in. For this purpose, the
quick update of the firmware of these devices via patches is
the most effective solution to counter these attacks. In this
process, to operate embedded systems’ set-up, control and
supervision, an important component called the bootloader
have to be implemented. This piece of code can manage and
execute boot sequence and launch the firmware. However,
without any recommendations or references, currently, there
is no generic bootloader for all the IoT device, but there
are several bootloaders specific for a particular or a group
of hardware or kernel. This paper aims to analyze some of
these bootloaders and develop a minimal generic bootloader
implementing a firmware Over-The-Air update for constrained
IoT devices. After analyzing several bootloaders and the OTA
update process, a PoC of a bootloaders based on FreeRTOS, has
been designed and implemented, and which allows to perform
firmware verifications and OTA updates.

I. INTRODUCTION

It is very likely that by the year 2025, the number of
connected devices will be more that the double of the humans
on earth. These equipment are continuously being produced
by many manufacturers. Moreover, in order to catch up to the
”Time To Market” race, the priority is given to profitability
and performance, to the detriment of robustness and safety.
Thus, a large majority of these devices are highly vulnerable
to old and new attacks launched by botnets or other malware.
Furthermore, most of these devices do not have enough
capabilities to deploy the necessary security mechanisms to
counter these attacks and do not integrate proper update
system that can patch these vulnerabilities.

Currently, new technologies allow more or less secure
firmware update to correct any security flaws and to respond
to eventual zero-days vulnerabilities, depending on the capa-
bilities of these objects. In this process, the bootloader is an
important element which allows the flashing and the instal-
lation of the new firmware image or modules. It is the piece

of code that will launch the main application. This software
can also be used to manage firmware updates remotely. The
manufacturers of microprocessors (such as ARM, Intel, Texas
Instruments, Atmel, etc.) developed their own bootloaders
to better control and debug these updates. Moreover, in the
absence of genericity of IoT’s hardware modules, bootloaders
becomes numerous and most often specific to the same family
of microcontrollers. Hence, it becomes necessary to study
their mechanisms and to look into the development of a
generic module, which is also driven by the presence of
very few standards and recommendations for the particular
bootloader of the IoT devices. Following the example of
universal ports for smartphones, it would be interesting to
look into universal processes for managing IoT connected
devices. Thus, this work studies the concept of a generic
bootloader mechanism and extends it with the conception
of secure update mechanism for the IoT that guarantees the
integrity and the authenticity during the update process.

The main contributions of this work are: 1) A state of art
and a comparison of some popular bootloaders currently used
in constrained IoT devices. 2) A Generic bootloading process
for typical IoT devices. 3) A Proof of Concept of the firmware
over the air process, which uses the generic bootloader
on top of ones of the most used OS (i.e., FreeRTOS). 3)
The discussion of a secure and generic bootloading process
that guarantees the integrity and the authenticity of the
received firmware image. The remaining of the paper will
be structured as follow: the paper starts with a background
overview related to IoT devices, the bootloader and the
firmware update process, in sectionII-B. Then, in sectionIII, it
presents the related works, followed by the presentation and
choices related the generic bootloader, in sectionIV. Next, the
sectionV provides the implementation details. Finishes with
a discussion in sectionVI and a conclusion in sectionVII.

II. BACKGROUND

This section provides an overview of some important no-
tions to have a clear understanding of the different challenges
related to the firmware update for IoT devices.

A. Generic/Typical IoT Device

With the mass of definitions related to the structure of
the IoT device, it is important to have a precise idea about



what is an IoT device. For this purpose, the Fig. 1 provides
a generic and typical stack representation of the different
hardware and software that can be involved in an IoT device.
Within this representation, a constrained devices might have
less elements and a reduced stack, for instance a device
without an OS or without flash, etc.

Fig. 1. Typical IoT device stack

B. Bootloader

Generally, a bootloader is a software that launches the
kernel or another application during the boot sequence.
Implemented in a ROM, NOR, NAND or MMC type mi-
crocontroller, this piece of code launches the kernel from a
fixed address to the given memory (RAM). The bootloader
typically contains minimal operations such as kernel release
steps and cryptographic operations to read and verify the in-
tegrity of the firmware stored and/or received via an upgrade
process. The transition from the bootloader application to
the main kernel is achieved by using the partition table which
allows the bootloader to know the address of the kernel. This
partition table is typically used for a PC bootloader. However,
for constrained systems, there is often no partition, just a flash
address to target the kernel.

