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Autonomous navigation becomes complex when it is performed in an environment that

lacks road signs and includes a variety of users, including vulnerable pedestrians. This

article deals with the perception of collision risk from the viewpoint of a passenger sitting

in the driver’s seat who has delegated the total control of their vehicle to an autonomous

system. The proposed study is based on an experiment that used a fixed-base driving

simulator. The study was conducted using a group of 20 volunteer participants. Scenarios

were developed to simulate avoidance manoeuvres that involved pedestrians walking

at 4.5 kph and an autonomous vehicle that was otherwise driving in a straight line at

30 kph. The main objective was to compare two systems of risk perception: These

included subjective risk assessments obtained with an analogue handset provided to the

participants and electrodermal activity (EDA) that was measured using skin conductance

sensors. The relationship between these two types of measures, which possibly relates

to the two systems of risk perception, is not unequivocally described in the literature. This

experiment addresses this relationship by manipulating two factors: The time-to-collision

(TTC) at the initiation of a pedestrian avoidance manoeuvre and the lateral offset

left between a vehicle and a pedestrian. These manipulations of vehicle dynamics

made it possible to simulate different safety margins regarding pedestrians during

avoidance manoeuvres. The conditional dependencies between the two systems and

the manipulated factors were studied using hybrid Bayesian networks. This relationship

was inferred by selecting the best Bayesian network structure based on the Bayesian

information criterion. The results demonstrate that the reduction of safety margins

increases risk perception according to both types of indicators. However, the increase in

subjective risk is more pronounced than the physiological response. While the indicators

cannot be considered redundant, data modeling suggests that the two risk perception

systems are not independent.
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1. INTRODUCTION

Traveling in autonomous vehicles changes the driver’s role when
they become a passenger after ceding control to an automated
system (Reilhac et al., 2016; Kyriakidis et al., 2019). Verberne
et al. (2012) suggested that individuals do not change their social
rules when interacting with an automated system. Basu et al.
(2017) supported this idea by revealing that most drivers prefer
a driving style that resembles their own. This consideration
is all the more important when traveling in a dense space
where different types of vulnerable road users (e.g., pedestrians
and cyclists) can circulate freely. Such spaces are beginning to
appear in Europe and are known as shared spaces (Hamilton-
Baillie, 2008). They are designed to eliminate any segregation
between road users (e.g., through a lack of signs and road
markings). As a result, the fluidity of mobility in these areas
essentially relies on social conventions, especially in crowded
situations. One of the objectives of this urban design is to
enable drivers to better integrate into multi-user environments
by reducing vehicle speeds and improving traffic flow (Hamilton-
Baillie, 2008; Kaparias et al., 2012; Moody and Melia, 2014).
However, such designs have also introduced a new challenge
for autonomous vehicles that must navigate among other users
in non-signalled areas (e.g., the problem of crowd navigation
as discussed by Bresson et al., 2019). The trajectories followed
by the vehicle to navigate within this type of environment
must remain acceptable to the users around the vehicle but
also to the driver-passenger inside. Many studies currently
investigate the communication between the autonomous vehicle
and pedestrians through external human-machine interfaces
(Faas et al., 2020; Métayer and Coeugnet, 2021), but it is also
important to ensure that the passenger does not fear a collision
risk (e.g., when the vehicle adopts proactive navigation, Kabtoul
et al., 2020). It is therefore essential to study what will determine
the acceptability of the vehicle’s trajectory relative to other
road users.

1.1. Vehicle Dynamics and Passenger Risk
Perception
Gibson and Crooks (1938) proposed the existence of a dynamic
space that the driver perceives as an area in which they can
navigate safely. The authors named it the “field of safe travel.”
This zone represents an envelope of acceptable trajectories for a
vehicle. It depends on the driver’s experience, the safety distances
they wish to respect and their perception of the size of the car,
among other factors. Based on these considerations, Kolekar
et al. (2020a,b) proposed the driving risk field to model the
importance that a driver ascribes to an obstacle that blocks
a straight trajectory. In their work, the authors built upon
Näätänen and Summala’s theory (Näätänen and Summala, 1976),
who defined perceived risk as a function of both the subjective
importance given to a hazard and the consequences that this
hazard could pose. Kolekar et al. (2020a,b) hypothesized that
the subjective importance that is given to a risk is proportional
to the driver’s reaction at the steering wheel when confronted
with an obstacle in their trajectory. Using this perspective, the
authors developed a measure proportional to the perceived risk

if a hazard’s consequences remain unchanged (e.g., collision with
the same obstacle). Other researchers have found that the values
of time-to-collision (TTC) or time headway when following a
vehicle or approaching a slower obstacle highly correlate with a
driver’s perception of a collision (Vogel, 2003; Chen et al., 2016;
Zhao et al., 2020). Researchers have particularly investigated
TTC in the literature and have demonstrated that it is directly
perceived through retinal expansion (Lee, 1976; Bootsma et al.,
1997; Bootsma and Craig, 2003). When approaching an obstacle,
an autonomous vehicle must initiate an avoidance manoeuvre
to avoid a collision. When the path of the vehicle deviates from
the obstacle, measures such as the TTC or time headway are
no longer relevant while the vehicle continues to approach. In
this case, new metrics must be used to study risk perception.
Ferrier-Barbut et al. (2018) revealed the existence of a comfort
zone that is perceived by the passenger of an autonomous vehicle
when the vehicle is passing close to a pedestrian. This suggests
that absolute distance is a factor in the passenger’s perception.
During an avoidance manoeuvre, this distance corresponds to
the lateral distance (which is also referred to as the offset)
between the vehicle and the obstacle. In summary, the study of a
passenger’s risk perception that involves an autonomous vehicle
must integrate vehicle-environment dynamics.

