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Abstract

The objective of this study is to extend the concept of analogous piezoelectric networks to vibration mitiga-
tion of multiple nonlinear resonances. First, the undamped linear part of the electrical network is designed
so as to possess similar modal characteristics as those of the underlying linear mechanical structure. Then,
nonlinear electrical components possessing the same mathematical form as that of the mechanical nonlin-
earities are added to the network. Because both modal and nonlinear analogies are enforced, the electrical
network can be seen as an analogue twin of the mechanical structure. When the network is coupled to
the structure via an array of piezoelectric elements, it is shown numerically and experimentally that such
an analogue twin offers important benefits for vibration mitigation over a broad range of frequencies and
excitation amplitudes.
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1. Introduction

Looking back over the origins of analogue electronics offers the opportunity to remember that, initially,
the word analogue was not related to a continuously variable signal but to a real analogy between physical
quantities. Indeed, before the appearance of digital computers in the 1960s, analogue computers based on
electrical networks were able to simulate the dynamics of complex systems ruled by differential equations
[1, 2]. In structural dynamics, the ”Cal Tech Electric Analog Computer” [3] was used to build a reduced-
order model of an airplane in order to simulate flutter instabilities [4]. McNeal contributed significantly
to this prolific field of research before the increasing power of digital computers finally encouraged him to
develop the finite element (FE) method for structural analysis, which resulted in the NASTRAN computer
program [5].

The FE method enabled the creation of what was later called a digital twin [6] capable of reproducing
the dynamics of a real structure in a virtual domain synthesized by a digital computer. The paradigm
was different with the analogue case because the computer and the twin were actually the same physical
object allowing real-time measurements of the simulated physical quantities. Analogue computers became
obsolete before the 1970s, but the corresponding analogous electrical networks were revived in the 2000s for
the purpose of vibration absorption [7–9]. Indeed, coupling a mechanical structure to an electrical network
possessing similar modal properties can achieve broadband vibration mitigation.

Based on recent developments with analogous piezoelectric networks [10–12] and with piezoelectric non-
linear vibration absorbers [13–16], the central contribution of this paper is to develop an analogue twin of a
nonlinear mechanical structure, i.e., a fully passive analogous electrical network that mimics the dynamics of
the host structure. We note that the word analogue recovers herein its present meaning, i.e. a continuously
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variable signal, whereas the word twin refers to the analogy. The electromechanical analogy beyond the lin-
ear regime is ensured by adopting the principle of similarity proposed in [17], i.e., a nonlinearity possessing
the same mathematical form as that of the mechanical nonlinearity is introduced in the analogous electrical
network. Doing so, vibration mitigation of nonlinear resonances can be achieved over a broad range of
frequencies and excitation amplitudes.

The paper is organized as follows. The main principles of piezoelectric shunt damping of a single linear
resonance are first recalled in Section 2. The extension to vibration mitigation of multiple linear resonances
through the use of analogous electrical networks is then discussed. The concept was recently applied to
various linear structures [12], but another contribution of the present paper is to provide a clear framework
for optimizing modal damping over a broad frequency range by the introduction of adequate electrical
resistances. Section 3 introduces the concept of an analogue twin of a nonlinear host structure and validates
it numerically using a piezoelectric beam with a cubic nonlinearity. The experimental demonstration of the
proposed developments is carried out in Section 4. The electromechanical parameters of the experimental
piezoelectric beam are first identified before an analogous electrical network with a nonlinear capacitor is
coupled to the beam. Finally, the conclusions of the study are drawn in Section 5.

2. Vibration mitigation based on analogous piezoelectric coupling

2.1. Single mode damping with a linear piezoelectric tuned vibration absorber

The resonant piezoelectric shunt [18], also called piezoelectric tuned vibration absorber, is used to reduce
the vibration amplitude of a single linear resonance. It generally comprises a piezoelectric transducer of
capacitance C? at zero strain connected to an inductance L? and a series resistance R?. Considering a
single-degree-of-freedom mechanical system coupled to such a resonant shunt, the governing equations of
motion are [

m? 0
0 L?

] [
ü
q̈

]
+

[
c? 0
0 R?

] [
u̇
q̇

]
+

[
k? + e2

C? − e
C?

− e
C?

1
C?

] [
u
q

]
=

[
f
0

]
, (1)

where u represents the mechanical displacement, q is the electrical charge displacement and f is the excitation
force. The constants m?, c?, k?, and e are the modal mass, damping coefficient, stiffness in short circuit
and coupling coefficient, respectively. A piezoelectric coupling factor is commonly defined as

kc =
e√
k?C?

=

√
ω2
o − ω2

s

ω2
s

where ωs =

√
k?

m?
and ωo =

√
k? + e2

C?

m?
, (2)

ωs and ωo being the natural angular frequencies in short and open circuit. The inductance and resistance
values

L? =
1

C?ω2
o

and R? =

√
3

2

kc
C?ωo

(3)

minimize the maximum of the dynamic compliance frequency response function (FRF) [19, 20]. We note
that Eq. (3) provides a sufficient approximation of the optimal resistance when dealing with reasonable
values of the coupling factor kc ≤ 0.2.

2.2. Vibration mitigation of multi-resonant structures

The extension of resonant piezoelectric shunts to multimodal structures consists in designing a multi-
resonant circuit whose electrical natural frequencies are sufficiently close to the mechanical resonances to
be controlled. By analogy with a mechanical structure, one can define for each electrical mode i a modal
inductance L?i , a modal capacitance C?i and a modal damping ratio ξei. In order to be tuned to the natural
angular frequencies in open circuit ωoi, the electrical network has to satisfy

L?iC
?
i =

1

ωo
2
i

and ξei =

√
3

8
kci (4)
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Beam (Steel) Patches (PZT 5A)
Length lb = 700 mm lp = 67 mm
Width b = 14 mm b = 14 mm

Thickness hb = 14 mm hp = 2 mm

Second moment of area Ib =
bh3

b

12 = 3201 mm4 Ip =
b((hb+2hp)

3−h3
b)

