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Abstract

According to the current literature, there are two dif-
ferent approaches to the definition of the variance of a
fuzzy random variable. In the first one, the variance is
defined as a fuzzy interval, offering a gradual descrip-
tion of our incomplete knowledge about the variance
of an underlying, imprecisely observed, classical ran-
dom variable. In the second case, the variance of the
fuzzy random variable is defined as a crisp number,
that makes it easier to handle in further processing.
In this work, we introduce yet another definition of
the variance of a fuzzy random variable, in the con-
text of the theory of imprecise probabilities. The new
variance is not defined as a fuzzy or crisp number,
but it is a real interval, which is a compromise be-
tween both previous definitions. Our main objectives
are twofold: first, we show the interpretation of the
new variance and, second, with the help of simple
examples, we demonstrate the usefulness of all these
definitions when applied to particular situations.

Keywords: Fuzzy random variable, random set,
variance, second order possibility measure.

1 Introduction

The concept of fuzzy random variable, that extends
the classical definition of random variable, was intro-
duced by Féron [14] in 1976, and modified by other
authors like Kwakernaak [22], Puri and Ralescu [31],
Kruse and Meyer [21], or Diamond and Kloeden [9],
among others. In [18], Krätschmer surveys all of these
definitions and proposes an unified approach. In all
of these works, a fuzzy random variable is defined as
a function that assigns a fuzzy subset to each pos-
sible output of a random experiment. The different
definitions in the literature disagree on the measura-
bility conditions imposed to this mapping, and in the
properties of the output space, but all of them in-
tend to model situations that combine fuzziness and

randomness. Since the introduction of this concept,
many works have generalized different probabilistic
concepts and classical results to the case in which all
observations associated to the different results of the
experiment are fuzzy sets.

Regarding the generalizations, in this context, of def-
initions of parameters associated to a probability dis-
tribution, we can divide them into two groups. On
the one hand, some parameters have been defined as
fuzzy values: the expectation [31], the distribution
function in a point [5, 21], the variance [20] and the
covariance1 [26]. On the other hand, the expectation
[23], the variance [13, 17, 24], the covariance[13] or the
inequality index [25] have also been defined as crisp
values. The introduction of these last definitions is
guided by the interest of the authors in solving de-
cision problems involving parameters with numerical,
not fuzzy values.

In spite of the great amount of studies about fuzzy
random variables, there are few works that study the
different interpretations that could be given to their
various definitions. The same can be said about the
new concepts arising from them (for instance, some
of the mentioned parameters.) It is well known that
fuzzy sets admit of many different meanings (see, for
example [12]) and each one of these meanings could
lead to an interpretation of the concept of fuzzy ran-
dom variable.

In this work, we shall observe that there are different
extensions of the concept of variance to fuzzy random
variables. We shall review different definitions of vari-
ance, found in the literature, and we shall propose an
additional definition, that could be cast in a model
of imprecise probabilities. We pay attention to the
interpretation of each definition. Guided by simple
examples, we shall observe the advantages and draw-
backs of each definition in different contexts.

1We must remark that the concept of fuzzy random vari-
able not only extends the concept of one-dimensional random
variable, but also of random n-dimensional vector.



2 Fuzzy random variables

It was mentioned in the introduction that a fuzzy ran-
dom variable is a function that assigns a fuzzy subset
to each outcome of a random experiment. The dif-
ferent definitions of fuzzy random variable differ in
the measurability conditions imposed to the random
variables.

Kwakernaak [22] and Puri and Ralescu [31] rely on
the α-cut mappings (the multivalued functions that
map each element in the initial probability space to
the respective α-cuts of the fuzzy set-valued image)
to translate such condition. While Kwakernaak re-
stricts himself to images that are fuzzy subsets of IR
and the boundaries of the α-cuts are measurable func-
tions, Puri and Ralescu impose that the graph of the
images itself be measurable (i.e. lies in the product σ-
algebra.) On the other hand, Klement et al. [16] and
Diamond and Kloeden [9] consider different metrics
over the class of fuzzy sets of the output space and
impose that the function is measurable with respect
to the Borel σ-algebra induced by the corresponding
metric. Krätschmer [18] reviews all the previous con-
cepts and offers a unified vision when he considers a
certain topology, defined over the class of fuzzy sub-
sets of IRn, with non empty compact α-cuts. In this
work, we shall not deal with formal aspects of each
particular definition, but with the interpretation of
the various concepts of fuzzy random variable.

Fuzzy sets have been given different interpretations
[12], therefore a fuzzy random variable admits of var-
ious meanings as well. In the remaining part of this
section, we briefly review two existing interpretations
of fuzzy random variables, and introduce a new one.
For every interpretation, we shall describe the in-
formation provided by the fuzzy random variable by
means of a specific underlying model, namely, a clas-
sical probability model, an order 2 imprecise probabil-
ity model and an order 1 imprecise probability model,
respectively.