1.2. The Hypothesis of Two Risk Perception
Systems
Slovic et al. (2004) described two risk perception systems that
are involved in evaluation and decision-making processes when
an individual is faced with a potential hazard. “Risk as analysis,”
according to the authors, is a system of risk perception that
is based on conscious reasoning and uses formal logic. This
method for perceiving risk is a common conception in the
scientific literature. It assumes that individuals perceive risk by
estimating the product of the probability of a hazard and its
consequences. However, this type of risk perception, which is
slow and costly in cognitive resources, would not be solicited in
the event of an imminent threat. Slovic et al. (2004) suggested the
existence of a second system of perception that is predominant
in this type of situation, which they named “risk as feelings.”
This system comprises a quick and reactive way of perceiving
risk and is intuitive in nature as it is based on affects. This
duality of risk perception aligns with the vision of Loewenstein
et al. (2001), who suggested that decision-making results not
only from cognitive processing but also from an instinctive and
spontaneous emotional appraisal.

This vision of the dual process of risk perception is part of
the broader problem regarding the distinction between cognitive
processes that are fast, automatic and unconscious (type 1) and
those that are slow, laborious and conscious (type 2) (Evans,
2008; Evans and Stanovich, 2013). Risk as analysis would belong
to type 2 processes, which rely on working memory and involve
the mental simulation of future possibilities to formulate explicit
judgements. In contrast, risk as feeling would belong to type
1 processes, which are autonomous, do not require working
memory and underlie implicit information processing. However,
as Evans (2008) rightly pointed out, the nature of the distinction
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between the two types of processes and their mutual relations
are not univocal in the literature. This study addresses this issue
through the prism of risk perception in a specific context, that of
autonomous vehicles navigating shared spaces.

1.3. Risk Measurement
Herrero-Fernández et al. (2020) associated the concept of risk
as analysis with a subjective assessment (SA) and associated
the concept of risk as feelings with an objective evaluation
based on an individual’s physiological state. These two evaluation
systems are complementary. If an SA consists of measuring
the self-reflexive part of risk perception, then the physiological
variables provide information on the physical manifestations of
this same perception. From this perspective, Choi et al. (2019)
considered that, at a certain level, risk perception may require
the regulation of the autonomic nervous system, particularly
by the sympathetic nervous system. The latter ensures that
physiological adaptations occur in preparation for an escape
or a struggle when a person is confronted with a stressful
event. Such adaptations can manifest as increased cardiac and
respiratory rhythms and variations in electrodermal activity
(EDA). EDA corresponds to electrical variations in the skin
that occur in relation to the functioning of the sweat glands,
which are under the control of the sympathetic nervous system
(Morange-Majoux, 2017). The most studied property of EDA
is skin conductance, which is measured in micro-siemens and
consists of the superimposition of two distinct parts that are
called “tonic” and “phasic,” respectively. The tonic component is
associated with a global skin conductance level (SCL). It is relative
to an individual and can be recorded when and individual is at
rest. This component reveals slow variations, whereas the phasic
component generally reveals rapid changes in skin conductance,
which are often called “skin conductance responses (SCRs).”
Choi et al. (2019) considered that risk perception could lead to
substantial changes in EDA; therefore, EDA could be a good
indicator of risk perception. SCRs have already been used as
indicators of events that cause stress or discomfort in drivers. For
example, Distefano et al. (2020) conducted an experiment using
a driving simulator that revealed changes in the EDA of their
participants as they approached intersections or roundabouts.
Daviaux et al. (2020) observed similar effects when participants
in their study were confronted with different driving situations
(e.g., the insertion of another vehicle into the lane, crossing with
another vehicle going in the opposite direction and crossing
with a pedestrian). Skin conductance can be measured non-
invasively using two electrodes that are placed on the surface
of the skin (Fowles et al., 1981; Boucsein, 2012). In a detailed
review about EDA, Boucsein (2012, p. 104–109) presented two
preferable sites for placing the electrodes: The hand and the
foot. However, the Society for Psychophysiological Research
(Society for Psychophysiological Research Ad Hoc Committee
on Electrodermal Measures, 2012) recommended placing the
electrodes on the distal phalanges of the index and middle fingers
to obtain bipolar recordings.

To investigate risk perception, this study proposes coupling
this physiological measurement with a real-time subjective
assessment by using an analogue device that can be operated

using one hand. A similar method was used by Rossner and
Bullinger (2019, 2020a,b). In their study, the participants were
asked to assess their levels of comfort while they were on board
a simulated autonomous vehicle. The advantage of collecting an
online subjective measurement is that it provides access to the
dynamics of changes in perceived risk, unlike verbal or written
assessments that involve either an interruption in the task or
an a posteriori evaluation. The device developed for this study
resembles the slide potentiometer used by Walker et al. (2019a).
In their study, the authors proposed an experiment to validate
their measurement device by asking participants (pedestrians)
to assess their willingness to cross a road in real-time while
observing an approaching vehicle. The authors concluded that
such a continuous assessment device could be useful for assessing
human interactions with automated vehicles.

1.4. Theoretical Hypothesis
As mentioned previously, two factors that are related to vehicle-
environment dynamics were manipulated: The value of the TTC
at the moment the vehicle initiates an avoidance manoeuvre and
the offset distance left between the vehicle and the pedestrian. It
was postulated that the two factors would successively influence
passengers’ perceived risk. First, based on the results from
Bootsma and Craig’s study (Bootsma and Craig, 2003), it was
assumed that perceived risk increases when the TTC at the time
the manoeuvre is initiated decreases. Second, it was assumed that
the closer the vehicle passes to a pedestrian (that is, the lower
the offset distance), the greater the perceived risk becomes. Both
TTC and offset were manipulated to investigate the relationship
between the two types of risk perception measures (i.e., the
subjective assessment and skin conductance response). From a
statistical point of view, the objective was to determine whether
the independence of the two types of risk perception was
probable given the data and the effects of the independent
factors. It was assumed that the measures of SA and SCR
were continuous random variables. The purpose of this study
was to test whether the experimental data would support the
independence between those two variables given the levels of the
factors being manipulated. Two alternatives were considered:

• H0: SA and SCR are independent despite the measures and
levels of factors, which means that the two types of risk
perception are independent.

• H1: SA and SCR are not independent in at least one
combination of measures and factors, which means that there
is a relationship between the two types of risk perception.