24 = 1801 mm4

Density ρb = 7850 kg/m3 ρp = 7800 kg/m3

Young’s modulus Yb = 210 GPa Y Ep = 66 GPa
End stiffness kend = 3810 N/m -
Permittivity - εσ33 = 1800ε0 = 16 nF/m

Charge constant - d31 = −190 pC/N

Table 1: Dimensions and properties for the beam and the piezoelectric patches.

for all the mechanical resonances to be damped. These two optimal conditions directly come from Eq. (3)
and the definition of an optimal quality factor

1

2ξei
=
L?iωoi

R?i
=

√
2

3

1

kci
. (5)

With a single piezoelectric transducer, the most direct approach is the so-called multi-branch shunt
[15, 21, 22] made of inductors and capacitors organized with just as many branches as the number of targeted
mechanical resonances. Because the addition of external capacitors in the shunt decreases electromechanical
coupling [23] and because the positioning of a single piezoelectric patch is generally not optimal for different
mode shapes [24], this solution does not provide the best coupling factors kci for all the considered modes.

Another solution for multimodal damping is based on analogous piezoelectric coupling [8–12]. This
technique requires several piezoelectric transducers that are interconnected with electrical components so as
to build a multi-resonant network with modal properties similar to those of the considered structure. The
analogy is no more restrained to the natural frequencies (as with the multi-branch shunts) but similar mode
shapes are also ensured, which justifies the denomination as an analogue twin. We note that the analogy
is strictly valid only for the undamped dynamics because large damping is to be deliberately introduced in
the electrical network to cause vibration mitigation.

2.3. Analogous electrical network for a beam

The structure under consideration in this paper is a beam whose dimensions and material properties
are given in Table 1. One end of the beam is fully clamped whereas the other end is equipped with a thin
lamina that generates an additional stiffness kend. The design of an electrical analogue for beam structures
is fully described in [10] but the main steps of the method are recalled in this section for completeness.

First, the fourth-order partial differential equation that defines the dynamics of an Euler-Bernoulli beam
is considered :

Y I
∂4qw
∂x4

+ ρS q̈w = 0, (6)

where qw is the transverse displacement, q̈w its second time derivative, x corresponds to the longitudinal
direction and t to the time. ρ is the density of the beam, S is the cross-sectional area, Y is the Young’s
modulus, and I is the second moment of area. Three new variables qθ, Vθ and Vw are introduced to obtain
an equivalent formulation with first-order spatial derivatives:

qθ =
∂qw
∂x

, Vθ = −Y I ∂qθ
∂x

and Vw = −∂Vθ
∂x

, (7)

which implies

ρSq̈w = −∂Vw
∂x

. (8)

3



VwL

L

VwR

VθL VθR

˙qwL ˙qwR

q̇θL q̇θR

C

1
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Figure 1: Electrical beam unit cell with damping components.

Figure 2: Electrical analogue of a cantilever beam made of n = 10 unit cells.

These continuous equations can be spatially discretized with a finite difference scheme, leading to

L ¨qwI = VwL − VwR, VθI = 1
C (qθL − qθR),

â
2 VwL = VθL − VθI, â

2 qθL = qwI − qwL,
â
2 VwR = VθI − VθR, â

2 qθR = qwR − qwI.
(9)

where â is the discretization step between the left and the right sides, denoted ’L’ and ’R’ respectively, and
’I’ corresponds to the internal equidistant position. The set of equations (9) is represented by the electrical
unit cell drawn in Fig. 1 (with RL = RC = RT = 0), which is finally equivalent to a discrete beam segment.
The analogous electrical unit cell is made of an inductance L = ρSâ representing the analogue of a point
mass and the capacitance C = â/Y I represents a bending compliance. There is also a transformer of ratio
â that is analogous to a mechanical lever having the length of the discretization step.

The complete analogous network is built by reproducing this unit cell along one direction, taking into
account that the number of unit cells per wavelength has to be sufficiently large to approximate the contin-
uous mechanical medium. The electrical analogue of a beam with n = 10 unit cells is represented in Fig. 2.
In order to approximate the mode shapes of a cantilever beam, we also need to ensure analogous boundary
conditions. This is realized by short-circuiting one end of the network (equivalent to zero force and moment)
while leaving open the other end (equivalent to zero displacement and angle). Another critical condition is
the tuning of the dispersion relation in the electrical waveguide. From the discrete model, it can be shown
that the electrical parameters do not necessarily have to be equal to their electrical analogues as long as
they satisfy

1

â2
1

LC
=

1

a2
kθ
m
, (10)

where kθ is the bending stiffness of the mechanical unit cell, m is its mass and a = lb/n its length [10].
The following step is to couple the considered mechanical beam to its analogous electrical network with

an array of piezoelectric patches. Thanks to the inherent capacitance C of the piezoelectric patches, there
is no need for external capacitors for the analogue of the bending stiffness. Only transformers and inductors
satisfying Eq. (10) are required for the analogue of a clamped beam. In the present case, however, one
has to take into account the clamping through the thin lamina. In the linear regime, the lamina can be
modeled by a spring of stiffness kend. So, its analogue is a capacitor to be placed at the end of the electrical
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Figure 3: Beam coupled to its electrical analogue through an array of piezoelectric patches.

Electrical network

q̇I
VI

b Electrical network

FmL

qmL
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qeL qeR

FeR

qmR

FmR

Figure 4: Interconnected array of piezoelectric patches and corresponding unit cell with left and right electromechanical degrees
of freedom [25].

network, as shown in Fig. 3. The next question is to determine the value of the capacitance that ensures the
analogy with the mechanical stiffness. First considering a purely mechanical case, identical eigenfrequencies
are obtained for two structures having the same nondimensionalized dynamic equations. In the present
example, a nondimensionalized parameter involving the end stiffness is a2kend/kθ. The analogous electrical
parameter is â2C/Cend because of the equivalence between a capacitance and a compliance and between a
lever and a transformer. A relation linking the end capacitance to its analogous linear stiffness is thus given
by

Cend =
kθ
kend

â2

a2
C. (11)

This end capacitance stiffens the electrical network in a similar way that the lamina stiffens the mechanical
structure. As shown by the following numerical results, the additional capacitance in Eq. (11) ensures the
frequency condition in Eq. (4) so as to generate a real analogy in the electrical domain.

