
HAL Id: hal-03445484
https://hal.science/hal-03445484

Submitted on 24 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal centrality computations within bounded
clique-width graphs

Guillaume Ducoffe

To cite this version:
Guillaume Ducoffe. Optimal centrality computations within bounded clique-width graphs. 16th In-
ternational Symposium on Parameterized and Exact Computation (IPEC 2021), Sep 2021, Lisbon
(virtual event), Portugal. �10.4230/LIPIcs.IPEC.2021.16�. �hal-03445484�

https://hal.science/hal-03445484
https://hal.archives-ouvertes.fr

Optimal centrality computations within bounded
clique-width graphs
Guillaume Ducoffe !

National Institute for Research and Development in Informatics, Romania
University of Bucharest, Romania

Abstract
Given an n-vertex m-edge graph G of clique-width at most k, and a corresponding k-expression, we
present algorithms for computing some well-known centrality indices (eccentricity and closeness)
that run in O(2O(k)(n + m)1+ϵ) time for any ϵ > 0. Doing so, we can solve various distance problems
within the same amount of time, including: the diameter, the center, the Wiener index and the
median set. Our run-times match conditional lower bounds of Coudert et al. (SODA’18) under the
Strong Exponential-Time Hypothesis. On our way, we get a distance-labeling scheme for n-vertex
m-edge graphs of clique-width at most k, using O(k log2 n) bits per vertex and constructible in
Õ(k(n+m)) time from a given k-expression. Doing so, we match the label size obtained by Courcelle
and Vanicat (DAM 2016), while we considerably improve the dependency on k in their scheme. As
a corollary, we get an Õ(kn2)-time algorithm for computing All-Pairs Shortest-Paths on n-vertex
graphs of clique-width at most k, being given a k-expression. This partially answers an open question
of Kratsch and Nelles (STACS’20). Our algorithms work for graphs with non-negative vertex-weights,
under two different types of distances studied in the literature. For that, we introduce a new type of
orthogonal range query as a side contribution of this work, that might be of independent interest.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Fixed parameter tractability; Theory of computation → Shortest paths

Keywords and phrases Clique-width, Centralities computation, Facility Location problems, Distance-
labeling scheme, Fine-grained complexity in P, Graph theory

Digital Object Identifier 10.4230/LIPIcs.IPEC.2021.16

© Guillaume Ducoffe;
licensed under Creative Commons License CC-BY 4.0

International Symposium on Parameterized and Exact Computation (IPEC).
Editors: Meirav Zehavi and Petr Golovach; Article No. 16; pp. 16:1–16:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:guillaume.ducoffe@ici.ro
https://orcid.org/0000-0003-2127-5989
https://doi.org/10.4230/LIPIcs.IPEC.2021.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Optimal centrality computations within bounded clique-width graphs

1 Introduction

For any undefined graph terminology, see [2, 25]. Unless stated otherwise, all graphs considered
in this work are simple and connected. We here consider clique-width, which is one of the most
studied parameters in Graph Theory, superseded only by treewidth. Roughly, clique-width is
a measure of the closeness of a graph to a cograph (a.k.a., P4-free graph). We postpone its
formal definition until Sec. 2. The clique-width was shown to be bounded on many important
subclasses of perfect graphs [4, 5, 22, 40, 48], and beyond [9, 6, 10, 7, 8, 23, 49, 53, 54]. For
instance, distance-hereditary graphs, and so, trees, have clique-width at most three [40].
Every graph of bounded treewidth also has bounded clique-width, but the converse is not
true [15]. Indeed, unlike for treewidth, there are dense graphs of bounded clique-width (e.g.,
the complete graphs). This generality comes at some cost: whereas the celebrated Courcelle’s
theorem asserts that any problem expressible in MSO2 logic can be solved in FPT linear time
on bounded treewidth graphs [17], the same is true for bounded clique-width graphs only for
the problems expressible in the more restricted MSO1 logic [19]. Fomin et al. showed this
to be unavoidable, in the sense that there are problems expressible in MSO2 logic that are
W [1]-hard in the clique-width [31, 32, 33]. We refer to [29] for other algorithmic applications
of clique-width in parameterized complexity.

Our focus is about the so-called “FPT in P” program. Here the goal is, for some problem
solvable in O(mq+o(1)) time on arbitrary m-edge graphs, to design an O(f(k)mp+o(1))-time
algorithm, for some p < q, within the class of graphs where some fixed parameter is at most
k (one usually seeks for p = 1 and f(k) = kO(1)). The idea of using tools and methods from
parameterized complexity in order to solve faster certain polynomial-time solvable problems
has been here and there in the literature for a while (e.g., see [42]). Nevertheless it was only
recently that such idea was better formalized [38], in part motivated by some surprising results
obtained for treewidth [1]. Indeed, on the positive side, the treewidth does help in solving
faster many important problems in P, that is, in Õ(kO(1)n) time on graphs and matrices
of treewidth at most k [34, 44]. But for other such problems, any truly subquadratic-time
parameterized algorithm requires exponential dependency on the treewidth. For example,
given a graph G with a non-negative weight function on its edge-set (resp., on its vertex-set),
the weight of a path equals the sum of the weights of all its edges (resp., of all its vertices).
For unweighted graphs, this is exactly the number of edges (resp, the number of edges plus
one). The distance dG(u, v) between two vertices u and v is equal to the least weight of a
uv-path. Finally, the diameter of G is defined as diam(G) = maxu,v∈V (G) dG(u, v). Abboud
et al. proved that under the Strong Exponential-Time Hypothesis (SETH), for any ϵ > 0,
there is no O(2o(k)n2−ϵ)-time algorithm for computing the diameter of n-vertex unweighted
graphs of treewidth at most k [1]. An algorithm for this problem on weighted graphs, running
in O(2O(k)n1+ϵ) time for any ϵ > 0, was proved recently in [11] by using the orthogonal
range query framework of Cabello and Knauer [13].