To address these theoretical hypotheses, hybrid Bayesian
networks were implemented. This method, which is based on
stochastic distributions, aided in discovering the best structure
of relationships (i.e., the one that best fits the data) between
manipulated factors and dependant measures. Specifically,
Bayesian networks were used to determine whether a relationship
between the two risk perception systems could exist and be
relevant apart from the assumed influence of the independent
environmental factors. In other words, this method was used to
assess the significance of the relationship between measures from
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FIGURE 1 | Sample diagram of the vehicle trajectory among pedestrians. The combination of the two factors (TTC and offset) varied between pedestrians according

to the experimental plan, which was identical for all the participants. The pedestrians’ walking directions and the lateral directions of the avoidance manoeuvres are

also represented.

two types of risk perception given the effects of the TTC and the
lateral offset.

Finally, a network coefficient analysis was performed to
quantify the effects of the manipulated factors. This analysis was
conducted to test the extent to which the influence of the factors
was confirmed. That is, this analysis was conducted to validate
that a lower TTC at the beginning of an avoidance manoeuvre or
a lower offset distance between a vehicle and a pedestrian results
in a higher level of risk perception.

2. METHOD

2.1. Participants
For this experiment, 20 participants (13 men and 7 women) were
recruited. They were between 18 and 52 years old (M = 27.1,
SD = 8.9). Eighteen participants had held driving licenses for
9.8 years on average (SD = 9.5) and drove ∼11,400 km per year
(SD = 19,100). The two remaining participants did not possess
driving licenses, with the assumption that their perception of risk
depended on the same processes as ordinary drivers. In addition,
having a driver’s license was not considered a prerequisite to be a
passenger of a fully autonomous vehicle. Preliminary inspection
of the EDA recordings and subjective assessments confirmed that
the responses of the two unlicensed participants were not distinct
from those of the others.

2.2. Experimental Design
A within-subject design was used so that participants would
experience a series of 32 pedestrian avoidance maneuvers. The
order of presentation of the pedestrians was randomized. They
were divided into two blocks of ∼7 min presented in succession
with a short break in between. The autonomous vehicle was
programmed to drive at a constant speed of 30 kph on a
20-m-wide street. The vehicle followed a straight trajectory
except when it had to avoid pedestrians. In the real world,
the speed limit in shared space is generally lower. According
to the British Department of Transport (Great Britain and
Department of Transport, 2011), a speed of no more than
20 mph (∼32 kph) and preferably <15 mph (∼24 kph) is
desirable. However, some preliminary experiments revealed that
at low vehicle speeds, avoidance manoeuvres elicit very little

risk perception from participants. This phenomenon may be
explained by the relatively limited immersion of the driving
simulator and participants’ ability to predict the behavior of
the autonomous vehicle. Therefore, the speed of 30 kph was
chosen to increase the chances of eliciting risk perception from
the participants.

A sample of the vehicle’s trajectory is illustrated in Figure 1.
After passing a pedestrian, the vehicle did not return to its initial
position but maintained its position in the lane until the next
pedestrian was encountered. Each pedestrian walked at 4.5 kph
and was 25 s apart from the others.

2.3. Factors
Two factors acting successively were manipulated (cf. Figure 1).

First, the value of the TTCwhen the avoidancemanoeuvre was
initiated was manipulated. In a straight line, the TTC represented
the time remaining before the vehicle reached an obstacle. This
depended on both the distance and the relative speed between
the vehicle and the obstacle. During the experiment, four levels
of TTC were tested: 2.0, 2.5, 3.0, and 3.5 s.

Second, the lateral offset distance (simply denoted “the offset”)
was manipulated during ongoing avoidance manoeuvres when
the vehicle arrived next to a pedestrian. This parameter was
introduced to test whether the proximity between the vehicle
and the pedestrian affected the participant’s perceived risk. Three
levels of lateral offset were tested: 0.5, 1.0, and 1.5 m.

It was not possible to combine all the levels of the two factors.
Indeed, combining a time-to-collision of 2.0 s and an offset of 1.0
or 1.5 m gave rise to unrealistic vehicle behavior that was caused
by the driving simulation software. As a result, only 8 out of the
12 combinations were tested.

Two additional factors were introduced to make the
simulations more realistic and unpredictable. Half of the
pedestrians walked in the direction in which the vehicle was
moving, while the other half walked in the direction opposite
the vehicle. In a shared space, there are no rules regarding
the direction in which a vehicle should go to avoid other road
users. For this reason, the direction of the avoidance manoeuvres
varied between left and right. Preliminary statistical analyses,
which have not been reported here, demonstrated that these
two factors did not affect the results. Finally, the appearance of
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FIGURE 2 | Example of the participant’s 120◦ view during a left avoidance manoeuvre. (Top) The approaching phase of a pedestrian walking in the same direction as

the vehicle. (Middle) The vehicle’s position 2 s later when it had started its avoidance manoeuvre. (Bottom) The end of the manoeuvre. The avoided pedestrian is

visible in the left and center rear-view mirrors. The following pedestrian (circled in red) can hardly be distinguished. This is because each avoidance manoeuvre was

separated by 25 s to ensure the independence of the measurements.

each pedestrian was arbitrarily chosen from a list of a dozen
possibilities (a man or a woman in a t-shirt or a suit, a teenager in
shorts, etc.). Figure 2 illustrates what the participants saw during
a left avoidance manoeuvre in three screenshots.

2.4. Experimental Setup
The experiment took place using a fixed-base driving simulator
that was run using SCANeR StudioTM software (AVSimulation,
France). This driving simulator provides visibility of 120◦ thanks
to three screens (see Figure 3A). During the simulation, the
participants were informed that the vehicle was fully automated
and that they did not need to use the controls.

In order to record physiological responses during
the simulation, the participants’ skin conductance was
measured according to recommendations of the Society for
Psychophysiological Research (Society for Psychophysiological
Research Ad Hoc Committee on Electrodermal Measures, 2012,
p. 6-7). Two electrodes were placed on the distal phalanges of the
participants’ index and middle fingers on their non-dominant

hands. To improve the skin-electrode electrical conductivity
and the accuracy of the data collection, the electrodes were
covered with isotonic gel. No skin preparation was done before
the electrodes were placed. Data recording began at least 5 min
after establishing electrode-skin contact to create better electrical
contact and stabilize the baseline (that is, the skin conductance
level). The data were collected at 625 Hz on a dedicated computer
using the software AcqKnowledge 5.0 (BIOPAC Systems, Inc.,
USA), which was coupled with an acquisition module (16
bits analogue to digital converter; MP160 system, Systems,
Inc., USA).