2.1 Linguistic random variables

In [31], Puri and Ralescu consider that the observa-
tions of some random experiments do not consist of
numerical outputs, but are represented by vague lin-
guistic terms. According to this idea, some authors
consider that a fuzzy random variable is a measurable
function, in the classical sense, between a certain σ-
algebra of events in the original space and a σ-algebra
defined over a class of fuzzy subsets of IR. In this
context, the probability distribution induced by the
fuzzy random variable can be used to summarize the
probabilistic information that the variable provides.
If the fuzzy random variable has a finite number of

images forming a linguistic term set, probability val-
ues can be assigned to the different linguistic labels.
For example, the following model could be generated:
the result is “high” with probability 0.5, “medium”
with probability 0.25 and “low” with probability 0.25,
where “high”, “medium” and “low” are linguistic la-
bels associated to fuzzy subsets of IR.

2.2 Ill-known classical random variables

On the contrary, Kruse and Meyer [21] choose a pos-
sibilistic interpretation of fuzzy sets. Each fuzzy set
is viewed as modeling incomplete knowledge about
an otherwise precise value. These authors then claim
that the fuzzy random variable represents imprecise
or vague knowledge about a classical random vari-
able, X0 : Ω → IR, they refer to as the “original
random variable.” Therefore, the membership de-
gree of a point x to the fuzzy set X̃(ω) represents
the possibility degree of the assertion “X0(ω) is x”,
i.e., the image of element ω coincides with x. This
way, the authors get all the elements needed to de-
fine a possibility measure over the set of all random
variables. They define the “acceptability degree” of
each random variable, X : Ω → IR, as the value:
acc (X) = inf

ω∈Ω
X̃(ω)(X(ω)). The function “acc” takes

values in the unity interval. Therefore, it can be re-
garded as the possibility distribution associated to a
possibility measure, ΠX̃ , defined over the set of all
random variables. acc(X) represents the possibility
degree of X being the “true” random variable that
models the studied experiment. If the fuzzy random
variable were a random set (its images are crisp sub-
sets of IR,) the acceptability function would assign the
value 1 to random variables in a certain set, and the
value 0 to the remaining ones. In the particular case
when the fuzzy random variable is a classical random
variable (all images are sets with only one element)
the acceptability function would assign the value 1 to
only one random variable, which is the true random
variable that models the experiment. In this case, its
observation is completely precise.

Under this framework, we can build (see [6]) a possi-
bility measure over the set of all the probability dis-
tributions in IR. The possibility distribution, πPX̃

,
that characterizes such possibility measure is defined
as follows:

πPX̃
(Q) = sup{acc(X) | PX = Q} =

ΠX̃({X : Ω → IR measurable | PX = Q}).

πPX̃
(Q) represents the degree of possibility that the

original random variable is one of those that induce
the probability distribution Q in IR. The possibility
measure ΠPX̃

is a “second-order possibility” formally



equivalent to those considered in [8]. It is so called,
because it is a possibility distribution defined over a
set of probability measures.

A possibility measure on a set represents the same in-
formation as a family of probability measures on this
set (the family of probability measures that are dom-
inated by the possibility measure and dominate the
dual necessity measure [11].) Therefore, a second-
order possibility measure is associated to a set of
(meta-) probability measures, each of them defined,
in turn, over a set of probability measures. Thus, a
second-order possibility would allow us to state as-
sertions like “the subjective probability that the true
probability of the value 7 is 0.5 is between 0. and
0.7.”

2.3 Known random process with imprecisely
perceived output

Also in accordance with the possibilistic interpreta-
tion of fuzzy sets, in this work we are going to pro-
ceed in a slightly different way, in order to describe
the information provided by X̃. We follow the path
started in [30] for the particular case of the random
sets and continued in [1] and [4] for fuzzy random
variables. Suppose we have partial information about
the probability distribution that models a sequence of
two random experiments whose sample spaces are Ω
and IR, respectively. For instance, the first one de-
scribes some random phenomenon of interest and the
second one accounts for a measurement process ap-
plied to outcomes of the first one. Let us suppose, on
the one hand, that the probability distribution that
models the first one, P : A → [0, 1], is completely
determined (in the preceding expression, A denotes
a σ-algebra of events over Ω.) On the other hand,
the other experiment is only known via a family of
conditional possibility measures {Π(· | ω)}ω∈Ω, each
of them inducing the fuzzy set X̃(ω). This family
of possibility measures models our knowledge about
the relationship between the outcome of the first sub-
experiment an the possible outcomes of the second
one. (If the result of the first experiment is ω, then
the possibility degree of x occurring in the second one
is X̃(ω)(x).) In other words, we know the probability
measure that drives the primary random process but
the measurement process of outcomes is tainted with
uncertainty.