Insofar, clique-width has received less attention than treewidth in the nascent field of
FPT in P. Perhaps one good reason for that is that, for most problems on edge-weighted
graphs, clique-width provably does not help [46]. This is because we may regard any graph
as a weighted clique, where each non-edge got replaced by an edge of sufficiently large weight.
Note however that most conditional lower bounds in the literature hold even for unweighted
graphs (this is the case for the diameter and the other distance problems that we here
study). Furthermore, in a recent paper Kratsch and Nelles [47] have evidenced that some
applications of clique-width to unweighted graphs could be extended to vertex-weighted
graphs. We give further evidence for that in our work. One other well-known drawback

G. Ducoffe 16:3

of clique-width is that, unlike for treewidth, the parameterized complexity of computing
it is a wide open problem [14]. To date, the best-known approximation algorithms for
clique-width run in O(n3)-time [50]. Still, on many subclasses of bounded clique-width
graphs, there exist linear-time algorithms in order to compute a so called “k-expression”,
for some k = O(1), with the latter certifying the clique-width of the graph to be at most
k [40, 49]. Therefore, the study of graph problems in P parameterized by clique-width may
be regarded as a unifying framework for all such subclasses. In this respect, Coudert et
al. obtained Õ(kO(1)(n + m))-time algorithms for triangle and cycle problems on n-vertex
m-edge graphs of clique-width at most k [16]. However, they also observed that assuming
SETH, even on n-vertex cubic graphs of clique-width at most k, for any ϵ > 0, there is no
O(2o(k)n2−ϵ)-time algorithm for computing the diameter. Unlike for treewidth, it was open
until this paper whether there does exist a parameterized quasi-linear-time algorithm for
this problem on bounded clique-width graphs that matches their conditional lower bound.
Indeed, we are only aware of a linear-time algorithm for computing the diameter of bounded
clique-width graphs in [20], but with a super-exponential dependency on the clique-width in
the runtime, due to the use of Courcelle’s theorem. The work of Coudert et al. has also been
continued in [28, 27, 46] and especially in [47], where the authors obtained an O((kn)2)-time
algorithm for All-Pairs Shortest Paths (APSP) on n-vertex graphs of clique-width at most k.
Results. We provide new insights on the fine-grained complexity of polynomial-time solvable
distance problems within bounded clique-width graphs. As in all previous works in this
area, all our algorithmic results require a k-expression to be given in the input. Specifically,
let G = (V, E, w) be such that |V | = n, |E| = m, and w : V → N. The eccentricity of a
vertex u, denoted eG(u), is its largest distance to any other vertex; its inverse is sometimes
called the graph centrality of u [41]. The closeness centrality of u, denoted CG(u), equals
1/

∑
v dG(u, v) [52]. For a discussion about these centrality measures, and others, and their

role in social network analysis, we refer to [24]. Our main contribution is an algorithm for
computing all eccentricities, and closeness centralities within the n-vertex m-edge graphs of
clique-width at most k, being given a k-expression, that runs in O(2O(k)(n + m)1+ϵ) time
for any ϵ > 0 (Theorem 8).

We point out that the diameter of a graph is its largest eccentricity. The radius of a
graph is its least eccentricity, and its center is the set of all vertices whose eccentricity equals
the radius. Therefore, our result for computing all eccentricities implies, for any ϵ > 0, an
O(2O(k)(n + m)1+ϵ)-time algorithm for computing the diameter, the radius, and the center of
a graph of clique-width at most k, if a k-expression is given. To the best of our knowledge, it
is the first algorithm to match the conditional lower bound of Coudert et al. Previously, the
only known algorithms for these problems were applications of Courcelle’s theorem [19]. The
Wiener index W (G) of a graph G is the sum of all its distances, while its median set contains
all the vertices of maximal closeness centrality. In the same way, our result for computing
the closeness centrality implies, for any ϵ > 0, an O(2O(k)(n + m)1+ϵ)-time algorithm for
computing both the Wiener index and the median set of a graph of clique-width at most
k, if a k-expression is given. Our runtimes are also optimal under SETH for the Wiener
index, and so, for the closeness centrality (the conditional lower bound is the same as for the
diameter problem, see the discussion in Sec. 4).

Recall that our results hold for vertex-weighted graphs. A related problem, studied in
location theory, is given an unweighted graph G = (V, E) and a cost function p : V → N,
to compute for every vertex u its p-eccentricity (resp., its total p-distance sum), defined
as ep(u) := maxv p(v)dG(u, v) (resp., as TDp(u) :=

∑
v p(v)dG(u, v)). Note that the total

distance for unweighted graphs is nothing but the inverse of closeness centrality. Our approach

IPEC 2021

16:4 Optimal centrality computations within bounded clique-width graphs

can also be applied to that case (Theorem 17).
Finally, as a byproduct of our techniques, we obtain a new distance labeling scheme

for bounded clique-width graph classes which outperforms the state of the art [20]1. See
our Theorem 4 for details. In doing so, we get an Õ(kn2)-time algorithm in order to solve
All-Pairs Shortest-Paths within n-vertex vertex-weighted graphs of clique-width at most k

(Corollary 7). This improves on the previously best-known O((kn)2)-time algorithm, and it
almost completely solves an open problem from Kratsch and Nelles [47] who asked whether
there exists an O(kn2)-time algorithm for this problem.
Overview of our techniques. Roughly, the standard approach for bounded clique-width
graphs is to process a k-expression sequentially. It is possible to transform a k-expression
into a so called partition tree, a purely combinatorial object that has been used in [18] in
order to derive a new characterization of the clique-width. – We formally define clique-width
and partition trees in Sec. 2. – Doing so, it becomes easier and more transparent to apply
standard algorithmic approaches, for trees, to the k-expressions. In particular, it is known
that every bounded clique-width graph has a balanced edge-cut of bounded neighbourhood
diversity (i.e., whose edges can be partitioned in a bounded number of complete bipartite
graphs) [3, 26]. As a side contribution of this work, we show how to compute such balanced
cuts in parameterized linear time from a given partition tree. – Note that the original
runtime from [3] is unknown to us as we were unable to find this reference. – This procedure
of recursively finding such an edge-cut produces a special type of centroid decomposition
of a partition tree, with algorithmic applications to several distance problems on bounded
clique-width graphs. While such a divide-and-conquer approach can hardly be considered
as ‘new’, its usefulness in the fine-grained complexity study of polynomial-time solvable
problems on bounded clique-width graphs has remained to be demonstrated until our work.
We expect several other results to be found with this approach, in a similar way to what has
been done for bounded treewidth graphs in [44].

The distance-labeling scheme of Theorem 4 follows almost directly from our centroid
decomposition of a partition tree, that is why we chose to present it first in the paper. In
order to compute the centrality indices, we combine this centroid decomposition with two
other tools. One is the range query framework of Cabello and Knauer [13] that we use to
compute some distance information (depending on the centrality index) between the vertices
that are on different sides of an edge-cut of small neighbourhood diversity. To our best
knowledge, our work is the first (but admittedly, simple) application of this framework to
edge-cuts. We also augment this framework with a new type of orthogonal range query,
with applications to the fast computation of all p-eccentricities and total p-distances, see
Sec. 5. Our second tool is inspired from prior works on bounded treewidth graphs [1, 11] and
Cunningham’s split decomposition [21]. Specifically, we design some edge-weighted gadgets
in order to preserve the distances of the original graph in the two subgraphs resulting from
the removal of an edge-cut of bounded neighbourhood diversity. Adding weighted edges is
problematic because the diameter problem cannot even be solved in truly subquadratic time
within edge-weighted graphs of bounded clique-width. To address this issue, we restrict our
addition of weighted edges to ensure that when we further partition the graph via more
edge-cuts, the weighted edges are not included in these edge-cuts. To do this, we partition
the vertices of our gadgets into at most O(log n) clusters of only O(k2) vertices each, so
that weighted edges are only added between pairs of vertices in the same cluster. Then, we

1 In all fairness, the labeling scheme of Courcelle and Vanicat can be applied to many more problems
than just the computation of the distances in the graph.