To enable the participants to assess perceived risk throughout
the simulation, an analogue device (a potentiometer that was
connected to an ArduinoTM Uno board) was developed for one-
handed use, which is illustrated in Figure 3B. The device was
designed so that it did not cause visual distraction and could be
used without the participants having to look at it. The device was
placed on the participants’ laps in such a way that they could
manipulate it using their dominant hands (i.e., the hand that did
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FIGURE 3 | Experimental setup. (A) A fixed-base driving simulator. (B) Analogue device for subjective risk assessment.

not have the conductance measurement electrodes attached to
it). Data were collected and linked to the autonomous driving
scenarios with a sampling rate of 20 Hz.

2.5. Procedure
Participants were asked to fill out a form to provide information
about their ages, genders, and driving experience. They were then
informed of the purpose and the course of the experiment. At
the end of the introductory period, the electrodes were installed
according to the manual preferences of the participants. Each
participant was then invited to sit in the simulator; at this point,
the analogue device was presented and handed over to them.

Each participant was presented with a preliminary scenario
that consisted of autonomously driving on a road without
pedestrians. Each participant’s objective was to optimize the use
of the hand-held device by finding a good position for their hands
and exploring the rating scale available. Voluntarily, no scale or
reference value that was related to risk assessment was provided
to the participants. Therefore, they had no prior knowledge
of the lowest or highest levels of stimulation that they would
encounter. This approach was inspired by Stevens’ book about
psychophysics (Stevens, 2017, p. 28): This testing method gave
participants more freedom without distracting them as it did
not require them to do calculations to scale their responses
to a certain criterion. The participants were expected to pay
attention as much as possible to the driving scene and ignore
the assessment device. During this scenario, a horizontal gauge
indicating the cursor’s position in real-time was displayed on
the central monitor. The gauge represented the position of the
cursor in the usual way (that is, with the minimum value on
the left and the maximum value on the right). The participants
were initially invited to adjust their positions in the driver’s seat
and to familiarize themselves with the assessment device without
the researcher’s intervention. They were then asked to perform
a few exercises: Starting from either the cursor’s minimum or
maximum position, they had to reach the first third, the median
and then two-thirds of the gauge. During this training phase, the
participants were asked to close their eyes and reopen them when

they thought they had reached the required positions. In this way,
they could estimate their errors and readjust their positions if
necessary. An error of 5% around the target position was allowed.
This phase ended as soon as the participants managed to reach
all the required positions and felt confident enough to reach any
other position. This training period also made it possible to check
the quality of the physiological data collected (EDA) and to adjust
the electrodes’ placement if necessary.

Afterwards, the participants were instructed to experiment
“using the analogue device to assess their risk of collision with
pedestrians in real-time when moving in a shared space.”

2.6. Calculation of Dependent Variables
2.6.1. Subjective Risk
Two indicators were calculated to quantify the subjective risk
assessment (denoted as “SA”) for each avoidance manoeuvre:
The integrated risk assessed over time (iSA) and the maximum
amplitude of the assessed risk (mSA). The indicator iSA can be
considered a dynamic indicator as it accounts for both amplitude
and temporality. It corresponds to the area under the curve
for each maneuver filled with grey in Figure 4. The indicator
mSA was calculated to provide a simple quantification of the
participants’ SA. It corresponds to the maximum value at each
peak. As illustrated in Figure 4, the subjective assessment evolved
differently between the manoeuvres and always returned to 0
between each pedestrian.

2.6.2. Skin Conductance Response
The data were initially processed using the software program
AcqKnowledge 5.0 (BIOPAC Systems, Inc., USA); MATLAB
(MATLAB, 2018) and R (R Core Team, 2020) were then used to
extract the indicators. Several manipulations had to be conducted
to calculate the indicators. First, the raw data were pre-processed
using AcqKnowledge according to the recommendations made
by Braithwaite et al. (2013) and Findlay (2017). These included
resampling at 78 Hz, moving median smoothing at 1 s and
low-pass filtering at 1 Hz. The pre-processed data were then
analyzed using the Ledalab application, specifically Version 3.4.8
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FIGURE 4 | Sample of the collected data concerning seven avoidance manoeuvres. (A) The evolution of the subjective assessment during seven avoidance

manoeuvres. The subjective assessment always returned to 0 between the manoeuvres. Indicator mSA corresponds to the maximum value of each manoeuvre.

Indicator iSA corresponds to the area under each curve. (B) The skin conductance responses during the seven avoidance manoeuvres. Indicator mSCR corresponds

to the maximum amplitude of the responses. Indicator nSCR corresponds to the number of skin conductance responses.

from Benedek and Kaernbach (2010). This application is a
MATLAB toolbox that was designed for isolating the tonic and
phasic components of EDA. The method used was based on the
following two steps:

1. The identification of the phasic component using Continuous
Decomposition Analysis (CDA) with two parameters for the
optimization of the deconvolution algorithm. This method,
which is described in Benedek and Kaernbach’s article
(Benedek and Kaernbach, 2010), is based on a deconvolution
algorithm to detect SCR. This technique is particularly
effective for identifying and determining the characteristics of
so-called “superimposed” responses (Boucsein, 2012).

2. The detection of SCR > 0.05 µS (the extraction of their onset
and amplitude).

Finally, the indicators were calculated using the R software. For
each avoidance manoeuvre, relative SCRs were selected only
if their onset occurred no more than wstart seconds before
the moment when the vehicle was next to a pedestrian and
no more than wend seconds after that moment. An avoidance
manoeuvre could elicit an SCR only during the moment the
participants started to perceive (assess) a collision risk. Therefore,

the value wstart was computed for each participant, and two
distinct moments for each manoeuvre were considered:

• The moment when the participant started to assess a non-zero
value of collision risk;

• The moment when the vehicle was effectively level with a
pedestrian.

This process resulted in 32 values (which corresponded to
the total number of manoeuvres) per participant, which were
averaged to find wstart . The value of wend was based on results
from the literature (Boucsein, 2012; Droulers et al., 2013). SCR
could be related to an avoidance manoeuvre only if it occurred
in the 3 s following the moment when the vehicle was next to
a pedestrian.