The combination, using natural extension techniques
[32] of both sources of information, allows to describe
the available information about the probability distri-
bution on βIR (the probability distribution that rules
the second sub-experiment) by means of an upper
probability (a standard imprecise probability model,
not an order-2 model, like the one described before.)

Let the reader notice that the conditional possibility
measure is coherent,under fairly general conditions on
X̃. This way, we are able to state assertions like the
following: “the probability of observing an outcome
between 3 and 7 lies between 0.3 and 0.6.”

3 Several definitions of variance

Each of the three models described in the preceding
section leads a different understanding of the variance.
In this section we consider the different definitions, ac-
cording to each model, and emphasize their usefulness
in different contexts. We shall restrict ourselves to the
case where the images of the fuzzy random variable
are fuzzy subsets of IR. In the last section of this
work, we shall make some considerations about the
generalization to the multi-dimensional case.

3.1 Classical model

Let us consider a probability space, (Ω,A, P ), and a
metric, d, defined over the class of the fuzzy subsets
of IR, P̃(IR), (or over a subclass) and let us suppose
that X̃ : Ω → P̃(IR) is a function A−β(d)-measurable
(here, β(d) represents the Borel σ-algebra induced by
d.)

Definition 1 We call classical variance of X̃ the
quantity

VarCl(X̃) =
∫

Ω

d(X, E(X̃))2 dP.

The different definitions of variance in the literature
that fit this formulation differ in the used metric and
in the definition of the expectation of a fuzzy random
variable. With respect to this, we briefly comment
some details about the definitions of Körner [17] and
Lubiano et al. [24]. On the one hand, Körner con-
siders Fréchet’s definition of expectation [15] for mea-
surable functions taking values in a metric space. It
is noticeable that Fréchet defines the expectation of a
measurable function Z, with values in a metric space
(M,d) as a solution a = E(d)(Z), (not necessarily
unique) of the problem mina∈M E[d(Z, a))2]. Körner
[17] checks that Puri and Ralescu’s expectation [31]
is the only Fréchet expectation for a certain family of
metrics defined over the class of compact and normal
fuzzy sets of IR, which they generically denote ρ2. Ac-
cording to this, given a distance ρ2, the variance of a
fuzzy random variable X̃ is the amount

Varρ2(X̃) =
∫

Ω

ρ2(X̃, EPR(X̃))2 dP. (1)

With respect to the family of variances defined by
Lubiano et al. in [24], the considered expectation is



also that of Puri-Ralescu, EPR(X̃), and the class of
distances is that defined by Bertoluzza et al. in [3],
which in turn is a subclass of the family defined by
Körner. In [17] and [24] we can find some interesting
properties of the families of variances defined there.
In this work we only comment some particular aspects
of those, to show some of their advantages and also
some drawbacks, if compared to other definitions of
variance. Even though these definitions are stated for
general fuzzy random variables in [17] and [24], in this
work , it is sufficient to use their formulation in the
particular case when X̃ is a multi-valued mapping (a
function whose images are “crisp” subsets of the final
space.)

In this case, we can easily check that the definitions
of Körner and Lubiano et al. are of the form:

Var(X̃) = π1Var(X1) + π2Cov(X1, X2) + π3Var(X2),

where π1 = λ1+0.25λ2, π2 = 0.5λ2, π3 = λ3+0.25λ2,
λi ≥ 0, i = 1, 2, 3, λ1+λ2+λ3 = 1 and X1, X2 are the
random variables defined over Ω as X1(ω) = inf X̃(ω)
and X2(ω) = sup X̃(ω), ∀ω ∈ Ω, respectively. (Un-
der the measurability conditions imposed to X̃ by the
authors, the functions X1 and X2 are A − βIR mea-
surable.) Therefore, in the particular case in which
π2 is null (thus π3 = 1 − π1), the variance of the
random set will be a convex linear combination of
the variances of their boundaries2. Additionally, if
π3 = (1−√π1)2, the variance of X̃ coindices with the
variance of the convex linear combination of X1 and
X2 given by the expression

√
π1X1 + (1 − √

π1)X2.
In other words, in this case, for every element in the
sample space, ω, we can choose a representative point,
αX1(ω)+(1−α)X2(ω) (with α ∈ [0, 1]), of the image
of the fuzzy random variable, and then calculate the
variance of the classical random variable that results.
The idea of computing the scalar variance using a rep-
resentative substitute point to each fuzzy observation
is used by Baudrit et al. [2], as one piece of informa-
tion to be extracted from the hybrid propagation of
fuzzy and probabilistic information through a mathe-
matical model. With these examples, we observe that
families of variances so defined allow us to quantify
the dispersion of the (fuzzy, or set-valued) images of
X̃, regarded as a measurable function from a classical
point of view, and that can be useful when the images
of X̃ are linguistic labels. In the context of a linguistic
variable, V ar(X̃) thus evaluates the variation across
the possible linguistic labels.