G. Ducoffe 16:5

ensure that no cluster is ever separated by an edge-cut computed from the partition tree.
Doing so, we are still able to ensure that we can find unweighted edge-cuts that satisfy the
requirement of being both balanced and of small neighborhood diversity. We stress that to
prove correctness of our construction, we had to carefully analyze the structure of a partition
tree, which is arguably the most technical part of our analysis. While it is tempting to make
our gadgets vertex-weighted (e.g., by properly subdividing the weighted edges), we did not
find a satisfying way to do that without increasing the neighbourhood diversity of some of
the cuts.
Notations. Throughout the remainder of the paper, we shall write G = (V, E) for an
unweighted graph, and G = (V, E, w) for a vertex-weighted graph, where w : V → N. The
neighbour set of a vertex v ∈ V , resp. of a subset S ⊆ V , is defined as NG(v) = {u ∈ V |
uv ∈ E}, resp. as NG(S) =

⋃
v∈S NG(v) \ S. We may also define the distance between a

vertex v ∈ V and a subset S ⊆ V as dG(v, S) = dG(S, v) = minu∈S dG(u, v), and the distance
between two subsets S, S′ as dG(S, S′) = minu∈S,v∈S′ dG(u, v). Note that if S = ∅ then,
dG(v, S) = dG(S, S′) = +∞ for any v and S′. We shall introduce additional terminology
wherever needed in the paper.

2 Clique-width and partition trees

First, we recall two equivalent definitions of clique-width [18]. The following definitions can
be extended to weighted graphs simply by ignoring all the weights.
Clique-width expressions. A k-labeled graph is a triple G = (V, E, ℓ) where ℓ : V →
{1, 2, . . . , k} is called a labeling function. A clique-width k-expression (for short, a k-
expression) is an algebraic expression where the four allowed operations are: i(v): we add a
new isolated vertex with label ℓ(v) = i; G1 ⊕ G2: we make the disjoint union of two k-labeled
graphs; η(i, j): we add a join (complete bipartite subgraph) between all vertices with label
i and all vertices with label j; ρ(i, j): for all vertices v s.t. ℓ(v) = i, we set ℓ(v) = j. The
generated graph is the one obtained from the k-expression by deleting all the labels. We
say that a graph G = (V, E) has clique-width at most k if it is the graph generated by some
k-expression. For instance, 1(a)2(b)η(1, 2)ρ(1, 3)1(c)η(1, 2)ρ(2, 3)2(d)η(1, 2) is a 3-expression
generating the four-node path P4 with nodes a, b, c, d. In particular, the clique-width of P4
is at most three. This is in fact an equality, as the graphs of clique-width at most two are
exactly the cographs [40]. We denote by cw(G) the clique-width of the graph G. The size of
a k-expression is its number of operations. If the generated graph has order n and m edges,
and there is no unnecessary operation ρ(i, j) nor η(i, j) – which we will assume to be the
case throughout the remainder of this paper –, then the k-expression has size in O(n + m)
(e.g., see [35], where Fürer proved this result in a more general setting).
Partition tree. It is useful to represent a k-expression as a parse tree. By iteratively
contracting the edges incident to non-branching nodes of a parse tree, we get a so-called
partition tree, whose nodes are mapped to the collection of subsets of vertices with equal
label in their rooted subtree. Formally, given a graph G = (V, E), a partition tree is a pair
(T, f) where T is a rooted tree whose inner nodes have at least two children, and f is a
function mapping every node of T to a partial partition of V , such that:

for every node a ∈ V (T), f(a) is a partition of some vertex-subset A ⊆ V ;
for every vertex v ∈ V , there is a leaf node av ∈ V (T) s.t. f(av) = {{v}};
for every inner node a ∈ V (T), let b1, b2, . . . , bd be its children. If f(a) is a partition of A,
and in the same way for every 1 ≤ i ≤ d, f(bi) is a partition of Bi, then the vertex-subsets
B1, B2, . . . , Bd are pairwise disjoint and A =

⋃d
i=1 Bi. Furthermore, for every 1 ≤ i ≤ d,

IPEC 2021

16:6 Optimal centrality computations within bounded clique-width graphs

for every subset Xi ∈ f(bi), there is X ∈ f(a) s.t. Xi ⊆ X (we say that
⋃d

i=1 f(bi) refines
f(a)). Finally, for every 1 ≤ i < j ≤ d, for every adjacent vertices vi ∈ Bi and vj ∈ Bj , if
vi ∈ X and vj ∈ Y , for some X, Y ∈ f(a), then we have X ≠ Y and X × Y ⊆ E (we say
that the partition is compatible with the edge-incidence relation in the graph G).

The width of a partition tree is equal to maxa∈V (T) |f(a)|. A graph has clique-width at most
k if and only if it admits a partition tree of width at most k [18].

Note that if we naively store a partition tree (T, f), then storing explicitly all the
labels f(a), for a ∈ V (T), would require O(n2) space. Instead, for every a ∈ V (T), for every
X ∈ f(a), we may create a new vertex (a, X); then if bi is a child of a, for every Xi ∈ f(bi) s.t.
Xi ⊆ X, we add an arc between (a, X) and (bi, Xi). This is called in [18] the representation
graph of (T, f) and it only requires O(kn) space if the width is at most k.

▶ Lemma 1 ([18]). There is an algorithm that transforms a k-expression of size L into the
representation graph of a width-k partition tree in O(kL) time.

In particular, given a k-expression for an n-vertex m-edge graph G, we can construct the
representation graph of a width-k partition tree in O(k(n + m)) time.
Relation with k-modules. For a graph G = (V, E), a subset M ⊆ V is a module if we
have NG(u) \ M = NG(v) \ M for every vertices u, v ∈ M . A k-module is some M ⊆ V

that can be partitioned into k subsets, denoted M1, M2, . . . , Mk, in such a way that for
every 1 ≤ i ≤ k, Mi is a module in the subgraph G[(V \ M) ∪ Mi]. Some relations between
clique-width and k-modules were explored in [51]. We make the following useful observation,
whose proof is inspired by [51, Theorem 7].

▶ Lemma 2. The following two properties hold for every partition tree (T, f) of a graph
G = (V, E):
1. For every node a ∈ V (T), let A =

⋃
f(a) be the vertex-subset of which f(a) is a partition.

Then, A is a |f(a)|-module of G, with a corresponding partition of A being f(a).
2. Let a1, a2, . . . , ap be some children nodes of some a′ ∈ V (T) and, for each 1 ≤ i ≤ p, let

Ai =
⋃

f(ai) be the vertex-subset of which f(ai) is a partition. Then, A =
⋃p

i=1 Ai is a
|f(a′)|-module of G, with a corresponding partition of A being {X ′ ∩ A | X ′ ∈ f(a′)}.