As for the subjective assessment data, two indicators were
calculated to quantify EDA. These included the maximum
amplitude of skin conductance responses (mSCR) and the
number of skin conductance responses (nSCR). Figure 4

illustrates a sample of SCR data. The indicator nSCR
corresponds to the number of SCRs during each manoeuvre,
and mSCR corresponds to the maximum amplitude for all
concerned SCRs.
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TABLE 1 | Value’s frequencies for independent variables.

Offset (m) TTC (s) Total frequency

3.5 3 2.5 2

1.5 0.125 0.125 0.125 0.125 0.500

1 0.125 0.125 0 0 0.250

0.5 0.125 0.125 0 0 0.250

Total frequency 0.375 0.375 0.125 0.125 1.000

This table illustrates the combinations of independent variables used in the experiment.

The frequency for each value is given, and the totals for each row/column were added to

provide details on the distribution of each variable.

3. DATA ANALYSIS

The analysis was based on the modeling of hybrid Bayesian
(Denis and Scutari, 2015, Chapter 3) to study the relationship
that may exist between subjective risk assessment indicators and
the participants’ skin conductance response indicators and the
effects of the factors. Each Bayesian network proposed in this
study includes four variables, which are also called “nodes.” A
Bayesian network is represented by its directed acyclic graph
(DAG), which graphically illustrates the relationships between
its nodes. A node represents a variable that is associated with a
statistical distribution whose parameters possibly depend on the
other nodes. An arrow is used to specify that the distribution of
a node depends on the value of another node. In this study, all
directed acyclic graphs contain four nodes. Two nodes represent
the independent factors TTC and offset. They were both assigned
to discrete distributions whose probability mass functions were
determined by the frequency of their values in the design of the
experiment (cf. Table 1). Two other nodes, which were denoted
“SA” and “SCR,” were respectively assigned to the subjective
assessment and the skin conductance response indicators. Node
SA (resp. SCR) designated either the iSA indicator or the mSA
indicator (resp. nSCR andmSCR indicators).

After an analysis of the distributions of the two indicators
of subjective assessment was conducted, the original data was
transformed to correct a positive skewness. A power of 1

2
was applied to mSA values and a power of 1

3 to iSA values.
Moreover, to consider global distributions for all the participants,
the transformed SA values were then centered and scaled by
the participants. These transformations were performed to use
Gaussian distributions for the node SA in the Bayesian networks.
To ensure that this hypothesis on the distributions was relevant,
a Shapiro-Wilk test was performed. The results are presented
in Table 2. The transformations that were performed on the
indicators resulted in more symmetrical distributions that can be
assumed to be normal according to the statistics of the Shapiro-
Wilk test (p > 0.5 for both variables).

A preliminary analysis revealed that the SCR indicators
had 46% of exactly zero. That means that only a part of an
avoidance manoeuvre produced physiological responses. For
this reason, a Tweedie compound Poisson distribution (Dunn
and Smyth, 2005, 2008; Hasan and Dunn, 2012) was used for

TABLE 2 | Sample descriptive statistics and normality test of subjective

assessment variables.

Variable Descriptive statistics Shapiro Wilk test

n M SD Skewness W p

Raw

mSA 640 0.401 0.252 0.653 0.951 0.000

iSA 640 1.548 1.426 1.431 0.865 0.000

Transformed

(mSA)
1
2 640 0.000 0.985 −0.010 0.999 0.974

(iSA)
1
3 640 0.000 0.985 −0.016 0.998 0.701

The raw variables correspond to the original data. The transformed data correspond to

centered and scaled variables for each individual. These operations were performed after

the power transformations of the initial values were made (that is 1
2 for the indicator mSA

and 1
3 for the indicator iSA).

Node SCR in the Bayesian networks. This otherwise positive
and continuous distribution has a positive mass at zero. The
Tweedie compound Poisson distribution aided in estimating the
distribution of the SCR indicators, as well as the probability of
zero responses. To consider global distributions and homogenize
the fluctuations between the data of each participant, indicators
mSCR and nSCR were scaled per participant. As in the example
provided by Dunn and Smyth (2005), an initial diagnostic
(which has not been reported here) was performed to verify that
the Tweedie approach of modeling the zeros and the positive
observations together was adequate to estimate the parameters
of the distribution.

For all node distributions, the parameters were estimated
using the R software. More specifically, as in the method
presented by Denis and Scutari (2015), the parameters of
the factors TTC and offset were set as the actual frequency
in the experiment (cf. Table 1), and the parameters of the
Gaussian distribution were estimated by fitting linear models.
The parameters of the compound Poisson distribution were
estimated using the R package cplm (Zhang, 2013). Following
the method presented by Denis and Scutari (2015), when a
factor influenced a dependent node’s (SA or SCR) distribution,
the parameters were estimated for each value of the factor. For
instance, eight parameters were estimated for the distribution of a
Gaussian node that was influenced exclusively by the factor TTC
(i.e., a mean and a standard deviation for each of the four levels
of TTC). Concerning the graphs where both the factor TTC and
offset influenced an indicator, a distribution was fitted for each of
the eight combinations (cf. Table 1).

Forty-eight networks were computed regarding the four
indicators mentioned previously (iSA, mSA, nSCR, and mSCR;
see Figure 5). The consideration of four indicators rather than
two (i.e., one for the SA and one for the SCR) allowed
the amount of data that was used to analyze the effect
of the factors and the relationship between the two risk
perception types to be multiplied by four. To compare the
Bayesian networks and select the more plausible one given
the data, the Bayesian Information Criterion (BIC, Schwarz,
1978; Kass and Raftery, 1995; Raftery, 1995) was used. This
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is the criterion that is used for Bayesian network selection in
the greedy search algorithm mentioned by Denis and Scutari
(2015, p. 110). The procedure consists of favoring the network
that has the lowest BIC score. For a Bayesian network, the
Bayesian Information Criterion was calculated according to the
following formula:

BIC = −2LL+ p log(n), (1)

where LL is the joint log-likelihood of variables in the
Bayesian network, p is the number of estimated parameters
associated with the joint distribution of the variables in the
network and n is the number of samples. The BIC allows
non-nested Bayesian networks to be easily compared and
is conservative regarding relationships (Raftery, 1999). That
is, new relationships between nodes will only be significant
concerning the BIC if they provide sufficient benefits regarding
the overall likelihood. In the specific case of the Bayesian
network, the BIC calculation was decomposed as the sum
of the BIC at the four nodes (Denis and Scutari, 2015,
p. 19):

BIC = BICTTC + BICOffset + BICSA + BICSCR, (2)

where BICx is the value of the Bayesian information
criterion computed for a node x. This equation results
from the fact that the joint log-likelihood of a Bayesian
network can itself be decomposed as the sum of
the log-likelihood for each node when considering
the relationships between them while estimating
distribution parameters.