2.4. Linear model for the electromechanical structure

As seen in Fig. 3, the considered beam is covered with a piezoelectric network in such a way that the
electromechanical system consists of a periodic layout of electromechanical unit cells coupling mechanical
and electrical degrees of freedom. Focusing on a single unit cell of the one-dimensional waveguide in Fig. 4,

the mechanical displacement vector is denoted qm =
[
qmL qmR

]T
and the electrical charge displacement

vector is qe =
[
qeL qeR

]T
, where the letters ’L’ and ’R’ refer the the left and right sides of the unit cell.

Similarly, a force vector Fm =
[
FmL FmR

]T
is defined together with a vector containing the electrical

voltages on both sides of the unit cell, Fe =
[
FeL FeR

]T
. Then, as detailed in [25], the mechanical and

electrical degrees of freedom can be combined thanks to the following matrix formulation :[
Mm 0
0 Me

] [
q̈m

q̈e

]
+

[
Cm 0
0 Ce

] [
q̇m

q̇e

]
+

[
Km + 1

CKcKc
T 1

CKcS
T

1
CSK

T
c Ke

] [
qm

qe

]
=

[
Fm

Fe

]
, (12)

where q̇ and q̈ are the first and second time derivatives of the displacement vectors q, the matrices Km,
Cm and Mm are the mechanical stiffness, damping and mass matrices, respectively, whereas Ke, Ce and
Me are their electrical analogues. The constant C is the capacitance of the unit cell at zero mechanical
displacement, Kc is a coupling vector and S is a matrix that only depends on the internal connections of
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Transformer ratio â = 2
Piezoelectric capacitance C = 5.08 nF

Inductance L = 0.247 mH
Resistance (in inductor) RL = 8.21 mΩ
Resistance (in capacitor) RC = 18.2 kΩ

Resistance (in transformer) RT = 76.1 Ω
End capacitance Cend = 14.5 mF

Table 2: Values of the electrical components for the model with n = 100 unit cells.

the electrical network:
qI = STqe, (13)

where qI is the electrical charge flowing through the piezoelectric patches as seen in Fig. 4. With the proposed
formulation, the coupled problem is organized like any mechanical problem involving mass, damping and
stiffness symmetric matrices. The only difference is that the displacement and force vectors contain both
mechanical and electrical contributions.

First focusing on the mechanical degrees of freedom, Appendix A provides all the details required to
build the matrices Mm, Km and Kc in Eq. (12) for the case of homogenized piezoelectric beam unit cells.
The constants used for the numerical calculations are given in Table 1. No mechanical damping is considered
(Cm = 0) and 100 elements are employed to discretize the whole cantilever beam. This is largely sufficient
because the focus is on the first three modes of the beam. Concerning the electrical matrices in Eq. (12),
the topology of the electrical network has to be considered. The purely electrical unit cell in Fig. 1 leads to
the electrical charge displacement and voltage vectors:

qe =


qwL

qθL
qwR

qθR

 and Fe =


VwL

VθL
−VwR

−VθR

 , (14)

where the electrical charge displacements qw and qθ are the analogues of the linear and angular mechanical
displacements W and θ, whereas the opposite of the voltage contributions Vw and Vθ are the analogues of
the shear force and bending moment, respectively [10]. The set of discrete equations obtained from Fig. 1
gives the electrical matrices S, Me, Ce and Ke that are detailed in Appendix A. The numerical values
used for the electrical components are given in Table 2. The constant â depends on the transformer ratio
that is selected for the realization of the electrical network, and the inductance L can then be tuned from
Eq. (10).

2.5. Piezoelectric coupling factors

The stiffness of the thin lamina kend and its analogous capacitance Cend can be added to the model by
introducing diagonal terms in the final stiffness matrix at the positions of the corresponding two degrees of
freedom. In the end, analogous boundary conditions are applied to the mechanical and electrical degrees
of freedom: W , θ, qw, qθ are all fixed at the clamped end, whereas the other degrees of freedom are free
from external loads. The resulting FE model of the n = 100 electromechanical unit cells is only made of 400
degrees of freedom which allows fast and sufficiently accurate computing of the low-frequency dynamics.

To compute the short- and open-circuit eigenfrequencies of the electromechanical model, L is set to 0 or
to a very large value compared to the nominal one, respectively. This means that, if there are additional
capacitors in the electrical network, the so-called short-circuit eigenfrequency is not necessarily the same as
when short-circuiting all the piezoelectric patches. The first short-circuit eigenfrequency with an infinite end-
capacitance is employed to update kend from available experimental data [14]. The analogous capacitance
Cend can then be calculated from Eq. (11). The eigenfrequencies of the first three modes are given in
Table 3 together with the corresponding coupling factors. The first coupling factor is smaller because of
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fs (Hz) fo (Hz) kc
Mode 1 29.72 30.03 0.144
Mode 2 154.14 157.37 0.206
Mode 3 429.27 438.43 0.208

Table 3: Eigenfrequencies and coupling factors for the first three modes of the ideal beam.
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Figure 5: Simulated FRF with open-circuited patches (· · · ) and after coupling to the piezoelectric network with RL only (−−),
with RL and RC (− · −) and with RT only (—).

the influence of both the additional capacitance and the end stiffness due to the lamina. While having
an important contribution in the modal stiffness of the first mode, the lamina does not participate to the
piezoelectric coupling because the patches are only placed along the main beam. Conversely, the lamina and
the additional capacitance do not have a strong influence on the higher modes so that the coupling factors
are very similar to those obtained with a cantilever beam.