C. Over the Air Updates

In practice, there are multiple ways of updating an IoT
devices, since different manufacturers follows different ap-
proaches depending on their tools, infrastructures and strate-
gies. The updates the wired updates via a USB port, the
wireless Over the Air (OTA) updates, and also they can be
either full or partial (e.g., only a piece of the firmware or the
OS), they can include signature and integrity verification or
not, they can require an attestation of delivery and installation
or not, and so on and so fourth. In this work, a special
focus if given to the OTA updates of the full firmware. An
OTA update refers to the transmission of a piece of software
(will be referred as firmware from now onn) to an embedded
system (mobile, tablet, connected objects) wirelessly ”over

the air”, usually via Wifi, GSM/GPRS, BLE etc. It concerns
mainly the new firmware version in order to either add
new functionalities or to fix some bugs or vulnerabilities.
The bootloader will then receive the firmware, implements
checksum operations, verifies the integrity and authenticity
if possible, installs it and then reboots.

The OTA update module can be implemented in the IoT
device at two levels:
• At the bootloader level: the OTA and firmware verifica-

tion process are executed at the bootloader stage and is
independent of the application. This choice allows a boot-
loader/application separation but increases the footprint of
the first one (bootloader size).

• At the application level: the implementation of the ota
process at this level allows to decrease the bootloader
footprint. The OTA process is dependent on the application,
but independent of the bootloader.
Moreover, the update can be either partial, by updating

only the application for instance, or complete, by updating the
system file, the bootloader and the application. This update
process may also be interrupted due to a loss of connection
between the server and the device, the device’s extinction
or simply a power cut. It is therefore necessary to schedule
update operations in advance in order to avoid blocking the
device. In this work, a special interest was given to the OTA
update at the application level, to reduce the most possible
additional footprint impact on the constrained device.

III. RELATED WORK

In the literature there are only few works that studies
the IoT device’s bootloader, and even less for having a
generic bootloader, OS and hardware independent. In [1],
the authors present the concept of the remote programming,
configuration, and monitoring system for development and
testing which can be applied to resource constrained wire-
less sensors and IoT nodes, based on a general purpose
microcontroller, unit or a field programmable gate array
(FPGA) chip. The remote management interface can be run
on many different operating systems via to the utilization of
the Leshan LWM2M implementation with Web-based GUI.
In another work [2], the authors provide an overview of the
threats targeting Bootloader and Firmware Update (BFU)s,
and existing protections. The paper covers the hardware
and software attacks. The authors also provide a generic
and typical workflow of a secured firmware update at the
bootloader lever, mainly inspired from Atmel architecture
[3]. The latter’s security is mainly based on the integrity
and the authenticity of the downloaded firmware. However,
there is not evaluation nor implementation of this workflow,
since the main purpose of the paper is the study of the
security aspects and threats of the IoT devices itself. Next, in
[4], the authors propose SecFOTA an enhanced bootloader,
which decides the kind of update used based on the user’s
settings, which a special focus on the security. The concerned
firmware in this case is the RIOT-OS application running



on Atmel SAMR21-Xplained Pro Evaluation Board (Cortex-
M0+, 256kB Flash,32kB RAM). The solutions uses different
partitions, or areas, in the flash memory run the firmware
update. The firmware is loaded into an update area which
is used to run integrity and version checks before copying
the image into a live partition. Moreover, the last installed
version is copied to a backup area, and in case of failure,
a rollback to this version is done. Atmel introduces in [3]
an in-field firmware upgrading and describes various aspects
regarding the implementation of a safe and secure bootloader
for Atmel SAM3 and SAM4 families of microcontrollers.
The document discusses several design considerations in
developing this kind of software, the most important ones
are: the bootloader sequence diagram for firmware upgrade,
which includes firmware integrity verification and code en-
cryption; the memory partitioning (i.e., single or dual banked
memory), which makes it possible to have at least one
working version of the firmware in the device at anytime, in
order to avoid firmware corruption in case of an issues such
as power or connection loss; safety solutions so as to prevent
safety related errors from happening (i.e., transmission error,
transmission failure, information loss); Security solution, by
enforcing the privacy, integrity and authenticity features, via
hash functions, digital signatures, message authentication
codes (MACs) and encryption in order to prevent attacks
(i.e., unauthorized device, third party firmware, firmware
alteration, reverse-engineering).