The grades of evidence from Kass and Raftery (Raftery, 1995,
p. 139) were used to discuss the BIC differences in the values
after the ranking process. Gaps larger than 2, 6, or 10 between
two BIC values were considered positive, strong or very strong,
respectively. Afterwards, the Hypothesis H0, which states the
independence between the subjective assessment and the skin
conductance responses, requires that the best Bayesian networks
(which were obtained for each combination of indicators) do not
contain a relationship between the node SA and the node SCR.
Conversely, it is sufficient for one of the best networks to contain
a relationship between the node SA and the node SCR to reject
HypothesisH0 in favor ofH1.

The best Bayesian networks were finally investigated to
analyse the estimated distribution of each indicator. For
indicators of subjective assessment, whose distributions were
assumed to be Gaussian, the conditional mean estimates with
confidence interval at 95% were represented. Additionally,
when the influence of both factors appeared in the best
Bayesian network, a cluster analysis was performed based on the
Bayesian information criterion (Binder, 1978; Franzén, 2008).
We considered all the conditions resulting from the interaction
of the TTC and offset factors, that is, eight possible levels. The
objective was then to find out if these eight levels gave rise
to different distributions of the indicator considered (mSA or
iSA) or if they could be grouped into a smaller number. For
this purpose, models were built for all possible groupings, that
is, 4140 possible partitions in accordance with the eighth Bell
number (Rota, 1964). The R package partitions was used for
this (Hankin, 2006; Hankin and West, 2007). Then the BIC
value was calculated for all the models. The best model was

FIGURE 5 | Directed acyclic graphs (DAG) compared in the experiment. (A) Illustrates the 16 DAGs that do not contain a relationship between SA and SCR nodes.

(B) Illustrates the DAG that contains a relationship between the node SCR and the node SA. (C) Illustrates the DAG that contains a relationship between the node SA

and the node SCR. The only DAG in (A) is consistent with the hypothesis of independence between the subjective assessment and the skin conductance response.
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selected by using the Raftery’s grades of evidence (Raftery, 1995,
p. 139).

For indicators of SCR, which were assumed to follow Tweedie
distributions, conditional mean estimates were represented, as
well as the probability of zeros. These two representations were
used to provide a more complete preview of the functioning
of an effect given this specific Tweedie distribution. Both
representations were useful for providing a more complete
picture of how an effect worked given this Tweedie distribution.
Since SCRs were quite rare in the data, it was interesting to
visualize the evolution of the mean of an indicator in parallel with
the probability of no response.

4. RESULTS

4.1. The Relationship Between the Two
Types of Risk Perception Measures
All the possible Bayesian networks were compared to address the
two theoretical hypotheses: H0, which states that the two types
of risk perception are independent, and H1, which states that
a relationship exists between the two types of risk perception.
The best Bayesian networks were selected for each of the
four combinations of indicators according to the BIC. Table 3
presents the three best Bayesian networks per combination
regarding their value of BIC. In this table, the structure of the
relationships between the Bayesian networks was represented
by the likelihood decomposition for node SA and node SCR.
This notation was adopted to succinctly reflect the dependence

TABLE 3 | Values of the BIC of the three best models by indicator combination.

Likelihood decomposition BIC

L(mSA, mSCR|TTC, Offset)

L(mSA|TTC) × L(mSCR|TTC) 6044.724*

L(mSA|TTC, Offset) × L(mSCR|TTC) 6045.361*

L(mSA|TTC, mSCR) × L(mSCR|TTC) 6050.928

L(mSA, nSCR|TTC, Offset)

L(mSA|TTC) × L(nSCR|mSA) 5979.376*

L(mSA|TTC, Offset) × L(nSCR|mSA) 5980.013*

L(mSA|TTC) × L(nSCR|TTC) 6009.594

L(iSA, mSCR|TTC, Offset)

L(iSA|TTC, Offset) × L(mSCR|TTC) 6038.815*

L(iSA|TTC) × L(mSCR|TTC) 6053.426

L(iSA|TTC, Offset) × L(mSCR|TTC,iSA) 6057.045

L(iSA, nSCR|TTC, Offset)

L(iSA|TTC, Offset) × L(nSCR|iSA) 5983.842*

L(iSA|TTC) × L(nSCR|iSA) 5998.453

L(iSA|TTC, Offset) × L(nSCR|TTC) 6003.685

For the sake of simplicity, the likelihood (denoted L) decompositions are only noted for

nodes SA and SCR. However, the values in the BIC column correspond with the total BIC

of the Bayesian network. The distribution parameters have not been specified here. The

indicators of subjective assessment were assumed to follow a Gaussian distribution. The

indicators of skin conductance response were assumed to follow a Tweedie distribution.

The asterisks indicate the best Bayesian networks according to Raftery’s degree of

evidence.

between the distributions of subjective assessment measures and
skin conductance responses given the factors TTC and offset.

Table 3 reveals that one unique Bayesian network was selected
for the indicator iSA. The results revealed that this indicator
was influenced by the combination between levels of TTC and
offset. Concerning the indicator mSA, the best Bayesian network
(i.e., the Bayesian network with the lowest BIC score) could not
be definitely distinguished from the Bayesian networks ranked
in second position. The BIC difference between those two best
Bayesian networks was not significant regarding the Raftery’s
grade of evidence (Raftery, 1995). Essentially, the difference
was lower than 2. The dependence structure of those two
best Bayesian networks were similar except for the dependence
between the indicatormSA and the factor offset, which appeared
only in the Bayesian network that was ranked in second
position. This result means that there is not enough evidence
to conclude with certainty that the factor offset influenced the
indicatormSA.