2.6. Optimal resistance for multimodal damping

Although the tuning of the network inductance from Eq. (10) ensures similar natural frequencies in the
mechanical and electrical domains, damping is also required in the electrical network. Because it corresponds
to what is usually observed in practice, the first case considered is a resistance in series with the inductance,
i.e., RL 6= 0 and RC = RT = 0, see Fig. 1. According to Eq. (5), the optimal damping for the first mode
requires

RL =

√
3

2
kc1ωo1L. (15)

The FRF at the end of the beam in Fig. 5 depicts that approximately equal peaks are obtained for the first
mode. However, the second and third modes require more damping, as evidenced by the dependence on ωo1

in Eq. (15).
When a resistance is in series with the capacitance, i.e., RC 6= 0 and RL = RT = 0, the electrical quality

factor is 1/(ωCRC) and the optimal resistance is

RC =

√
3

2

kc
ωoC

. (16)

The inverse dependence on ωO means that lower-frequency modes require a greater resistance value. A good
trade-off would thus tune RL on the first mode with Eq. (15) and RC on the third mode with Eq. (16). Fig-
ure 5 shows that the first and third modes are now well damped, but the second mode is still underdamped.

Another option is to introduce damping through the resistance in series with the transformer winding,
i.e., RT in Fig. 1, as considered by Porfiri et al. [9]. In this study, they showed that the optimal resistance
for a simply supported beam,

RSS
T =

√
2eθ

â

C

√
L

kDθ
, (17)
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does no longer depend on frequency (see Appendix A for the definition of eθ and kDθ ). Even if there is no
analytical formulation available for a cantilever beam, the numerical results in Fig. 5 show that a resistance
RT ≈ 0.6RSS

T is close to the optimum. We note that it remains a theoretical solution as the resistance in
series with the inductance cannot be neglected in practice.

In summary, the results in Fig. 5 confirm that an analogous electrical network can effectively provide
effective multimodal vibration mitigation.

3. Piezoelectric vibration mitigation of a nonlinear structure

3.1. Single mode damping with a nonlinear piezoelectric tuned vibration absorber

Resonant piezoelectric shunting ensures that the electrical resonance at angular frequency 1/
√
L?C?

matches the open-circuit natural frequency ωo. Because it alters this latter frequency, mechanical non-
linearity results in the detuning of the piezoelectric shunt, which eventually alters damping performance
[14].

To overcome the adverse effect of nonlinearities, as opposed to piezoelectric energy sinks [26, 27], a
solution is to introduce subtle nonlinearities in the electrical circuit according to a principle of similarity,
i.e., the added nonlinearity should possess the same mathematical form as that in the mechanical system
[17]. This tuning strategy was validated experimentally on a single mode thanks to a fully passive nonlinear
inductor exploiting the saturation in the magnetic circuit [14]. It was then shown in [16] that similar
results can be obtained with a digital impedance able to synthesize an adequate nonlinear capacitance. For
example, if the nonlinear mechanical force is a cubic function of the displacement u, fNL = kNLu

3, the
required additional voltage in the shunt should be a cubic function of the electrical charge q [13, 14]:

vNL =
1

CNL
q3 with

1

CNL
= 2

(
L?

m?

)2

kNL. (18)

Adding this nonlinear capacitance in series with the inductor maintains an equal-peak condition over a much
broader range of excitation amplitudes.

3.2. Extension to mitigation of multiple nonlinear resonances

Targeting now the mitigation of multiple nonlinear resonances, the objective is to find the adequate
nonlinearity to be introduced in the electrical network. For a cubic nonlinear stiffness, Eq. (18) gives

1

CNLi

= 2

(
L?i
m?
i

)2

kNL, (19)

where L?i is the modal inductance of the network for electrical mode i. Because there is a priori no specific
relation between the modal inductance L?i and the modal mass m?

i , the optimal electrical nonlinearity
necessarily depends on mode number, as seen in Eq. (19).

To address this issue, our objective is to develop a nonlinear analogous electrical network which combines
the modal analogy used for linear multimodal damping and the principle of similarity used for nonlinear
damping. The modal analogy implies that the mechanical and electrical systems have the same natural
frequencies ωoi =

√
k?i /m

?
i = 1/

√
L?iC

?
i and the same mode shapes. Identical eigenvalue problems for the

two systems means that the modal ”mass ratio” r = L?i /m
?
i is the same for all modes. As a consequence,

the optimal value for the nonlinear capacitance

1

CNL
= 2r2kNL, (20)

becomes independent of the mode number.
For the beam example, the load applied by the lamina can be modeled by a nonlinear force f = kendu+

kNLu
3 where u is the displacement at the end of the main beam [14]. The voltage v = 1

Cend q + 1
CNL

q3 is
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Figure 6: Simulated FRF with the optimal resistance RT and the nonlinear mechanical stiffness but no nonlinear capacitance
for F = 0.67 N from 15 Hz to 700 Hz (−−), for F = 130 N around 160 Hz (− · −) and for F = 2400 N around 440 Hz (· · · )
and with the nonlinear capacitance for F = 0.67 N from 15 Hz to 700 Hz (—).

thus required in the end capacitor which is the analogue of the thin lamina. For the beam, the mass ratio is
r = L/m, where m is the mass of the unit cell and L is the corresponding inductance in the network. The
numerical value for the nonlinear capacitance is then obtained from Eq. (20):

1

CNL
= 2

(
L

m

)2

kNL. (21)

3.3. Numerical validation of the nonlinear analagous electrical network

A nonlinearity kNL = 2.5×109 N·m−3 is introduced in the linear model developed in Section 2 to account
for the geometrically nonlinear effect of the thin lamina. The nonlinear frequency responses in Fig. 6 were
obtained using numerical continuation and the harmonic balance method with 5 harmonics. As shown in
Fig. 7, above a forcing amplitude F = 0.67 N, vibration mitigation of the first mode is severely affected by
the mechanical nonlinearity. The same distortions appear for the second and third modes for F = 130 N and
2400 N, respectively1. According to Eq. (21), whose constants are obtained from Tables 1 and 2, a nonlinear
capacitor 1/CNL = 1.63×106 V·C−3 is introduced in the electrical circuit. Figures 6 and 7 evidence that the
vibration amplitudes are maintained at levels similar to those obtained in the purely linear case in Fig. 5.