Finally, recall that a cut of G = (V, E) is a bipartition (A, V \ A) of its vertex-set. The
neighbourhood diversity of a cut is the least k s.t. A is a k-module of G. By Lemma 2, each
node of a width-k partition tree defines a cut of neighbourhood diversity at most k.

3 Distance-labeling scheme

We describe our distance oracle for bounded clique-width graph classes. For technical reasons,
we need to make it work also for unconnected graphs. While it is likely that we could
process each connected component separately, we did not explore this possibility since it
was leading to more complicated updates of the partition trees (see the proof of Theorem 4
below). Given a possibly unconnected graph G, the distance dG(u, v) between u, v ∈ V is
equal to: +∞ if u and v are on different connected components of G, and to the smallest
weight of a uv-path in G otherwise. A distance-labeling scheme consists in some encoding
function CG : V → {0, 1}∗ and some decoding function DG : {0, 1}∗ × {0, 1}∗ → N ∪ {+∞}
s.t. dG(u, v) = DG(CG(u), CG(v)) for every vertices u and v. We are interested in minimizing
the total pre-processing time in order to compute the labels CG(v), for all vertices v, and
the query time in order to compute the distance given two labels. It is often the case that
DG runs in time polynomial in the size of the labels. Then, the objective is to minimize
maxv∈V |CG(v)|. The following result is due to Courcelle and Vanicat:

G. Ducoffe 16:7

▶ Theorem 3 ([20]). The family of n-vertex bounded clique-width unweighted graphs enjoys
an exact distance labeling scheme using labels of length O(log2 n) bits. Moreover, the distance
between two vertices can be computed in O(log2 n) time.

The hidden dependency in the clique-width is a stack of exponentials [37]. We improve
the latter while keeping optimal bit size and improved query time, namely:

▶ Theorem 4. For a vertex-weighted graph, let W denote the maximum weight. The
family of n-vertex m-edge graphs of clique-width at most k enjoys an exact distance labeling
scheme using labels of length O(k log n log (nW)) bits (resp., O(k log2 n) bits if the graph is
unweighted). Moreover, all the labels can be pre-computed in O(k(n + m) log2 n) time if a
k-expression is given (resp., in O(k(n + m) log n) time if the graph is unweighted), and the
distance between two vertices can be computed in O(k log n) time.

For the related problem of adjacency queries, we refer to [45] for a data structure in
O(kn) space for the n-vertex graphs of clique-width at most k.

Recall that dG(v, S) = dG(S, v) = minu∈S dG(u, v). In particular, dG(v, S) = +∞ if S is
empty. We will need the following result:

▶ Lemma 5. Let G = (V, E, w) be a graph (possibly not connected) and let (A, V \ A) be a
cut of neighbourhood diversity k. Furthermore, let A1, A2, . . . , Ak be a partition of A s.t. for
every 1 ≤ i ≤ k, Ai is a module of G \ (A \ Ai). For 1 ≤ i ≤ k, let Bi = NG(Ai) \ A. The
following hold for every u, v ∈ V :

if u ∈ A, v /∈ A then dG(u, v) = min{dG(u, Ai) + dG(Bi, v) | 1 ≤ i ≤ k};
if u, v ∈ A then dG(u, v) = min{dG[A](u, v)} ∪ {dG(u, Ai) + dG(Bi, v) | 1 ≤ i ≤ k};
if u, v /∈ A then dG(u, v) = min{dG[V \A](u, v)} ∪ {dG(u, Ai) + dG(Bi, v) | 1 ≤ i ≤ k}.

Our scheme for bounded clique-width graphs mimics one very well-known for trees which is
based on the centroid decomposition [36]. Specifically, let w : V (T) → N assign non-negative
weights to the nodes of some tree T . A w-centroid is a node c s.t. every subtree of T \ {c}
has weight at most w(T)/2. Such node always exists and a centroid can be computed in
linear time by using a standard dynamic programming approach [39] (simply orient each
edge toward the heaviest subtree, then find a sink). We also need the following easy lemma:

▶ Lemma 6. If c is a w-centroid of a tree T , then the components of T \{c} can be partitioned
in linear time in two forest F1, F2 s.t. max{w(F1), w(F2)} ≤ 2w(T)/3.

We are now ready to prove the main result of this section:

Proof of Theorem 4. We fix some width-k partition tree (T, f), that takes O(k(n + m))
time to compute by using Lemma 1. Let w : V (T) → {0, 1} be s.t. w(a) = 1 if and only if a

is a leaf. Observe that w(T) = n since there is a one-to-one mapping between the vertices
in V and the leaves of T . In order to construct the labels CG(v), for all v ∈ V (encoding
function), we next define a recursive procedure onto the weighted partition tree.

In what follows, let us assume n > 1 (otherwise, there is nothing to be done). We
compute in O(|V (T)|) time, and so in O(n) time, a w-centroid c. Note that if n = 2, then
T is composed of a root and of two leaves; then, a good choice for the w-centroid c is to
take the root. In particular, we may assume c to be an internal node. Otherwise, n ≥ 3,
and so, since w(T) = n, we must have that c is an internal node. Then, let a1, a2, . . . , ad be
the children of c. We denote C (resp. Ai) the subset of vertices of which f(c) (resp., f(ai))
is a partition. Furthermore, let Tc (resp., let Tai

) be the subtree rooted at c (resp., at ai).

IPEC 2021

16:8 Optimal centrality computations within bounded clique-width graphs

By Lemma 6 we can bipartition the trees T \ Tc, Ta1 , Ta2 , . . . , Tad
into two forests F1, F2 of

respective total weights ≤ 2n/3. In particular, since c is internal, and so w(c) = 0, both
forests are non-empty. Up to re-ordering the children nodes of c, we may assume one of those
forests, say F1, to be equal to

⋃p
j=1 Taj , for some p ≤ d. For short, we name A :=

⋃p
j=1 Aj .

Doing so, we define the cut (A, V \ A), whose two sides can be determined in O(n) time by
traversing the disjoint subtrees Ta1 , Ta2 , . . . , Tap .

By Lemma 2, A is a k-module of G, with a corresponding partition being Φ(A) = {X ∩A |
X ∈ f(c)} (or f(a1) if p = 1). Note that such a partition can be readily derived in O(n)
time from either f(c) or f(a1). In turn, being given the representation graph of (T, f), we
can compute f(c) and f(a1) in O(kn) time by traversing the subtrees rooted at nodes c

and a1. Let X1, X2, . . . , Xk be a partition of A s.t., for every 1 ≤ i ≤ k, Xi is a module of
G\ (A\Xi). Furthermore, for every 1 ≤ i ≤ k, let Yi := NG(Xi)\A (neighbour sets in V \A).
Since the subsets Xi are pairwise disjoint we can compute Y1, Y2, . . . , Yk in total O(m) time.
Finally, for every 1 ≤ i ≤ k, for every v ∈ V , we compute dG(v, Xi) and dG(v, Yi). It takes
O((m + n) log n) time per subset, using a modified Dijkstra’s algorithm, and so total time in
O(k(m + n) log n) (resp., if the graph is unweighted, then it takes O(m + n) time per subset,
using a modified BFS, and so total time in O(k(m + n))). We end up applying recursively
the same procedure as above on the disjoint (possibly unconnected) subgraphs G[A] and
G[V \ A]. For that, we need to build a partition tree for each subgraph.