The following example illustrates the shortcomings of
this “classical” variance when quantifying the infor-
mation available about the variance of an underlying

2The definition given by Feng in [13] and cited in the intro-
duction fits this formulation for π1 = π3 = 0.5.

random variable, when a “possibilistic” view of the
fuzzy random variables is used, instead of the above
setting.

Example 1 Let us consider first a unitary sample
space (that models a deterministic experiment,) Ω1 =
{ω1}, a probabilistic space with the only σ-algebra that
can be defined over it, A1 = P(Ω1) and the only prob-
ability measure P1 that is possible. Let us define a
random set Γ1 : Ω1 → P(IR), as Γ1(ω1) = [−K, K].
In this example, Γ1 is instrumental to represent the
output (imprecisely known) of a deterministic exper-
iment. For example, it represents the amount of
money that, with absolute confidence, we shall receive,
if we only know that it lies between −K and K.

Then, let us also consider another probabilistic space
(Ω2,A2, P2) that corresponds to the outcome of toss-
ing a fair coin (Ω2 = {h, t}), and the random set Γ2 :
Ω2 → P(IR) defined as Γ2(h) = Γ2(t) = [−K, K]).
In turn, Γ2 can be used to represent our gain after
tossing a fair coin: the amount we are going to re-
ceive depends on the coin. The two outcomes are fixed
before we perform the experiment, but we only know
them in an imprecise manner, and actually we have
the same knowledge [−K, K] about these different val-
ues. The random sets Γ1 and Γ2, if regarded as classi-
cal measurable functions on the power set, induce the
same possibility distribution (degenerated in the in-
terval [−K, K]). Therefore, they both have the same
Aumann expectation3 (that coincides with their own
image) and they have null “classical” variance, since
they are constant set-valued functions. But, if we fol-
low Kruse and Meyer’s, interpretation, we suppose
that each of the maps models the imprecise observa-
tion of a classical random variable. Let us recall that,
when the fuzzy random variable is reduced to multi-
valued mapping, Γ, the information that it provides
us about the original random variable X0, can be in-
terpreted as follows: for every ω ∈ Ω, all we know
about the image of ω, X0(ω), is that it is in the set
Γ(ω). So, returning to the example, in the case of Γ1,
we are certain that the variance of the original ran-
dom variable is 0. In the second case (Γ2) we only
know that it is a value between 0 and K2.

In practice, a fuzzy random variable can also be used
to represent the imprecise observation of a certain
property of the elements of a population Ω. To rep-
resent the information provided by the imprecise ob-
servations about the variance of the (classical) un-
derlying random variable that models this property,
we must resort to the variance defined by Kruse and
Meyer.

3The Aumann expectation of a random set is defined as the
union of the expectations of all its measurable selections.



3.2 Second-order imprecise model

In [20], Kruse defines the variance of a multi-valued
mapping, Γ : Ω → P(IR), as the set:

VarKr(Γ) = {Var(X) | X ∈ S(Γ)},

where S(Γ) represents the set of all measurable se-
lections of the multi-valued mapping. The preceding
definition can be easily extended to the case of fuzzy
random variables as follows:

Definition 2 Let us call Kruse’s variance of the fuzzy
random variable X̃ : Ω → P̃(IR), the only fuzzy set
determined by the nested family of sets:

F (α) := VarKr(X̃α),∀α,

where X̃α is the multi-valued mapping α-cut of X̃.

We refer to the fuzzy set whose membership function
is given by the expression

π(x) = sup{α ∈ (0, 1] | x ∈ VarKr(X̃α)}, ∀x ∈ IR

Let us notice that:

{x | π(x) > α} ⊆ F (α) ⊆ {x | π(x) ≥ α},∀α ∈ (0, 1).

Hence, it is easy to see that the following equality
holds:

π(x) = sup{acc(X) | Var(X) = x}, ∀x ∈ IR.

From now on, we shall denote by VarKr(X̃) the fuzzy
set with membership function π. It is clear that this
definition is compatible with the second-order possi-
bility model shown in Section 2. Therefore, the mem-
bership degree of a value x to the fuzzy set VarKr(X̃)
represents the maximal possibility degree of the orig-
inal random variable among those whose variance is
equal to x. See [19] for the computation of the em-
pirical set-valued variance of a finite set of set-valued
realizations and [10] for the fuzzy case.

When the outputs of a random experiment are impre-
cisely observed, our knowledge about their dispersion
is also imprecise. So, Kruse’s variance can be called
potential variance, since π(x) is the degree of possi-
bility that x is the variance (in case it exists) of the
actual underlying random variable. VarKr(X̃) reflects
the imprecision pervading the observation of the out-
come of a random experiment. Therefore, it produces
a crisp set of potentially attainable variances (when
the imprecise observations of the random variable are
set-valued) or a fuzzy set (when it is represented by
a fuzzy random variable). It does not produce a real
value, like the “classical” observable variance of the

previous section. Thus, when the random set (or the
fuzzy random variable) represents the imprecise ob-
servation of a “classical” random variable, the descrip-
tion of the changes of the observed sets or fuzzy sets
via a classical variance is not enough to inform about
the variability of the underlying phenomenon. Let us
show an illustrative example.