Figure 8 offers a closer look around the three modes for slightly lower forcing amplitudes, i.e., for
amplitudes just below the merging of the right resonance peak with a detached resonance curve when no
nonlinearity is introduced in the electrical network [28]. It is clear that the nonlinear network connected
to the nonlinear beam has a behavior very close to the linear network connected to the linear beam, hence
demonstrating the effectiveness of the concept.

The evolution of the frequency response around the first mode for different values of the nonlinear
capacitance and of the resistance is displayed in Fig. 9. Figure 9(a) confirms that the tuning rule (21)
provides the optimal value of the electrical nonlinearity in terms of the H∞ norm. However, Figs. 9(b-c)
shows that Eq. (21) requires appropriate electrical damping. Specifically, the damping in the electrical
analogue needs to be as close as possible to the values given in Eq. (5).

1Note that those latter force levels are impractical for the experimental demonstration discussed later.
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Figure 7: Frequency (a) and amplitude (b) of the local maxima around mode 1 as a function of the forcing amplitude without
nonlinear capacitor (· · · ) and with a nonlinear capacitor (—). Both diamond and circle markers appear when the considered
frequency response features two local maxima.
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Figure 8: Simulated responses for the first three modes of the nonlinear beam connected to a network without nonlinear
capacitance (· · · ), with optimal nonlinear capacitance (—) and for a linear beam connected to a linear network (−−): (a) mode
1 for F = 0.66 N, (b) mode 2 for F = 120 N, (c) mode 3 for F = 2350 N.

4. Experimental validation with the piezoelectric analogue twin

4.1. Piezoelectric beam

The experimental setup in Fig. 10 corresponds to the beam previously described (Table 1). Twenty
piezoelectric stacks with two layers were glued on each side of the beam. The beam end was excited with
an electrodynamic shaker whereas an impedance head measured the input force and the acceleration. A
rational fraction polynomial (RFP) method was used to extract the experimental natural frequencies and
the modal damping ratios of the short-circuit and open-circuit FRFs.

Nelder-Mead simplex optimization algorithm was used to update the numerical model from the available
experimental data. The objective function is the norm of the vector including the errors on the first and
second short-circuit eigenfrequencies as well as the first modal coupling factor. The updating parameters
are the flexural rigidity Y I, the stiffness of the thin lamina kend and the piezoelectric coupling coefficient eθ.
The clamped boundary condition is considered perfect during the optimization because it was observed that
it did not strongly influence the results compared to the loss of flexural rigidity. The initial and updated
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Figure 9: Simulated nonlinear responses around the mode 1 for F = 0.66 N with the nominal nonlinear capacitance (—), with
twice the nonlinear capacitance (· · · ) and with half of the nonlinear capacitance (−−): (a) nominal resistance (RT = 0.6RSS

T ),

(b) underdamped (RT = 0.3RSS
T ), (c) overdamped (RT = RSS

T ).

(a) (b) (c)

Figure 10: Experimental setup : (a) cantilever piezoelectric beam with the thin lamina at its left end [14], (b) one of the
2-layer piezoelectric stacks, (c) close-up of the thin lamina and of the impedance head.

values are listed in Table 4.
We remark that a 12% decrease of the homogenized bending stiffness is required to match the experimen-

tal results. This is partly due to the fact that the considered homogenized unit cells do not precisely model
the 3D effects around the strong steps induced by the piezoelectric patches (almost 30% increase of the beam
thickness). Another reason is that the layers of the home-made piezoelectric stacks are not perfectly glued
together. Both reasons also probably explain the decrease in the global piezoelectric coupling coefficient.

The short-circuit natural frequencies, modal damping ratios and coupling factors of the updated model
are compared to the experimental values in Table 5. The errors on three quantities are identically zero,
because there were three updating parameters. The other errors stay within reasonable limits. Note that
the piezoelectric coupling factors cannot be directly compared to those in Table 3 that are calculated with
an end capacitance in the network. However, they all remain above 10% which can be qualified as a
good piezoelectric coupling for laboratory experiments. The good correlation between experiments and
simulations over the frequency range of interest is confirmed in Fig. 11 where modal damping was added to
the numerical model according to the experimental damping ratios in Table 5.
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Initial Updated Correction factor
Y I (N·m2) 896 789 0.88
kend (N/m) 3810 4789 1.26
eθ (N·m/kV) 5.30 4.19 0.79

Table 4: Updated parameters and correction factors when compared to the numerical model developed in the previous section.

Exp. fs Num. fs Err. fs Exp. ξs Exp. kc Num. kc Err. kc
Mode 1 29.54 29.54 0.0% 0.25% 0.137 0.137 0.0%
Mode 2 144.96 144.96 0.0% 0.20% 0.158 0.171 8.3%
Mode 3 397.28 402.93 1.4% 0.48% 0.163 0.169 3.8%

Table 5: Short-circuit eigenfrequencies, modal damping ratios and coupling factors of the piezoelectric beam (experimental
data and updated numerical model).

4.2. Development of the multi-resonant electrical network

Assembling the analogous network in Fig. 3 requires nine inductors, ten transformers and one capacitor.
The transformers feature a ratio â = 2 and a winding capacitance around 2 nF [10]. As the piezoelectric
capacitance was evaluated to 50.8 nF, the total capacitance is C = 52.8 nF. Equations (10) and (11) were
used to calculate the required electrical components. Eventually, the target values for the inductance and
end capacitance are L = 277 mH and Cend = 104 µF.

The magnetic components were specifically designed for piezoelectric damping applications. For the
inductors, RM14 magnetic cores of permeance 1000 nH were wound with 530 turns of copper wire of 0.4
mm diameter. For the transformers, we used the same ungapped nanocrystalline toroids as the ones in
[11]. The presence of the thin lamina was implemented in the electrical domain by the addition of a bipolar
electrolytic capacitor of value Cend = 103 µF . To validate the electrical dynamics, the ten piezoelectric
patches were replaced by 47.2 nF ceramic capacitors. The resulting passive network is shown in Fig. 12.