The directed acyclic graphs of the best Bayesian networks
revealed by Table 3 are illustrated in Figure 6. Details about
the estimated coefficients for each distribution are provided in
Figure A1. Since there was not enough evidence to conclude the
relationship between the factor offset and the indicator mSA,
a question mark was placed on the arrows between these two
nodes. Figure 6 illustrates two results.

• First, the subjective risk assessment depends on the two
factors: Indicator mSA definitely depends on the factor TTC
and possibly on the factor offset (see Figures 6A,C), and
indicator iSA depends on both factors TTC and offset (see
Figures 6B,D).

• Secondly, whereas the maximum amplitude of the skin
conductance responses (indicator mSCR) depends only on
the TTC (see Figures 6A,B), the number of skin conductance
responses depends only on the subjective risk assessment (see
Figures 6C,D). This result permitted the rejection of H0 in
favor ofH1.

Consequently, the results support the existence of a relationship
between the two types of risk perception.

4.2. The Analysis of Risk Perception
Variations According to the Factors
A coefficient analysis was performed for the subjective risk
assessment obtained for each observed combination of the
factors. Figure 7 presents the means of the subjective risk
assessment obtained for the indicators mSA (Figure 7A) and
iSA (Figure 7B). The means were typically represented by bars
that were proportional to their value, and 95% confidence
intervals were plotted to better visualize significant differences.
An inspection of this figure reveals that the patterns of the
results (as a function of the combinations of factor) were
similar for both indicators. A cluster analysis was performed
to better identify the similarities and differences between the
means of a given indicator. This procedure relied on the Bayesian
information criterion to find the optimal groupings of factor
level combinations based on the data. It resulted in three
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FIGURE 6 | Directed acyclic graphs of the best Bayesian networks by indicators combination. (A) The relationships between the factors and the indicators mSA and

mSCR. (B) The relationships between the factors and the indicators iSA and mSCR. (C) The relationships between the factors and the indicators mSA and nSCR. (D)

The relationships between the factors and the indicators iSA and nSCR. A question mark was introduced to the illustration of relationship between node Offset and

node mSA because the degree of evidence for this relationship is not sufficient regarding the BIC given the thresholds developed by Raftery (1995), which were

adopted in this study.

homogeneous categories that were characterized as functions of
the effect on risk perception: Low, mid, and high. These three
categories have been detailed in the following manner:

• When the values of the factors TTC and offset were both high
(superior or equal to 3.0 s for the TTC and superior or equal
to 1.0 m for the offset), the risk was perceived to be low; the
means of the subjective assessment indicators were lower than
the average.

• When the level of the TTC was median (2.5 s) or when the
offset was small (0.5 m), the risk was perceived to be moderate;
the means of the subjective assessment indicators were close to
the average.

• When the level of the TTC was small (2.0 s), the risk
was perceived to be high; the means of the subjective
assessment indicators were significantly greater than
the average.
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FIGURE 7 | Means for the SA variables for level combinations of TTC and offset. (A) The means of the indicator mSA in combination with the TTC and offset. (B) The

means of the indicator iSA in combination with the TTC and offset. To better distinguish differences, confidence intervals at 95% are represented for each mean.

FIGURE 8 | Conditional means of SCR indicators according to the best Bayesian networks. (A) The means of the indicator mSCR in combination with the TTC

values. (B) The means of the indicator nSCR as a function of the SA values. The probability of zeros was derived from the estimated parameters of each distribution

(Tweedie). The relationships between the parameters of such distributions were, for instance, presented by Zhang (2013, eq. 2.2).

Figure 8A presents the estimated means of the indicator mSCR
and the estimated probabilities of zeros according to the levels
of factor TTC. The examination of this figure revealed that
the probability of zeros (i.e., of not observing skin conductance
responses in the participants) decreased as the mean of the
indicator mSCR increased. Moreover, the maximum amplitude
was obtained when the level of the TTC was small (2.0
s). Consequently, the later the vehicle initiated its avoidance
manoeuvre, the greater the chance of observing skin conductance
responses in the participants became. Furthermore, it can be
noted that the lowest level of the TTC produced a similar impact
on the two risk perception systems. In this particular case, the risk
was perceived to be high based on the indicators of the two types
of risk perception.

The analysis of the directed acyclic graphs of the best
Bayesian networks (cf. Figure 6) revealed that the number of

skin conductance responses depended on the subjective risk
assessment indicators (i.e., mSA and iSA) rather than on the
TTC and offset levels. This result was considered an example of
the relationship between the two types of risk perception as it
refuted their independence. Figure 8B illustrates this relationship
(using estimated parameters of the Tweedie distribution assumed
for the indicator nSCR detailed in Figure A1). The mean of
the number of skin conductance responses was represented as a
function of the subjective risk assessment indicators. The mean
of the number of skin conductance responses varied similarly for
indicators mSA and iSA. Per the statistical model used to fit the
distribution, the link between the number of skin conductance
responses and the indicators of subjective risk assessment was
exponential. The higher the subjective assessment indicators
were, the higher the number of skin conductance responses
were. Additionally, the probability of having no skin conductance
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response (i.e., the probability of zeros) was high when the
indicators of subjective risk assessment were low. The probability
of not observing a skin conductance response in the participants
decreased as the subjective assessment indicators decreased.

5. DISCUSSION

This study sought to characterize the perception of risk made by
a passenger in an autonomous vehicle that was moving in a space
shared with pedestrians. For this purpose, the subjective risk
assessment and the skin conductance responses were collected
in parallel to better understand how the two perception systems
(“risk as feeling” and “risk as analysis”) act in such a situation.

The result of the Bayesian network modeling revealed that
the hypothesis concerning independence between the two risk
perception systems must be rejected under the TTC and offset
conditions that the study evaluated. Although the maximum
amplitude of the skin conductance responses is impacted by
small TTC values, the analysis demonstrated that the number
of skin conductance responses depends only on the subjective
risk assessment. These results, therefore, support the hypothesis
that claims that the two risk perception systems are not
completely interdependent as they may influence one another
independently of environmental factors (Loewenstein et al.,
2001; Slovic et al., 2004). Nevertheless, since the subjective
risk assessment was more sensitive to external conditions than
the skin conductance responses, it is more likely that the
subjective risk can induce skin conductance responses than
the opposite. This conclusion will have to be confirmed by
further studies.