IV. PRESENTATION AND CHOICE OF GENERIC
BOOTLOADERS FOR THE IOT

A. Hardware environment

For the PoC, the following hardware have been used:

• STM32F411re Nucleo DIscovery and BLE Nucleo exten-
sion: this development kit, developed by STMicroelectron-
ics, has a cortex M4 processor. The presence of an st-link,
which is a programmer and debugger, allows the firmware
to be flashed via USB. The X-NUCLEO-IDB05A1 BLE
expansion board allows the board to be controlled via BLE.

• Hexiwear: Based on a Cortex M4 processor, the Hexiwear
development kit is the result of a collaboration between
NXP and MikroElektronika.

• ESP32 WROVER KIT: Cortex M4 development module
integrating a WiFi SOC and Bluetooth. The presence of an
integrated LCD screen allows the development of graphical
user interfaces.

• Espressif ESP8266: is a microcontroller integrated circuit
allowing a WiFi connection. Widely used for Arduino
projects, it is also possible to use it under FreeRTOS or
Lua OS. Moreover, NodeMCU, which is an open source
firmware for IoT and uses only few Lua script lines, is
deployed inside the ESP8266.

Each cards has specific tool-chains. The chosen bootloaders
for the PoC was influenced by the available environment.

B. State of the Art of some popular bootloaders

The sequential analysis of the bootloader was necessary
in order to be able to master the bootloading process. The
next sections present some popular bootloaders for embedded
systems and the chosen one for our PoC.

1) U-boot: Now known as Das U-boot is an open source
primary bootloader for embedded devices. It is a very generic
solution and used by a large community. However, It requires
lots of resources for a constrained memory SsC. Moreover, it
is currently available for a number of well-known computer
architectures such as ARM, PowerPC, x86 and MIPS.

2) MCUBboot: Bootloader is developed by NXP and
previously named Kboot (Kitenis Bootloaders). MCUBboot
is intended for 32-bit microprocessors. It is operational with
the Apache Mynewt, RIOT and Zephyr operating systems.
Zephyr is an OS with a small footprint especially for em-
bedded and constrained systems. It supports a large number
of architectures such as ARM Cortex-M, AVR MIPS etc.
Moreover, it is supported by many architectures and several
OSs (Zephyr, Mynewt, RIOT) and Open source. However, it
is too large for constrained memory SoCs.

3) FreeRTOS: Is an open-source kernel developed in 2003
under the MIT license. FreeRTOS is known as covering a
large environment of architectures (TI, Microchip, Atmel,
NXP, Intel, etc.) with 18 compilation strings and having a
very small footprint (4Ko to 9Ko). In 2014, FreeRTOS is one
of the leading RTOS on the embedded market. Furthermore,
in addition to be supported by numerous architectures, it
provides real-time processing, and very active by it large
community. However, it is characterized by it high complex-
ity of implementation if using multi-tasking.

4) Expressif Rboot: Is designed to be a flexible open
source boot loader, only for Espressif devices, a replacement
for the binary blob supplied with the SDK. This boot-
loader is supported by multiple Hardware architecture Micro-
controllers: CC3220, CC3200, ESP32, ESP8266, STM32F4
and multiple hardware platforms: TI CC3200, TI MSP432,
NRF52, STM32, PIC32, ESP8266, ESP32 and it is Open
source. However, there is no generic aspect.

5) Tiva: The Texas Instruments Tiva bootloader is a small
piece of code that can be programmed at the beginning of
flash to act as an application loader and an update mechanism
for applications running on a Tiva ARM Cortex-M4-based
microcontroller. The bootloader can be built to use either the
UART, SSI, I2C, CAN, Ethernet, or USB ports to update the
code on the microcontroller. The bootloader is customizable
via source code modifications, or simply deciding at compile
time which routines to include. Since full source code is
provided, the bootloader can be completely customized.

6) LK (Little Kernel): Is a tiny operating system suited
for small embedded devices, bootloaders, and other environ-
ments where OS primitives like threads, mutexes, and timers
are needed, but theres a desire to keep things small and
lightweight. On embedded ARM platforms the core of LK
is typically 15-20 KB. LK is the Android bootloader and



Fig. 2. Generic bootload process at the application level

is also used in Android Trusted Execution Environment -
”Trusty TEE” Operating System.

For demonstration, we decided to use FreeRTOS which
implements its own bootloader. The technical achievements
using this OS and the PoC will be exposed next.