To validate the sought modal analogy, an impedance meter measured the admittance at the end of the
network, as shown in Fig. 13. Considering an infinite end capacitance, i.e., a short circuit, the distributions
of the electrical current in Fig. 14 are plotted at frequencies corresponding to the first three maxima of
the admittance. It is seen that the distributions are similar to the mode shapes of a clamped beam, which
confirms that the electrical network has an adequate spatial behavior. To validate its frequency behavior,
the infinite capacitance was replaced by the appropriate end capacitance. The identified natural frequencies
and modal damping ratios are listed in Table 6. The end capacitance induces a first resonance around 30
Hz, as required by the mechanical structure.

Because direct measurements on the isolated electrical components have to be performed at a specific
frequency and amplitude, we preferred to resort to model updating to take into account the real electrical
dynamics including the potential effect of unmodeled parasitic elements. For example, the copper wire
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Figure 11: Experimental (· · · ) and simulated (−−) short-circuit FRFs of the piezoelectric beam.
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Figure 12: Electrical analogue of the cantilever beam with passive inductors, transformers and capacitors.
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Figure 13: Experimental (—) and simulated (−−) FRFs of the electrical network.

resistance in the inductors and transformers was added to the model because of its strong influence on
the electrical quality factors. This is also true for the additional resistors in series with the capacitors.
However, the magnetizing inductance of the transformers [10] was not taken into account so it may have a
slight influence on the equivalent inductance obtained from the first natural frequency. The model of the
electrical network was thus updated using parameters for the inductance L, its series resistance RL and
the resistance of the transformer RT . The objective function is the norm of the vector including the error
on the first natural frequency as well as the errors on the first and second damping ratios, as illustrated
in Table 6. The electrical parameters resulting from this model updating are given in Table 7. Figure 13
shows the good agreement between the experimental results and the numerical simulations computed from
the updated model of the electrical circuit.

The optimal modal damping ratios listed in Table 7 were obtained from Eq. (4). Note that the first
damping ratio of the actual network is slightly above its optimal value, because the resistance RL of the
inductors could not be reduced to a sufficiently low value with the chosen magnetic components. Thanks to
the addition of resistors RC = 1 kΩ in series with the capacitors, the third damping ratio is very close to its
optimum. The second damping ratio is deliberately left below its optimal value to avoid the deterioration
of the other damping ratios.
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(a) (b) (c)

Figure 14: Experimental distributions of the electrical current: (a) mode 1, (b) mode 2 and (c) mode 3.

Exp. fe Num. fe Err. fe Exp. ξe Num. ξe Err. ξe
Mode 1 30.49 30.49 0.0% 8.15% 8.15% 0.0%
Mode 2 153.78 151.92 1.2% 5.74% 5.74% 0.0%
Mode 3 420.25 414.22 1.4% 8.58% 8.71% 1.5%

Table 6: Natural frequencies and damping ratios of the electrical network (experimental data and updated numerical model).

4.3. Linear multimodal damping

The full setup can be seen in Fig. 15 where the electrical network in Fig. 12 is coupled with the beam
through the array of piezoelectric patches. The comparison between the FRFs with open-circuited patches
and with the electrical network in Fig. 16 evidences that effective multimodal damping is achieved for the first
three modes of the beam. The vibration amplitude is reduced by factors of 14, 32 and 9 for modes 1, 2 and
3, respectively. As anticipated in Table 7, the first mode is, however, overdamped. A very good agreement
between the experimental and numerical FRFs can also be noticed. Note that the piezoelectric capacitance
is considered constant in the present study although experiments in [14] suggest that the introduction of a
linear variation of the capacitance with respect to the voltage amplitude may improve the model.

4.4. Nonlinearity in the analogous electrical network

To guarantee satisfactory performance when the mechanical nonlinearity induced by the thin lamina is
activated at greater forcing levels, a nonlinear capacitor satisfying Eq. (18) is to be incorporated in the

electrical network. The first-harmonic approximation is VNL =
3

4CNL
Q3, where VNL is the amplitude of the

nonlinear voltage contribution and Q is the amplitude of the electrical charge. If this nonlinear component
is in series with the linear capacitor Cend, the equivalent variable capacitance is defined as

Cend
NL (Q) =

1

1

Cend
+

3Q2

4CNL

. (22)

Figure 15: The piezoelectric beam coupled to its analogous electrical network.
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L (mH) RL (Ω) RC (Ω) RT (Ω) ξe1 (%) ξe2 (%) ξe3 (%) Cend (µF)
Optimal 277 0 0 659 6.91 10.28 8.82 104
Actual 277 6.82 1000 137 8.15 5.74 8.58 103

Table 7: Parameters of the optimal and actual electrical networks.
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Figure 16: FRFs with open-circuited patches (· · · ) and with the analogous electrical network (model: −− and experiment:
—).

We attempted to implement this law using a capacitor excited beyond its nominal voltage range [29, 30],
i.e., a 100 µF chip multilayer ceramic capacitor with a 2.5 V maximum voltage for conventional use. To
characterize its nonlinear behavior, a 30 Hz harmonic voltage with a variable amplitude from 0 to 22 V was
applied to a 100 Ω resistance in series with the capacitor. The time series of the voltage across the nonlinear
capacitor v is depicted in Fig. 17(a). Integrating the current q̇ flowing through the capacitor gives a way to
plot the hysteresis curve q as a function of v, as in Fig. 17(b). This figure displays that the selected ceramic
capacitor can exhibit a significant nonlinear behavior.