For G[A], we take TA = Ta1 if p = 1, otherwise we take TA = Tc \ (
⋃

j>p Tj). Then,
for every b ∈ V (TA), we set fA(b) = {X ∩ A | X ∈ f(b)}. Observe that if b ̸= c then
fA(b) = f(b). Hence, the representation graph of (TA, fA) can be computed from the
representation graph of (T, f) in O(kn) time.
For G[V \ A], a natural choice would be to take the subtree TV \A = T \ (

⋃p
j=1 Taj

). Then,
for every b ∈ V (TV \A), we set fV \A(b) = {X \ A | X ∈ f(b)}. Again, we observe that the
representation graph of (TV \A, fV \A) can be computed from the representation graph of
(T, f) in O(kn) time. However, doing so, we may not respect all properties of a partition
tree. Specifically, if d = p then c has become a leaf-node and it must be removed. But
then, its father node c′ may have only one child b left. If that is the case, then either
c′ is the root of T and then we choose TV \A = Tb, or we choose the father node of c′ as
the new father node of b, removing on our way the node c′. Note that we do not modify
fV \A(b) during this procedure. Finally, if d = p + 1 then c only has one child ad left. We
proceed similarly as in the previous case. That is, either c was the root of T and then we
set TV \A = Tad

, or we choose the father node of c as the new father node of ad, removing
on our way the node c. Note that doing so, we do not modify the partition fV \A(ad).

The above procedure recursively defines a so called w-centroid decomposition T (w). The
latter is a binary rooted tree, whose root is labeled by the cut (A, V \ A). Its left and right
subtrees are w-centroid decompositions of G[A] and G[V \ A] respectively. Note that by
construction, the depth of T (w) is in O(log n). Furthermore, there is a one-to-one mapping
between the leaves of T (w) and the vertices of G. For every vertex v ∈ V , its label CG(v)
contains each cut on its path until the root of T (w), and the 2k distances computed for each
cut. – Infinite distances may be encoded as some special character. – Here, we stress that all
these distances are computed in some induced subgraphs of G, and not in G itself (unless it
is for the first cut, at the root). Since the depth of T (w) is in O(log n), each CG(v) stores
O(k log n) distances, and so it has a bit size in O(k log n log (Wn)) (resp, in O(k log2 n) if
the graph is unweighted). Furthermore, as G[A] and G[V \ A] are disjoint, every recursive
stage of the procedure takes O(k(n + m) log n) time (resp., O(k(n + m)) time). Hence, the
total pre-processing time in order to compute CG(v), for all v ∈ V , is in O(k(n + m) log2 n)

G. Ducoffe 16:9

(resp., in O(k(n + m) log n) if G is unweighted).
We are left describing DG (decoding). Let u, v ∈ V be arbitrary. Their least common

ancestor in T (w) corresponds to some cut (Aj , Aj−1 \Aj) s.t. u ∈ Aj , v ∈ Aj−1 \Aj . Consider
all the cuts on the path between their least common ancestor and the root of T (w). We call
the latter (A0, V \ A0), (A1, A0 \ A1), . . . , (Aj , Aj−1 \ Aj). Since up to reverting their two
sides, all these cuts have neighbourhood diversity at most k, then we may apply Lemma 5
j + 1 times in order to compute dG(u, v) (i.e., in G, G[A0], G[A1], . . . , G[Aj−1]). Note that
j = O(log n). Finally, since for each cut considered, the 2k distances that are required in
order to apply this lemma are stored in CG(u) and CG(v), it takes O(k) time per cut, and
so, the final query time is in O(k log n). ◀

Recall that All-Pairs Shortest-Paths in an n-vertex graph of clique-width at most k can
be solved in O((kn)2) time [47]. As a by-product of our Theorem 4, we observe below that
we can improve the dependency on k, but at the price of a poly-logarithmic overhead in the
running time.

▶ Corollary 7. For every n-vertex vertex-weighted graph G = (V, E, w), if cw(G) ≤ k and
a k-expression is given, then we can solve All-Pairs Shortest-Paths for G in O(k(n log n)2)
time (resp., in O(kn2 log n) time if G is unweighted).

Proof. We start applying Theorem 4 in order to compute a distance-labeling scheme with
O(k log n) query time. Then, we consider all pairs u, v ∈ V (there are O(n2) such pairs) and
we compute dG(u, v) in O(k log n) time. ◀

4 Centrality indices and beyond

We refine our strategy for Theorem 4 in order to prove the main result of this paper:

▶ Theorem 8. For every connected n-vertex m-edge graph G = (V, E, w), if cw(G) ≤ k and
a k-expression is given, then we can compute in O(2O(k)(n + m)1+ϵ) time, for any ϵ > 0: all
the eccentricities, and all the closeness centralities.

▶ Corollary 9. For every connected n-vertex m-edge graph G = (V, E, w), if cw(G) ≤ k and
a k-expression is given, then we can compute the diameter, radius, center, Wiener index and
median set of G in O(2O(k)(n + m)1+ϵ) time, for any ϵ > 0.

Recall that Coudert et al. proved that assuming SETH, for any ϵ > 0, there is no
O(2o(k)(n + m)2−ϵ)-time algorithm for computing the diameter within cubic graphs of clique-
width at most k [16]. Therefore, our results for the diameter (and so, for the eccentricities)
are optimal under SETH. Our results for the Wiener index (and so, for the closeness
centrality) are also optimal under SETH. Indeed, since the pathwidth of a graph is an
upper bound for its clique-width [30], then it follows from [1] that it is already “SETH-
hard”, in the unweighted case, to decide in O(2o(k)(n + m)2−ϵ) time whether the diameter
is either two or three. It is well-known that diam(G) ≤ 2 if and only if for every v ∈ V

of degree δG(v), TD(v) = 2(n − 1) − δG(v) [11]. In particular, diam(G) ≤ 2 if and only if
W (G) = 2n(n − 1) − 2m.

4.1 Minimal partition of k-modules
First, it is not hard to show that every k-module has a partition in a least number of subsets.
In what follows, we will often use a few simple properties of this minimal partitioning.

IPEC 2021

16:10 Optimal centrality computations within bounded clique-width graphs

▶ Lemma 10. Every vertex-subset A in a graph G = (V, E, w) admits a unique partition
A1, A2, . . . , Ak with the following two properties:
1. For every 1 ≤ i ≤ k, for every ui, vi ∈ Ai, we have NG(ui)\A = NG(vi)\A. In particular,

A is a k-module of G.
2. For every k′ < k, A is not a k′-module of G.