Example 2

(a) The set Ω = {ω1, . . . , ω4} comprises four ob-
jects, whose actual weights are X0(ω1) = 10.2,
X0(ω2) = 10.0, X0(ω3) = 10.4, X0(ω4) =
9.7. We sense the weights with a digital de-
vice that rounds the measure to the nearest in-
teger, and displays the value ‘10’ in all of these
cases. Therefore, we get the constant random set
Γ(ωi) = [9.5, 10.5],∀ i = 1, . . . , 4. The true vari-
ance of the four measurements is 0.067. Since we
only know the information provided by Γ, all we
can say about the variance is that it is bounded
by the values 0 and 0.25. This is the information
that Kruse’s variance gives us. Misleadingly, the
classical variance of Γ returns the value 0.

(b) Case (a) is an example where the classical vari-
ance of the random set Γ is not an upper bound
of the actual value of the variance of X0. Nei-
ther is it, in general, a lower bound, as we are
going to show. Let us suppose that four objects
ω1, . . . , ω4 weigh the same: X0(ω1) = X0(ω2) =
X0(ω3) = X0(ω4) = 9.8g. Let us also sup-
pose that, for some reason, the weight of the
fourth object was imprecisely measured, and we
only know that it is between the values 9.5 and
10.5. Our knowledge about the variable X̃0 is
given by the random set Γ : ω → P(IR) de-
fined as Γ(ω1) = Γ(ω2) = Γ(ω3) = {9.8} and
Γ(ω4) = [9.5, 10.5]. The true variance of X0 is
0, but the “classical” variance assigns a strictly
positive value to it. On the other hand, Kruse’s
variance produces the interval [0, 0.092].

The last case suggests that the observed classical vari-
ance of a fuzzy random variable can be misleading.
It may reflect the variance of the imprecision of the
output (the knowledge of object ω4 is more imprecise
than the knowledge of the other objects), rather than
the actual variability of the underlying phenomenon.

On the other hand, neither Kruse’s variance is deter-
mined by the classical one, nor the converse holds. Let
us illustrate these ideas with the aid of the following
examples.

Example 3 Let us consider now the random sets in
Example 1. According to Kruse, their respective vari-



ances represent the sets of possible values of the vari-
ance of the corresponding original random variable.
Thus, in that example, the respective variances are,
according to this definition, VarKr(Γ1) = {0} and
VarKr(Γ2) = [0,K2]. However, the classical variance
assigns the value 0 to both random sets.

We observe that Kruse’s variance allows us to distin-
guish between two fuzzy random variables with the
same “classical” probability distribution (the proba-
bility measure induced by the fuzzy random variable
in the classical model) when they are used in this con-
text. However, it does not always associates different
values to two fuzzy random variables with different
“classical” variance, as we shall see in the example
that follows.

Example 4 Let us consider the probability space
(Ω2,A2, P2) of Example 1 and the constant random
set Γ2 : Ω2 → P(IR), defined there. Let us also
define the random set Γ3 : Ω2 → P(IR) as follows:
Γ3(h) = [−K, 0] and Γ3(t) = [0,K]. In both cases,
Kruse’s variance produces the interval [0,K2]. But
the classical variance would assign the value 0 to Γ2

and a strictly positive value to Γ3.

The last example serves us to observe that Kruse’s
variance does not allow, generally speaking, to quan-
tify the dispersion of the images of a fuzzy random
variable, when it is considered as a classical measur-
able function.

In fact, the scalar variance of section 3.1 could be
used in the context of an imprecisely observed random
variable, but it could only account for an “observable
variance”, namely the part of the variance that can
be measured, despite the imprecision of the observa-
tion. Indeed in Example 1, the fair die case leads
to a zero observable variance, because the variability
of the die is drowned into the imprecision of the ob-
servation. However, it seems that the scalar variance,
when non-zero, may partially account for the variabil-
ity of the underlying phenomenon: if the fuzzy ran-
dom variable represents an imprecisely observed ran-
dom variable with disjoint imprecise realizations, then
it has a positive scalar variance that reveals the non-
deterministic nature of the underlying process (even
if only partially). On the other hand, as the above
examples show, a zero scalar variance is not enough
to conclude whether the observed phenomenon is ran-
dom or not. Nor does a positive scalar variance reveal
the actual randomness of the phenomenon if the re-
alizations are nested fuzzy sets. It only points out
the variability of the imprecision of the observed out-
comes. In fact, one way of computing the observable
variance as a scalar is to choose an appropriate dis-
tance between fuzzy sets instead of ρ2 in the scalar

variance (1), namely one that vanishes when the two
fuzzy intervals overlap: consider two fuzzy intervals
F and G, and let

dmin(Fα, Gα) = inf{| x− y |, x ∈ Fα, y ∈ Gα},

and (for instance) dmin(F,G) = infα>0 dmin(Fα, Gα).