V. IMPLEMENTATION

In this section, technical details about the PoC of the
generic bootloader for update IoT devices are provided. For
this purpose, three entities interact to update an IoT device:
Maintainer, Device Management gateway, and IoT device.

A. Maintainer

As a first step, a Maintainer server was developed. It
intends to simulate multiple manufacturers providing multiple
updates of firmware for various IoT devices. In this case, and
to simplify the PoC, a simple HTTP server was implemented
and enhanced with a JSON API. The latter allows a device
to know the status of the IoT device (i.e, the firmware
version) to make an update request decision. If so, it provides
the IoT device with the URL to the new firmware image.
Basically, the server stores the card id, firmware version and
manufacturer in the form of a JSON Object. The design and
the implementation of the firmware update process including
the security consideration and the use of firmware manifests
[5], are currently in progress, and will be exposed in future
works. Furthermore, since this is only a preliminary work,
a more secure PoC including end-to-end security from this
Maintainer to the IoT devices is under investigation. Solu-
tions including pre-shared asymmetric keys, CoAP-DTLS, or
via a key establishment protocol are considered.

B. Generic Bootloader

To realize the PoC, we decided to implement additional
blocks over the base codes of FreeRTOS. Then, a simple and
generic bootloader that manages also the firmware updates
was implemented. Thus, it is necessary to explain first the
different steps of FreeRTOS from the hardware initialization
to kernel launch, which will be explained later in the update
process. FreeRTOS allows the initialization of the different
partitions like the partition table which has the firmware
address. Hardware initialization is illustrated in Fig. 2, from
step 1 to 6. These different steps are unmodified libraries of
FreeRTOS. After these steps, the application is launched.

C. OTA firmware update

To completely separate the OTA bootloader from the applica-
tion, additional processes to perform updates during the boot
process were implemented. In the case of the ESP32-WiFi,
the bootloader will first initialize and configure the WiFi (i.e.,
steps 7 and 8 shows the connection steps performed by the
bootloader). Next, in the step 9, the bootloader (the commu-
nication server inside the IoT device) connects to the Device
Management (DM) Gateway and will initially send some
information to declare its identity (identification process,
step 10): name, communication protocol, vendor, firmware
version. Since FreeRTOS allows programming in the form
of tasks that run in parallel and that can communicate, the
bootloader will also query via an HTTP GET request, the
Maintainer that contains the firmware information, in the
step 11, in parallel with the execution of the identification
task. In order to offload some of the computation from the
constrained devices, these information are then relayed to



the DM gateway. Another alternative is to delegate all the
interaction with the Maintainer to the DM gateway since
the latter already knows the device’s firmware version. If
the firmware registered on Maintainer is different from the
one in flash memory (i.e., step 12), the bootloader will start
an update process (step 15). Via an HTTP GET request,
the bootloader will retrieve the firmware new firmware.bin,
which is stored in a directory of the Maintainer server. If the
binary file new firmware.bin is not present in the directory
or the connection to the remote Maintainer has failed, the
bootloader notifies the DM gateway of this error, as in step
13. The DM gateway will then query the Maintainer via
an HTTP GET request and retrieve the firmware to send it
directly to the module, as in step 14. This principle takes
example on web services to find driver updates for computers.

Similar steps can be applied to different communication
protocols such as BLE, Zigbee, Z-wave and so one, by adding
simply some adapters. In case of failure, the bootloader
launches the present firmware which will be executed until
the next attempt of the system. In addition, an alert to the DM
gateway is sent in the background. The complete diagram
is shown in Fig. 2. Moreover, in order to demonstrate the
previous processes, a PoC has been implemented on top of
the FreeRTOS OS for embedded systems, via two use cases
in order to apply the firmware update: 1) a first one by using
only WiFi and 2) a second use case of using BLE. This will
be the main purpose of the next sections. Note that, since
HTTP+JSON download can be heavy for a light loader. It
is especially suitable for wifi only. The delegation of these
tasks to a DM gateway for instance is a better alternative in
order to offload and lighten the update process.