We call it the minimal partition of A, and it can be computed in linear time.

Additional notations. From this point on we need to also allow edge-weights, due to some
technicalities in our final proof of Theorem 8. Such a graph is denoted by G = (V, E, w, α),
where α : E → N. Then, the weight of a path is the sum of the weights of all its vertices and
edges. The special case of vertex-weighted graphs is retrieved by setting α(e) = 0 for every
e ∈ E. Finally, we call a cut (A, V \ A) unweighted if all edges between A and V \ A have
a zero weight. The neighbourhood diversity of a cut is the same in G as in the underlying
unweighted graph obtained from G by removing all the weights.

4.2 Orthogonal range queries
We then need to recall some basics about the framework introduced in [13] by Cabello and
Knauer. Let P ⊆ Rk be a static set of k-dimensional points. We assume each point −→p ∈ P

to be assigned a value g(−→p). A box is the Cartesian product of k intervals. Note that we
allow each interval to be unbounded and/or open or partially open. Roughly, given a box R,
a range query on P asks for either reporting or counting all points in P ∩ R, or for some
specific point(s) in this intersection maximizing a given objective function. Here, we consider
the following types of range queries:

(Maximum range query) Given some box R, find some −→p ∈ P ∩ R maximizing g(−→p);
(Sum range query) Given some box R, compute

∑
−→p ∈P ∩R g(−→p).

(Count range query) Given some box R, compute |P ∩ R|.

▶ Lemma 11 ([11]). For every k-dimensional point set P of size n, for any ϵ > 0, we can
construct in O(2O(k)n1+ϵ) time, a data structure, sometimes called a k-dimensional range
tree, that allows to answer any maximum range query, sum range query or count range query
in O(2O(k)nϵ) time.

In the following Lemma 12 we give a new simple application of Lemma 11 to distance
problems in graphs, namely:

▶ Lemma 12. Let G = (V, E, w, α) be a connected n-vertex m-edge graph, let (A, V \ A) be
an unweighted cut of neighbourhood diversity at most k, and let A′ ⊆ A, B′ ⊆ V \ A. For
any ϵ > 0, after a pre-processing in O(km + 2O(k)n1+ϵ) time, for every vertex u ∈ A′ we can
compute the values maxv∈B′ dG(u, v) and

∑
v∈B′ dG(u, v) in Õ(2O(k)nϵ) time; in the same

way, for every vertex v ∈ B′ we can compute the values maxu∈A′ dG(v, u) and
∑

u∈A′ dG(v, u)
in O(2O(k)nϵ) time.

4.3 Distance-preservers with weighted edges
Our next objective consists in adding some weighted subsets to the two sides of a cut in order
to preserve the distances from the original graph. Recall that for every two subsets X and
Y , dG(X, Y) = minx∈X,y∈Y dG(x, y). Our construction below is inspired by Cunningham’s
split decomposition [21].

G. Ducoffe 16:11

▶ Definition 13. Given G = (V, E, w, α) connected, let (A, V \ A) be an unweighted cut of
neighbourhood diversity at most k. Let A1, A2, . . . , Ak be the minimal partition of A. W.l.o.g.,
either all the Bi’s are nonempty, or Bk is the unique empty set amongst the Bi’s. We set
k′ = k if Bk ̸= ∅, and k′ = k − 1 otherwise.

For every 1 ≤ i ≤ k′, let bii ∈ Bi be of minimum weight. For every 1 ≤ i < j ≤ k′, let
also bij ∈ Bi, bji ∈ Bj be the ends of a shortest BiBj-path (possibly, bij = bji). The
graph HA is obtained from G[A ∪ {bij | 1 ≤ i, j ≤ k′}] by adding, for every 1 ≤ i < j ≤ k′

s.t. bij ̸= bji, an edge bijbji of weight dG(Bi, Bj) − w(bij) − w(bji).
For every 1 ≤ i ≤ k′, let aii ∈ Ai be of minimum weight. For every 1 ≤ i < j ≤ k′, let
also aij ∈ Ai, aji ∈ Aj be the ends of a shortest AiAj-path. The graph HB is obtained
from G[(V \ A) ∪ {aij | 1 ≤ i, j ≤ k′}] by adding, for every 1 ≤ i < j ≤ k′, an edge aijaji

of weight dG(Ai, Aj) − w(aij) − w(aji).

Below, we observe that it is rather straightforward to compute these two above subgraphs
HA and HB in parameterized almost linear time:

▶ Lemma 14. Given G = (V, E, w, α) connected, let (A, V \ A) be an unweighted cut of
neighbourhood diversity at most k. The gadget subgraphs HA and HB (see Definition 13)
can be constructed in Õ(k2n + km) time.

The following two properties are crucial in our proofs of Theorem 8.

▶ Lemma 15. Given G = (V, E, w, α) connected, let (A, V \ A) be an unweighted cut
of neighbourhood diversity at most k. Let HA, HB be as in Definition 13. Then, for
every u, v ∈ A we have dG(u, v) = dHA

(u, v). Similarly, for every u, v /∈ A we have
dG(u, v) = dHB

(u, v).

Our approach only works for unweighted cuts. In particular, if we want to apply the
procedure of Definition 13 recursively, for some cuts in the gadget subgraphs HA and HB,
then we must have both ends of each weighted edge on a same side of the cut. The next
lemma shows that restricting ourselves to such cuts does not cause an explosion of their
neighbourhood diversity.

▶ Lemma 16. Given G = (V, E, w, α) connected, let (A, V \ A) be an unweighted cut of
neighbourhood diversity at most k. Let HA, HB be as in Definition 13.
1. For any A′ ⊆ A, if A′ is a k-module of G then it is a k-module of HA.
2. For any B′ ⊆ V \ A, if B′ is a k-module of G then it is a k-module of HB; if A ∪ B′ is a

k-module of G then B′ ∪ {aij | 1 ≤ i, j ≤ k′} is a k-module of HB.

4.4 Proofs of the main results
Sketch Proof of Theorem 8. We revisit the scheme of Theorem 4. That is, we fix some
width-k partition tree (T, f), that takes O(k(n+m)) time by using Lemma 1. We pre-process
the tree T in order to compute in O(1) time, for any two nodes a, a′ ∈ V (T), their least
common ancestor; it can be done in O(n) time [43]. Furthermore, let w : V (T) → {0, 1} be
s.t. w(a) = 1 if and only if a is a leaf. In what follows, we mimic the recursive construction
of a w-centroid decomposition of T .

The algorithm. We consider a more general problem for which we are given as input
some tuple ⟨r, H, U, T U , fU , L⟩. Let us detail each of the components of this input. Here,
H is a graph with non-negative real vertex-weights and non-negative integer edge-weights
(initially, H = G). The value r represents the recursion level of the algorithm (initially, r = 0).