We can check that this new scalar variance is less that
the lower bound of Kruse’s variance. In example 2(b),
the above scalar variance is now 0, and so is it in ex-
ample 4. In example 2(b), the Körner scalar variance
essentially reflects the variability of the precision of
the observation.

3.3 First-order imprecise model

In this section, we propose a model that also takes
imprecision into account, although in a different man-
ner. We consider here a first-order imprecise probabil-
ity model, instead of a second-order one. Therefore,
the new variance assigns a crisp set to every fuzzy
random variable. With the help of easy examples,
we shall show the similarities and differences between
this new model and the present one.

The present definition of variance is based upon the
first-order, imprecise probabilities model that was
shown at the end of section 2. As we pointed out
there, we consider, on the one hand, the probability
measure P (defined over A), that models a first sub-
experiment, and, on the other hand, a family of con-
ditional possibility measures, {Π(· | ω)}ω∈Ω, defined
as follows:

Π(A | ω) = ΠX̃(ω)(A) = sup
x∈A

X̃(ω)(x), ∀A ∈ βIR, ∀ω.

In the preceding formula, ΠX̃(ω) represents the possi-
bility measure determined by the possibility distribu-
tion X̃(ω) : IR → [0, 1]. So, the value Π(A|ω) is an up-
per bound for the probability that the final outcome
is in A, verifying the hypothesis that the outcome of
the initial experiment is ω. This family of possibility
measures represents our (imprecise) knowledge car-
ried by X̃ about the relation that exists between the
outcome of the first sub-experiment and the set of all
the possible outcomes of the second one.

Therefore, the relationship between the two experi-
ments is given by a transition probability Q(·|·)
on βIR × Ω, i.e., a function such that:

1. Q(·|ω) is a probability measure for all ω ∈ Ω.

2. Q(A|·) is A− β[0,1]-measurable for all A ∈ βIR,

and the available knowledge about this transition
probability is modelled by the conditional possibil-



ity measures {Π(·|ω)}ω∈Ω, in the sense that Q(·|ω) ≤
Π(·|ω) for all ω ∈ Ω.

Within this context, all we know about the probabil-
ity distribution that models the second experiment is
that it is given by the formula:

Q2(B) =
∫

Ω

Q(B|ω) dP (ω), ∀B ∈ βIR,

where Q(·|·) belongs to the class:

C = {Q(·|·) | Q(A|ω) ≤ Π(A|ω) ∀A ∈ βIR, ω ∈ Ω}.

In other words, all we know about Q2 is that it is in
the set

C2 = {Q2 : βIR → IR | ∃Q(·|·) ∈ C where

Q2(B) =
∫

Ω

Q(B|ω) dP (ω), ∀B ∈ βIR}, (2)

It is easily observed that this is a generalization of the
concept of probability induced by a classical random
variable. Let us suppose that the images of the fuzzy
random variable X̃ are real values. In other words, let
us suppose that for all ω ∈ Ω, Π(·|ω) is, in particular,
the degenerated probability measure in a point X(ω).
In this case, we are admitting a complete confidence
about the relationship between both sub-experiments
(if the result of the first sub-experiment is ω, then
we are absolutely certain the outcome of the second
experiment is X(ω)). It is easy to prove that the class
C2 in equation (2) is reduced to the singleton {PX} (in
this case, the probability induced by X : Ω → IR in
βIR is the only probability measure compatible with
P and Π(·|·)). Besides, the variance of a classical
random variable, Var(X) =

∫
Ω
[X − E(X)]2dP, can

be alternatively expressed as the following Lebesgue
integral with respect to PX :

Var(PX) =
∫

IR

(
id−

∫
IR

id dPX

)2

dPX ,

where id:IR → IR is the identity function4. There-
fore, in the proposed imprecise probabilities model,
all we know about the variance of the output of the
second sub-experiment is that it belongs to the set
VarIm 1(X̃) defined as follows:

Definition 3 Consider a probability space (Ω,A, P ),
and a fuzzy random variable defined over it, X̃ : Ω →
P̃(IR). For each ω ∈ Ω, let Π(·|ω) denote the possi-
bility measure associated to the possibility distribution

4Since the variance of a classical random variable is a func-
tion of its induced probability distribution,we shall commit a
small abuse of the language from now on and we shall express
it as the variance of such probability distribution.

X̃(ω). We define the first-order imprecise variance of
X̃ as the (crisp) set:

VarIm−1(X̃) = {Var(Q2) | Q2 ∈ C2}

where

C2 = {Q2 : βIR → IR | ∃Q(·|·) ∈ C s.t.