The equivalent capacitance and resistance values at 30 Hz are defined from

v? =
1

Ceq
q? +Reqq̇

?, (23)

where the time signals filtered with a passband filter between 20 Hz and 40 Hz are

v? = V cos(ωt+ δv), q? = Q sin(ωt+ δq̇) and q̇? = Q̇ cos(ωt+ δq̇). (24)

Consequently,

Ceq = −Q
V

sin(δv − δq̇) and Req =
V

Q̇
cos(δv − δq̇). (25)

The equivalent values were computed by extracting the amplitudes V , Q and Q̇, as well as the phase shifts
δv and δq̇. The equivalent resistance Req was found to be negligible with respect to the other dissipative
components. The variation of the capacitance as a function of the electrical charge amplitude is plotted in
Fig. 17(c). For comparison, the figure also displays the theoretical capacitance (22). A curve fitting was
applied to extract the approximate end capacitance Cend and nonlinear capacitance 1/CNL in Table 8. The
curve fitting was performed over a limited range of the electrical charge amplitudes approximated from the
linear model for input forces ranging from 0.2 N to 1 N. Comparing the values in Table 8 shows that the
nonlinearity of the experimental capacitor is greater than the optimal nonlinearity. However, since the first
vibration mode is overdamped, an increase of the electrical nonlinearity can be beneficial for maintaining an
adequate tuning in the nonlinear range, as illustrated in Fig. 9(c). The chosen capacitor was thus considered
as a sufficiently good candidate for the experimental validation.
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Cend (µF) 1/CNL (V·C−3)
Optimal 104 2.05×1010

Actual 105 3.12×1010

Table 8: Optimal and actual values for the nonlinear capacitor.
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Figure 17: Measurement of the equivalent capacitance: (a) voltage applied across the capacitor, (b) electrical charge as
a function of the voltage (experiment: —, and curve fitting: −−), (c) theoretical nonlinear capacitance (· · · ), equivalent
capacitance (experiment: —, and curve fitting: −−).

4.5. Vibration mitigation with the nonlinear analogous electrical network

Two important limitations arose when carrying out experiments with the nonlinear analogous electrical
network. First, as shown in Figs. 8(b-c), activating the nonlinearity for the second and third modes demands
forcing amplitudes that are well beyond the capabilities of the electrodynamic shaker. Second, forcing levels
above 0.2 N generate an unforeseen magnetic saturation in some of the electrical transformers, leading to
a decrease in the magnetizing inductance of the transformers. This means that, even without the nonlin-
ear capacitor, the first resonance exhibits a non-negligible nonlinear behaviour, which prevented us from
demonstrating the anticipated performance of the network. Figure 18 actually shows the greatest difference
observed between the nonlinear and the supposedly linear networks before entering a fully nonlinear regime
with bistable solutions. The experiment with the nonlinear capacitor shows the expected behavior but the
unexpected results concern the case with the linear capacitor that should normally demonstrate greater
detuning if the electrical resonance were at a constant frequency.

A technical solution could be to manufacture a new series of transformers of slightly larger dimensions.
A larger magnetic cross section would increase the saturation limit and thus extend the linear range of the
electrical network to greater excitation levels. However, since the production of a fully new electrical network
was not feasible, we propose herein to benefit from the developments in Sections 3 and 4 to carry out realistic
simulations in order to, at least partially, validate the nonlinear analogous network. The advantage of such
simulations is that the parasitic effect of magnetic saturation in the transformers is obviously not present.
Specifically, a nonlinear electromechanical model considering the experimental parameters in Tables 4, 7
and 8 was built.

Figure 19(a) presents the first resonance at a forcing level of 0.4 N for three different configurations,
namely the nonlinear beam coupled to either the linear or the nonlinear network and the linear beam
coupled to the linear network. When the linear network is coupled to the nonlinear beam, the mechanical
nonlinearity induced by the thin lamina leads to a significant detuning as well as a clear hardening of the
resonance peak. The addition of the nonlinear capacitor decreases the amplitude at resonance to a level
which is almost identical to that of the linear beam coupled to the linear network, hence confirming that a
proper nonlinear capacitor was selected.

Figure 19(b) gives the results of a simulation for which the first mode is no longer overdamped. To this
end, a 30% decrease of the resistance RL in series with the inductors was considered; this can be envisioned
in practice by selecting other magnetic cores for the passive inductors. The benefit of the nonlinear capacitor
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Figure 18: Experimental FRF around mode 1 with the nonlinear capacitor for F = 0.2 N (−−) and F = 0.35 N (—), and with
the linear capacitor for F = 0.35 N (· · · ).
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Figure 19: Realistic simulations using an electromechanical model considering the experimental parameters. Response around
mode 1 for F = 0.4 N when the nonlinear beam is coupled to the linear (· · · ) or nonlinear (—) electrical networks. Linear
beam coupled to the linear network (−−). (a) Resistance values in Table 7, (b) 30% decrease of RL.

is again evident. We note that a strict equal peak condition cannot be achieved, because the parameters of
the selected nonlinear capacitor deviate away from the optimal parameters in Table 8.

The comparison between cases with and without nonlinear capacitor is shown for different forcing am-
plitudes in Fig. 20. The electrical parameters used to plot Fig. 19(a) lead to Figs. 20(a) and (c). The jump
of the single maxima to greater vibration amplitudes occurs at F = 0.41 N with the linear network and at
F = 0.71 N with the nonlinear capacitor. This limit forcing amplitude was above 1 N with the theoretical
model as illustrated in Fig. 7. The main reason for such a decrease is the fact that the resistance is above
its optimal value in the realistic simulations that represent the experimental setup. Indeed, with a lower
resistance, Figs. 20(b) and (d) show that a behavior close to the one observed in Fig. 7 is retrieved with
the appearance of two local maxima. The remaining difference is the unequal amplitude of the two maxima
that is again due to the slightly imprecise tuning of the chosen nonlinear capacitor.

5. Conclusions

The objective of this study was to show that multimodal vibration mitigation of nonlinear systems can be
achieved with fully passive piezoelectric networks. To this end, we proposed to couple a mechanical structure
to its nonlinear electrical analogue, realizing in essence what we call an analogue twin of the mechanical
structure.
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Figure 20: Characteristics of the local maxima around mode 1 as functions of the forcing amplitude without nonlinear capacitor
(· · · ) and with a nonlinear capacitor (—): (a) frequency and (c) amplitude of the single local maximum when considering the
resistance values in Table 7, (b) frequency and (d) amplitude of the local maxima with a 30% decrease of RL. Both diamond
and circle markers appear when the considered frequency response features two local maxima.