IPEC 2021

16:12 Optimal centrality computations within bounded clique-width graphs

The vertex-subset U is such that U ⊆ V ∩ V (H) (initially, U = V). We further impose to
have H[U] = G[U], and that for every u, v ∈ U we have dG(u, v) = dH(u, v). In particular,
all the edges of H[U] are unweighted. The rooted tree (T U , fU) is a width-k-partition tree
of G[U] (initially, T U = T and fU = f). We further assume that T U was constructed from
a rooted subtree of T by repeatedly contracting internal nodes with only one child. In
particular, all the ancestor-descendant relations in T U are also ancestor-descendant relations
in T . Furthermore, for every node b ∈ V (T U) we impose fU (b) = {X ∩ U | X ∈ f(b)}. Note
that in lieu of (T U , fU), we are given the representation graph of this partition tree (as
defined in Sec. 2). Finally, H \ U is partitioned in r′ ≤ r subgraphs of order O(k2), that we
shall name “clusters” in what follows (there may exist edges between different clusters, but
they must be unweighted). To each cluster Wi, we associate some node ci of the original tree
T . Roughly, ci corresponds to some balanced cut, computed at an earlier recursive stage,
and the cluster Wi resulted from the procedure of Definition 13 applied to this cut. So, in
particular, we impose that any edge between two vertices that are on different clusters (resp.,
between a vertex in a cluster and a vertex of U) must be unweighted. All the pairs (Wi, ci)
are stored in the list L (initially, L is the empty list).

The output of the algorithm is, for each u ∈ U , maxv∈U dH(u, v) and
∑

v∈U dH(u, v).

We may assume that |U | ≥ λk2 log n, for some sufficiently large constant λ. Indeed, if it
not the case then we may compute by brute-force all the desired values (base case of the
recursion). Then, we compute a w-centroid c in T U . Since w(T U) = |U | > 3, this node c

cannot be a leaf. Let a1, a2, . . . , ad be the children of c. As before, we denote by C (resp. Ai)
the subset of vertices of which fU (c) (resp., fU (ai)) is a partition, and by T U

c (resp., T U
ai

)
the subtree rooted at c (resp., at ai). Here, we stress that C ⊆ U (resp., Ai ⊆ U). By using
Lemma 6, we may partition T U \{c} in two non-empty forests of respective weights ≤ 2|U |/3.
Furthermore, we may assume one of our two forests to contain exactly T U

a1
, T U

a2
, . . . , T U

ap
for

some p ≤ d. Then, let A =
⋃p

j=1 Aj . We compute the following cut of H:
The subsets A and U \ A are on separate sides of the cut.
For every (Wj , cj) ∈ L, there are two cases. If there exists some index 1 ≤ i ≤ p s.t. the
least common ancestor of cj and ai in T is a strict descendant of c (a child of c in T , or a
descendant of one of these children), then we put Wj on the same side of the cut as A.
Otherwise, we put Wj on the same side of the cut as U \ A.

Note that, for each (Wj , cj) ∈ L, we can decide in which case we are as follows. For every
1 ≤ i ≤ p, we compute the least common ancestor si of cj and ai in T . Then, for every
1 ≤ i ≤ p, we compute the least common ancestor of si and c in T .

Let (A′, V (H) \ A′) be the resulting cut, where A ⊆ A′. By construction, it is unweighted.
We prove that A′ is a k-module of H. Then, we apply Lemma 12 in order to compute, for
every u ∈ A, the values maxv∈U\A dH(u, v) and

∑
v∈U\A dH(u, v) (resp., for every v ∈ U \ A,

the values maxu∈A dH(v, u) and
∑

u∈A dH(v, u)). We are left computing for every u ∈ A,
the values maxu′∈A dH(u, u′) and

∑
u′∈A dH(u, u′) (resp., for every v ∈ U \ A, the values

maxv′∈U\A dH(v, v′) and
∑

v′∈U\A dH(v, v′)). For that, we construct the gadget subgraphs
HA and HB , as in Definition 13 (i.e., w.r.t. the above cut (A′, V (H) \ A′)). Let LA contain
every (Wj , cj) ∈ L s.t. Wj ⊆ A′; we also add in LA a new cluster (V (HA) \ A′, c). In the
same way, let LB contain every (Wj , cj) ∈ L s.t. Wj ⊆ V (H) \ A′; we also add in LB a new
cluster (V (HB) \ B′, c), where B′ = V (H) \ A′. We end up calling our algorithm recursively
for the inputs ⟨r + 1, HA, A, T A, fA, LA⟩ and ⟨r + 1, HB , U \ A, T B , fB , LB⟩.

Correctness. There are two properties to check in order to prove the validity of our
approach. The first such property is that, being given the two gadget subgraphs HA and
HB resulting from H, the distances in H (and so, in G) are preserved. This follows from

G. Ducoffe 16:13

Lemma 15. The second property to be checked is that we always compute a cut (A′, V (H)\A′)
of neighbourhood diversity at most k. We prove by induction on r, using Lemma 16, that:

▶ Property 1. For every ⟨r, H, U, T U , fU , L⟩, let s1, s2, . . . , sq be children of some node s in
T U . Let Si be the subset of U of which fU (si) is a partition, and set S =

⋃q
i=1 Si. Finally,

let S′ be the union of S with all subsets Wj , for (Wj , cj) ∈ L, s.t. the least common ancestor
in T of cj and some node si is a strict descendant of s. Then, S′ is a k-module of H.

Complexity analysis. By induction, the depth of the recursion tree is O(log n). Fur-
thermore, the sum of all the orders |V (H)| + |E(H)|, over all the inputs ⟨r, H, U, T U , fU , L⟩
that are at the same recursion level r, is at most O(k2n log n + m). Therefore, by Lemmas 14
and 12 the total running time at any fixed recursive stage, and so also for the whole algorithm,
is in O(2O(k)(n + m)1+ϵ), for any ϵ > 0. ◀

5 Facility location problems on bounded clique-width graphs

Our last result in the paper is as follows:

▶ Theorem 17. For every connected n-vertex m-edge graph G = (V, E), if cw(G) ≤ k and a
k-expression is given, then for any ϵ > 0, we can compute in O(2O(k)(n + m)1+ϵ) time: all
the p-eccentricities and all the total p-distances, for every cost function p : V → N.

Despite its apparent similarity with Theorem 8, Theorem 17 has some special features.
To see why, let us assume that two vertices u, v are disconnected by a join with respective
sides X, Y . Then, d(u, v) = d(u, X) + 1 + d(Y, v),2 and therefore for any fixed u, in order to
maximize d(u, v) it suffices to find such a v maximizing d(v, Y). However, this is no more true
if we have a cost function p; indeed, we now want to maximize p(v)·(d(u, X)+1)+p(v)d(v, Y).