Q2(B) =
∫

Ω

Q(B|ω) dP (ω), ∀B ∈ βIR},

and

C = {Q(·|·) | Q(A|ω) ≤ Π(A|ω) ∀A ∈ βIR, ω ∈ Ω}.

VarIm−1(X̃) is the set of possible values of the vari-
ance of the second sub-experiment, according to the
available information. We are going to compare, on
an example, the information provided by VarIm 1 and
VarKr about the variance of the “original” probability
distribution.

Example 5 Let us consider the unit interval, Ω =
[0, 1], equipped with the Lebesgue measure. Let us also
consider the fuzzy random variable X̃ : Ω → P̃(IR)
constant in the fuzzy set Ã determined by the α-cuts
Ãα = [−(1 − α), 1 − α]. It can be easily checked that
[VarKr(X̃)]α = [0, (1 − α)2], ∀α > 0. On the other
hand, we can observe that VarIm−1(X̃) is the inter-
val [0,1/3]5. It is clear that this interval is strictly
contained in the support of VarKr(X̃). Therefore, un-
der the first-order model here described, the variance
of the results of the experiment is known to be less
than or equal that 1/3, while under the second-order
probability model, a strictly positive possibility degree
is also assigned to all variables between 1/3 and 1.

Despite the fact that the two models considered in
last example (orders 1 and 2 imprecise probability
models) are associated to a possibilistic interpreta-
tion of fuzzy sets, the meaning of the two definitions
of variance derived from them are quite different. In
the second-order model, the fuzzy random variable,
X̃, represents an imprecise observation of a particu-
lar (classical) random variable, X0 : Ω → IR. For each
possible result of the random experiment, ω ∈ Ω, the
value X0(ω) is fixed but we have imprecise knowledge
about it. However, in the first-order model, the fuzzy
random variable X̃ represents our (imprecise) knowl-
edge about the link between two steps of a random
experiment. Thus, the same result ω in the first step
can be associated to different outcomes of the sec-
ond step. Under the first-order model assumptions,
we must combine the probability measure associated

5It is actually equal to 1
2

∫ 1

0
(inf Aα − sup Aα)2dα. See

Dubois et al.[10].



to the first step with the probability measure that re-
lates the first step with the second one. As our knowl-
edge about the latter conditional probability measure
is given by a pair of upper-lower probability measures,
so is our knowledge about the probability measure
that governs the whole process.

Let us examine now the relation between both models
in the particular case where X̃ is a random set. (X̃(ω)
is a crisp set, ∀ω ∈ Ω.) In this case, Kruse’s variance
is defined as:

VarKr(X̃) = {Var(PX) | X ∈ S(X̃)}

= {Var(Q) | Q ∈ P(X̃)},

where P(X̃) is the set of probability measures associ-
ated to the measurable selections of X̃,

P(X̃) = {PX |X ∈ S(X̃)}.

On the other hand, the first-order imprecise variance
is given by the formula:

VarIm 1(X̃) = {Var(Q2) | Q2 ∈ C2}, where

C2 = {Q2 | Q2 marginal of P ×Q(·|·), Q(·|·) ∈ C},

and C is the set of transition probability measures:

C = {Q(·|·) | Q(A|ω) ≤ Π(A|ω) ∀A ∈ βIR, ω ∈ Ω}.

In the above formula, Π(·|ω) is the Boolean possibil-
ity measure associated to the (crisp) set X̃(ω). For
an arbitrary measurable selection of X̃, X ∈ S(X̃),
and a fixed ω ∈ Ω, let us consider the probability
measure degenerated on the point X(ω), δX(ω). Let
us construct the function Q(·|·) : βIR × Ω → [0, 1] as
Q(·|ω) = δX(ω), ∀ω ∈ Ω. It is easy to see that Q(·|·) is
a transition probability measure and it belongs to the
set C. So the probability measure PX : βIR → [0, 1]
belongs to C2. Thus, we observe that the set P(X̃)
is included in C2 and so VarKr(X̃) is contained in
VarIm 1(X̃). Furthermore C2 is a convex set of prob-
ability measures, but P(X̃) is not convex in gen-
eral. (The properties of P(X̃) are studied in detail
in [6, 7, 27, 28, 29].) These differences can influence
the calculation of the variances, as shown in the fol-
lowing example.

Example 6 Consider again the random sets used in
example 1. According to the model described in that
section, in the first case the first sub-experiment is
deterministic, and the relationship between both sub-
experiments is determined by Γ1. This random set
represents an “empty” conditional probability distri-
bution over [−K, K]. Therefore, the set of conditional
probability measures Q(·|ω1), that are compatible with

them is the set of all measures that assign probability 1
to the set [−K, K]. This way, the following informa-
tion is given: once the first experiment is performed,
a random number between −K and K is chosen, and
not a number selected beforehand. This is the differ-
ence between the second-order model described before
and the current model. In the second-order model, the
number was selected beforehand, but it was unknown.