D. OTA firmware update via BLE / WiFi

Updating via BLE/Bluetooth is more complex than up-
dating via WiFi. Indeed, the speed of Bluetooth (3 Mbit/s)
and even more for BLE (1 Mbit/s) is much lower than that
of WiFi (6-30 Mbit/s). Thus, the transfer time is extended
and errors are more frequent. For some IoT devices, the
manufacturer uses WiFi in order to transfer updated firmware,
applications or just some module to an intermediary, which
can be a smartphone or a gateway, and then the latter connects
to constrained device via a more constrained communication
protocols (e.g., BLE, Zigbee, Lora, etc.) and transfer the
updated piece of code. In our use cases, the smartphone
connects to the IoT device via BLE. The connected object
is in server position and is waiting for a connection from
a client (here the smartphone or other host). An android
application was also implemented and used in order to scan
the BLE/Bluetooth environment, to connect to the device, to
send data via a GATT service. Using this application, data in
text or binary form can be sent. Depending on the requests
sent via the GATT protocol, the IoT will perform an actions.

The Fig. 4 summarizes the two update techniques that
uses the loader in order to perform the firmware over the
air update. The first technique in red, allows you to perform

updates without using WiFi. This technique, limited by
the problems related to bluetooth bitrate, makes it possible
to update the modules containing only BLE or Bluetooth.
This is interesting for devices such as smart watches which
generally do not integrate an update process and Wi-Fi. The
second, represented by the blue arrows, illustrates the method
of sending WiFi passwords via BLE. Then the module will
connect to the Gateway (e.g., smartphone) and the WiFi
OTA will be engaged. This method, very often used, is only
applicable if the module has a WiFi SoC and BLE. The last
one in green, represents the update by WiFi without the need
of a gateway, as is the case for a large segment of IoT devices
directly connected to Internet such as IP camera.

Fig. 4. Over the Air firmware update architecture via WiFi and BLE

VI. DISCUSSION

This work is a starting line toward a generic and secure
firmware OTA updates for IoT devices, and in particular the
most constrained ones. It consists of a first and important
brick, since it determines the way the bootloader is conceived
in order to receive the new firmware image, how it is
downloaded and how it is installed. However, we argue that
there are several drawback in the current proposition that
requires further and deeper investigations in order to provide
a generic, portable, robust and secure bootloader for IoT and
in particular for the constrained ones. In this section, some of
there drawbacks are discussed in particular the ones related
to the security and the evaluations.

An important aspect that was not addressed in this paper,
since it requires additional capabilities, is the security all
along the bootloading process. This challenge is tightly
related to the hardware capabilities in the SoC. We argue
that it is very important to be able to at least perform some
integrity and authenticity verification in order to make sure
that the received firmware image was not altered and that it is
coming from the right benign origin. The Fig. 3, shows the
ideal bootloading process with these verifications in mind.
In this process, it is important to have an integrity and
authenticity verification right after the version verification in
the IoT device, if the latter downloads directly the firmware
from the maintainer. Furthermore, if the IoT device relay on
a DM gateway in order to recover the firmware image from



Fig. 3. Ideal secure and generic bootloading process at the application level

the maintainer, the gateway needs first to verify the version of
the firmware image and then performing a first integrity and
authenticity checks before sending them using the underlying
communication protocol to the IoT device.

The IoT device, will again perform the integrity and
authenticity checks and then install the firmware image if
the checks passed. The second check need to be done in
order to make sure that a MITM cannot alter the firmware
since it is usually sent in clear via a short range protocol
such as BLE. Finally, it is important to study the threats
against the bootloader such as the Rollback attack, where the
attacker can resend a valid but old firmware version to the
devices [6], and the Firmware reverse engineering, by reverse
engineering the binaries into assembly in order to analyze
the functionality and to get access to secret data [7] [6], and
to prepare some countermeasures in order to counter them.
Moreover, in order to make sure that the proposed solution
is generic and secure enough, multiple tests and evaluations
need to be done in order to study the impact of the additional
footprint on the different classes of IoT devices, in particular
on the most constrained one (e.g., with Cortex M0).

VII. CONCLUSION

This work presents a first step toward developing a generic
bootloader for the different type of IoT devices, and in
particular for the most constrained ones. The main objective
is to be able to update different IoT devices from different
sources in a simple way, and to simplify the task for de-
veloper. The solution has been also extended with a design

of a secure update mechanism for the IoT that guarantees
the integrity and the authenticity during the update process.
However, multiple challenges still need to be solved such as
the overhead of adding the security mechanism, the presence
of different bootloader in the same IoT device, the scheduling
of the firmware update (including the interruption of the
devices tasks and the devices in the sleep mode).
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