Linear multi-resonant networks offer vibration mitigation over a wide frequency range. However, the
presence of a mechanical nonlinearity can substantially increase the vibration amplitudes because of the
increasing detuning between the mechanical and electrical resonances. The numerical simulations carried
out in this paper evidenced that adding to the network an electrical nonlinearity similar to the mechanical
one (both in mathematical form and spatial positioning) leads to effective broadband attenuation, similar
to that obtained in the purely linear case. An experimental analogous network was also built and led to the
selection of an adequate electrical nonlinearity. Magnetic saturation in the transformers did not allow an
explicit experimental validation with the proposed setup but simulations with realistic parameters approved
the choice of the considered nonlinear capacitor.

An interesting perspective of this research is to realize the required electrical nonlinearities (or even parts
of the linear network) with digital components, leading to a hybrid, semi-passive piezoelectric network that
can adapt itself to, e.g., changing environmental conditions.
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Appendix A.

The objective of this Appendix is to provide the technical details required to build the piezoelectric beam
model. While the following elements have already been introduced in previous papers [10, 25], they are here
summarized in order to offer to any interested reader the possibility of a full implementation of the proposed
electromechanical model.

For an Euler-Bernoulli beam, the finite element model based on cubic shape functions for the transverse
displacement involves the stiffness matrix

Km =
Y I

a3


12 6a −12 6a
6a 4a2 −6a 2a2

−12 −6a 12 −6a
6a 2a2 −6a 4a2

 , (A.1)

where Y is the Young’s modulus and I is the second moment of area of the beam element of length a.
Moreover, the mass matrix is

Mm =
ρSa

420


156 22a 54 −13a
22a 4a2 13a −3a2

54 13a 156 −22a
−13a −3a2 −22a 4a2

 , (A.2)

where ρ is the density and S the cross-sectional area of the beam. Considering that each element is a
laminated structure, homogenized quantities are used in the finite element model. The homogenized flexural
rigidity Y I of the piezoelectric bimorph is obtained from the bending compliance of the unit cell,

a

Y I
=

lp
YbIb + 2Y Ep Ip

+
a− lp
YbIb

, (A.3)

and the mass is ρSa = ρbhbba+ 2ρphpblp, where the constants are given in Table 1.
The mechanical displacement vector for the homogenized segment of Euler-Bernoulli beam is qm =[

WL θL WR θR
]T

. Because the poling direction of the piezoelectric patches have been chosen so that
coupling occurs for bending motion, the coupling vector is defined as

Kc = eθ
[

0 1 0 −1
]T
, (A.4)

where

eθ =
√
C
(
kDθ − kEθ

)
(A.5)

is the piezoelectric coupling coefficient related to bending motion [10]. The constant kEθ = Y I/a corresponds
to the bending stiffness of a unit cell in short circuit, which can be obtained directly from Eq. (A.3). On
the other hand, kDθ is the open-circuited bending stiffness that is calculated from the same equation after
replacing the Young’s modulus at zero electric field, Y Ep , by the Young’s modulus at zero electric charge
displacement,

Y Dp =
1

1

Y Ep
− d231
εσ33

. (A.6)

In Eq. (A.5) also appears the constant C that represents the piezoelectric capacitance of a unit cell when
the mechanical displacements are blocked (qm = 0). The blocked capacitance of a single piezoelectric
patch is calculated from

Ĉ = εε33
blp

ĥp
, (A.7)
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where εε33 is the equivalent permittivity of the piezoelectric material when no bending of the unit cell. While
a precise estimation of this permittivity requires 3D calculations [31], it can still be approximated from a
1D model with

εε33 = εσ33 − Y Ep d231. (A.8)

In the present paper, as described in the experimental section, each unit cell of the considered setup involves
four piezoelectric patches of thickness ĥp = hp/2 = 1 mm. Each pair of patches makes a two-layer stack of
thickness hp and the two stacks are connected in parallel. The blocked capacitance of a single unit cell is

thus C = 4Ĉ.
Concerning the electrical network, Eq. (13) and the relation between the external electric charge dis-

placements and the charge on the electrodes of the piezoelectric patches qI = qθL − qθR gives

S =
[

0 1 0 −1
]T
. (A.9)

Furthermore, symbolic computations based on the discrete equations describing the unit cell in Fig. 1 give
the mass, damping and stiffness matrices for the electrical network :

Me =
L

2


1 â/2 0 0
â/2 â2/4 0 0
0 0 1 −â/2
0 0 −â/2 â2/4

 , (A.10)

Ce =
RL
2


1 â/2 0 0
â/2 â2/4 0 0
0 0 1 −â/2
0 0 −â/2 â2/4

+
RT
2


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

+RC


0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

 (A.11)

and

Ke =
4

â2C0



1
â

2
−1

â

2
â

2

â2

4

C + 2C0

C + C0
− â

2

â2

4

C

C + C0

−1 − â
2

1 − â
2

â

2

â2

4

C

C + C0
− â

2

â2

4

C + 2C0

C + C0


. (A.12)

Note that a capacitance C0 appears in Eq. (A.12) while it is not shown in Fig. 1. As fully explained in [25],
C0 is a numerical parameter that is required to relax some constrains in the electrical network in order
to allow the definition of a stiffness matrix. To limit the influence of this additional degree of freedom on
the results, C0 that has to be small compared to C. A deeper analysis on the influence of this numerical
parameter is out of the scope of this work but it can be shown that a value C0 = C × 10−3 is adequate for
the present calculations.

Once all the matrices in Eq. (12) have been defined, a last step consists in a reorganizing the degrees of
freedom from the following permutation that collect left and right degrees of freedom (qL and qR) without
separating mechanical and electrical ones:

[
qL

qR

]
=



WL

θL
qwL

qθL
WR

θR
qwR

qθR


=


I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I





WL

θL
WR

θR
qwL

qθL
qwR

qθR


. (A.13)
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Using this permutation matrix on the matrices in Eq. (12) finally provides the one-dimensional electrome-
chanical finite element that can be used with an assembly process in order to define the finite element model
of the whole structure.
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