Now, in the case of Γ2, the first sub-experiment con-
sists in tossing a coin. Once the result has been ob-
served, it is chosen, whatever the result is, a random
number between −K and K. Therefore, it is intu-
itively clear in this example that, regarding the out-
come of the second sub-experiment, we could obvi-
ate tossing the coin (we could not in the second or-
der model) and then Γ1 and Γ2 show, according to
the interpretation of the first-order model the same
information. Thus we observe that VarIm−1(Γ1) =
VarIm−1(Γ2) = [0,K2].

Let us comment on some relationships that exist be-
tween the variance of this imprecise, first-order model,
and the classical variance of section 3.1.

We easily observe that none of them can be calculated
as a function of the other one:

Example 7 Let us consider, on the one hand, the
random set Γ1 defined in Example 1 and, on the other,
the random set Γ5, defined over the same space, of
the form Γ5(ω1) = {0}. The “classical” variance as-
signs value 0 to both random sets, while the imprecise
variance assigns the set of values [0,K2] to the first
problem, and the singleton {0} to the second.

In a similar manner, we can check that the classical
variance can not either be expressed as a function of
the variance that is considered in this section. It is
enough to observe the random sets of Example 4.

4 Concluding remarks

In this work we have studied different proposals to
generalize the concept of variance of a real random
variable to fuzzy random variables. In Körner ’s work
[17] is stated a more general definition, valid when
the final space is IRn, with arbitrary n ∈ IN . In that
work, the variance of X̃ is defined as the expecta-
tion of the squares of the distances of their images
to their Fréchet expectation. In the particular case
where X̃ is a classical random vector and the chosen
distance is Euclidean, the result of this calculation is
the moment of inertia. This way, Körner’s procedure
generalizes, in the n-dimensional case, a concept that
may be useful to measure the dispersion of the images
of the fuzzy random variable, but not directly related



to the concept of variance-covariance matrix.

If, on the contrary, the aim is to generalize the lat-
ter concept, Kruse’s procedure can be applied without
too many changes. Using similar reasoning methods
as those of this author, a fuzzy set over the class of
square matrices can be obtained. It associates, to each
particular matrix, a degree of possibility. This fuzzy
set models the imprecise knowledge available about
the variance-covariance matrix of the “original” ran-
dom vector. In [26], Meyer proposes a definition of
covariance following a path similar to Kruse’s. Ac-
cording to our intuition, the combination of the in-
formation provided separately about the variance of
every component and about the covariance between
them is more imprecise that the straight information
about the variance-covariance matrix.

With respect to the different definitions of variance
considered in this work, we think that none of them is,
in general terms, preferable to the others, but they ei-
ther serve different purposes or reflect different models
of the observed phenomenon, as well as different ob-
servation settings. Therefore, according to the prob-
lem under concern, it should be decided whether the
dispersion needs to be measured as a number, a fuzzy
set or a crisp set. If the fuzzy random variable is in-
terpreted as a classical measurable function, the most
appropriate decision would involve Feng, Körner or
Lubiano et al.’s definitions. It measures the variabil-
ity of the observed membership function, not the vari-
ability of the quantity it possibly describes. Such clas-
sical definitions do not take into account any kind of
imprecision, but they merely quantify the dispersion
of the (fuzzy) images of the fuzzy random variable.

Some of these classical definitions are equivalent to
considering first a representative (numerical) element
of every image of the fuzzy random variable (the cen-
ter point of the 0-cut, for instance) and then calculate
the dispersion of these numerical values. Part of the
actual variability can be observed and measured by
means of a scalar if the fuzzy outcomes are precise
enough and often disjoint. On the other hand, the
average precision of the fuzzy random variable, and
the variance of the precision are other useful evalua-
tions.

If the fuzzy random variable represents an imprecise
measurement of a certain characteristic of the ele-
ments of the sample space, one of the two non-scalar
definitions must be used. For example: let us suppose
we intend to calculate the dispersion of the weights of
a bunch of apples, and we use an imprecise scale. Let
us suppose that, for every confidence level 1 − α we
know that the real weight is at most at dα from the
value produced by the scale. In this case, every α-cut

of Kruse’s variance represents our knowledge about
the true dispersion of the weights of the apples, for
every confidence level 1− α. On the other hand, the
variance proposed in section 3.3 represents the set of
all possible values for the dispersion of the weights, if
we combine the initial randomness (tied to the ran-
dom experiment “choose an apple”) with the random-
ness originated in the degrees of confidence associated
to the scale accuracy. Therefore, if the fuzzy random
variable represents the knowledge about the relation-
ship between the two sub-experiments (“if we choose
the apple ω, the degree of possibility of its weight x
is X̃(ω)(x)”), then the definition proposed in section
3.3 should be used.
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