The results revealed that there are three classes of situations.
When TTC and offset were simultaneously high, between 3.0
and 3.5 s and between 1.0 and 1.5 m respectively, the risk
was perceived as low. When the TTC was intermediate (2.5
s) or when the offset was low (0.5 m), the risk was perceived
as moderate. Finally, when the TTC was small (2.0 s), the
perceived risk was higher than in all other situations. Thus,
the results confirmed that the TTC strongly determines the
perception of a collision risk during an avoidance manoeuvre
(Lee, 1976; Bootsma and Craig, 2003). The 2.5 s threshold
appears to be consistent with the recommendations that were
made by the U.S. Department of Transportation (NHTSA,
2013). Indeed, the minimum warning thresholds recommended
in the test protocols for collision warning systems are 2.1,
2.4, and 2.0 s when the vehicle respectively approaches a
fixed, decelerating or low-speed obstacle. During an avoidance
manoeuvre, when the vehicle passed a pedestrian, the lateral
offset also influenced risk perception. The closer the vehicle
was to the pedestrian, the greater the subjective risk became.
However, the results demonstrate that the offset had a smaller
effect on the SA than the TTC did and may not have affected
the SCR. Hence, subjective risk perception has evolved in the
same way as EDA on average but not necessarily with the
same magnitude.

The subjective assessment of collision risk is influenced by
vehicle dynamics. The non-linearity of the effects observed
on the indicators reveals that risk perception does not result

from the simple relationship between the probability of a
hazard and its importance. Rather, the results evoke a threshold
effect as suggested by Boer (2006). Each passenger built up
safety margins and would only perceive a risk when the
vehicle approached a pedestrian and violated these margins.
The passenger’s risk perception would, therefore, result from a
continuous confrontation between the vehicle’s trajectory and
their safety margins. These findings are compatible with the
concept of the “safe field of travel” that was introduced by Gibson
and Crooks (1938), according to which an individual represents
a dynamic area in which their vehicle can navigate safely. In
comparison with the experiment conducted by Ferrier-Barbut
et al. (2018), who used a virtual-reality helmet to test the impact
of proximity between pedestrians and a vehicle, this experiment
utilized a driving simulator that lacked a physical vehicle cab,
which may have made it difficult to estimate the vehicle’s width
and its lateral distance from object (Mecheri and Lobjois, 2018).
Although Walker et al. (2019b) demonstrated that medium-
level driving simulators remain appropriate for the study of risk
perception, the lack of a physical cab simulator and the absence
of real danger may have limited the participants’ abilities to gauge
their proximity to the pedestrians.

The participants’ physiological responses to approaching
pedestrians reflect the activation of the sympathetic nervous
system that operates parallel to subjective evaluation. As Choi
et al. (2019) stated, the sympathetic nervous system can only
react to a certain level of danger, and this can cause variations
in certain physiological variables. The analysis of the EDA in
this experiment confirmed this idea by revealing an increase in
indicators mostly during high subjective risk assessment.

This study investigated how passengers perceive risk in
autonomous vehicles that are navigating areas that include
pedestrians. The aim was to better understand the fundamental
mechanisms of risk perception in the particular case of shared
spaces. Understanding how vehicle-environment dynamics
influence the perception of a vehicle’s passengers and pedestrians
could help researchers create and implement motion algorithms
that are compatible with the safety margins of all agents
in a system design approach. This could also condition the
acceptability of autonomous vehicles. This study presents
preliminary results regarding this topic. However, many
other parameters of vehicle-environment dynamics must be
studied to progress. The question regarding the variables
that were chosen to evaluate the passenger’s feelings based
on subjective evaluations or physiological measurements is
essential. These results demonstrate that the measurements
of the two types of indicators are not independent but are
instead complementary.

6. CONCLUSION

This study highlighted the relevance of declarative and
physiological measures of the real-time analysis of risks perceived
by those in an autonomous vehicle. The results obtained
are consistent with the literature concerning the effects of
the manipulated variables. The value of the TTC at the
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beginning of a pedestrian avoidance manoeuvre and the
lateral distance left between the vehicle and the pedestrian do
affect the subjective risk. This study has demonstrated that
physiological and subjective indicators are not independent but
do not always lead to the same results, which supports the
proposition made by Février et al. (2011). They stated that
declarative and physiological measures are not redundant but
complementary. This experience has demonstrated that one
must be careful to not make a universal conclusion based
on a single indicator in studies on risk perception. Subjective
evaluations (risk as analysis) may be more sensitive to low-
risk situations than physiological responses (risk as feeling) in
particular. This work and its conclusions would benefit from
being replicated in more realistic and complex environments.
The safety margins that were tested in the driving simulator
may not fully match those tolerated in a real autonomous
vehicle. In a simulator or vehicle, the relationship between
the two risk perception systems could be evaluated in a
more complex and realistically modeled space, for example
by varying pedestrian behaviors. As the environment becomes
more complex, new risk perception factors (in addition to
vehicle-environment dynamics) could be revealed. For example,
passenger perception could be affected by unpredictability or
lack of understanding of the autonomous vehicle state. The
modeling approach we adopted could also be implemented
to assess differences in risk perception between active drivers
and passengers. Indeed, Basu et al. (2017) have shown that
passengers prefer a more defensive driving style than when
they are themselves in control of the vehicle. Finally, other
works could be interested in the interaction modalities to
be considered for the communication of information to the
passenger-drivers so that they feel more secure (Bengler et al.,
2020).
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APPENDIX

A B

C D

FIGURE A1 | The four best directed acyclic graphs with detailed distributions. (A) The relationships between the factors and the indicators mSA and mSCR. (B) The relationships between the factors and the

indicators iSA and mSCR. (C) The relationships between the factors and the indicators mSA and nSCR. (D) The relationships between the factors and the indicators iSA and nSCR. The question mark on the

relationship between node Offset and node mSA indicates that the degree of evidence for this relationship is not sufficient according to the BIC thresholds developed by Raftery (1995).
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