For that, we first prove that:

▶ Lemma 18. Let F be a set of n linear functions fi : t → ai · t + bi, where ai, bi ≥ 0. Then
after an O(n log n)-time pre-processing, for any x ≥ 0 we can compute max1≤i≤n{ai · x + bi}
in O(log n) time.

Combined with some insights of Cabello about range trees [12], we get:

▶ Corollary 19. Let P be a set of n points in Rd where each point p ∈ P is associated an
ordered pair (a(p), b(p)) of nonnegative real numbers. We can construct a data structure in
O(2O(d)n1+ϵ) time, for any ϵ > 0, such that, for any box R and nonnegative x ≥ 0, a point
p ∈ P ∩ R maximizing a(p) · x + b(p) can be output in O(2O(d)nϵ) time.

▶ Lemma 20. Let G = (V, E, α) be a connected n-vertex m-edge graph, where α : E → N,
and let p ≥ 0 be some vertex-weight function. Let also (A, V \ A) be an unweighted cut
of neighbourhood diversity at most k, and let A′ ⊆ A, B′ ⊆ V \ A. For any ϵ > 0, after
a pre-processing in O(km + 2O(k)n1+ϵ) time, for every vertex u ∈ A′ we can compute
the values maxv∈B′ p(v) · dG(u, v) and

∑
v∈B′ p(v) · dG(u, v) in O(2O(k)nϵ) time; in the

same way, for every vertex v ∈ B′ we can compute the values maxu∈A′ p(u) · dG(v, u) and∑
u∈A′ p(u) · dG(v, u) in O(2O(k)nϵ) time.

Theorem 17 now follows from the exact same proof as for Theorem 8, but where we use
Lemma 20 rather than Lemma 12.

2 This is a slightly different formula than in Lemma 5, which is for vertex-weighted graphs. Here we
adapt the formula for unweighted graphs, where the distance between two vertices u and v is classically
defined as the minimum number of edges on a uv-path.

IPEC 2021

16:14 Optimal centrality computations within bounded clique-width graphs

References
1 Amir Abboud, Virginia Vassilevska Williams, and Joshua R. Wang. Approximation and fixed

parameter subquadratic algorithms for radius and diameter in sparse graphs. In ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 377–391. SIAM, 2016. doi:10.1137/1.
9781611974331.ch28.

2 John Adrian Bondy and Uppaluri Siva Ramachandra Murty. Graph theory, volume 244 of
Graduate Texts in Mathematics. Springer-Verlag London, 2008.

3 R Borie, JL Johnson, V Raghavan, and JP Spinrad. Robust polynomial time algorithms on
clique-width k graphs. 2002.

4 Andreas Brandstädt, Konrad K Dabrowski, Shenwei Huang, and Daniël Paulusma. Bounding
the clique-width of H-free split graphs. Discrete Applied Mathematics, 211:30–39, 2016.

5 Andreas Brandstädt, Konrad K Dabrowski, Shenwei Huang, and Daniël Paulusma. Bounding
the Clique-Width of H-Free Chordal Graphs. Journal of Graph Theory, 86(1):42–77, 2017.

6 Andreas Brandstädt, Feodor F Dragan, Hoàng-Oanh Le, and Raffaele Mosca. New graph
classes of bounded clique-width. Theory of Computing Systems, 38(5):623–645, 2005.

7 Andreas Brandstadt, Joost Engelfriet, Hoang-Oanh Le, and Vadim V Lozin. Clique-width for
4-vertex forbidden subgraphs. Theory of Computing Systems, 39(4):561–590, 2006.

8 Andreas Brandstädt, Tilo Klembt, and Suhail Mahfud. P6-and triangle-free graphs revisited:
structure and bounded clique-width. Discrete Mathematics & Theoretical Computer Science,
8(1), 2006.

9 Andreas Brandstädt, Hoàng-Oanh Le, and Raffaele Mosca. Gem-and co-gem-free graphs
have bounded clique-width. International Journal of Foundations of Computer Science,
15(01):163–185, 2004.

10 Andreas Brandstädt, Hoàng-Oanh Le, and Raffaele Mosca. Chordal co-gem-free and (P5,
gem)-free graphs have bounded clique-width. Discrete Applied Mathematics, 145(2):232–241,
2005.

11 K. Bringmann, T. Husfeldt, and M. Magnusson. Multivariate Analysis of Orthogonal Range
Searching and Graph Distances. Algorithmica, pages 1–24, 2020.

12 S. Cabello. Computing the inverse geodesic length in planar graphs and graphs of bounded
treewidth. Technical Report 1908.01317, arXiv, 2019.

13 S. Cabello and C. Knauer. Algorithms for graphs of bounded treewidth via orthogonal range
searching. Computational Geometry, 42(9):815–824, 2009.

14 Derek G. Corneil, Michel Habib, Jean-Marc Lanlignel, Bruce Reed, and Udi Rotics. Polynomial
Time Recognition of Clique-Width ≤ 3 Graphs. In Latin American Theoretical INformatics
Symposium (LATIN), volume 1776 of Lecture Notes in Computer Science, pages 126–134.
Springer, 2000. doi:10.1007/10719839_14.

15 Derek G. Corneil and Udi Rotics. On the relationship between clique-width and treewidth.
SIAM Journal on Computing, 34(4):825–847, 2005. doi:10.1137/S0097539701385351.

16 D. Coudert, G. Ducoffe, and A. Popa. Fully polynomial FPT algorithms for some classes of
bounded clique-width graphs. ACM Transactions on Algorithms (TALG), 15(3):1–57, 2019.

17 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.
Information and Computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

18 Bruno Courcelle, Pinar Heggernes, Daniel Meister, Charis Papadopoulos, and Udi Rotics. A
characterisation of clique-width through nested partitions. Discrete Applied Mathematics,
187:70–81, 2015. doi:10.1016/j.dam.2015.02.016.

19 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory of Computing Systems, 33(2):125–150,
2000. doi:10.1007/s002249910009.

20 Bruno Courcelle and Rémi Vanicat. Query efficient implementation of graphs of bounded
clique-width. Discrete Applied Mathematics, 131(1):129–150, 2003.

21 William H. Cunningham. Decomposition of directed graphs. SIAM Journal on Algebraic
Discrete Methods, 3(2):214–228, 1982. doi:10.1137/0603021.

https://doi.org/10.1137/1.9781611974331.ch28
https://doi.org/10.1137/1.9781611974331.ch28
https://doi.org/10.1007/10719839_14
https://doi.org/10.1137/S0097539701385351
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/j.dam.2015.02.016
https://doi.org/10.1007/s002249910009
https://doi.org/10.1137/0603021

G. Ducoffe 16:15

22 Konrad K Dabrowski and Daniël Paulusma. Classifying the clique-width of H-free bipartite
graphs. Discrete Applied Mathematics, 200:43–51, 2016.

23 Konrad K Dabrowski and Daniël Paulusma. Clique-width of graph classes defined by two
forbidden induced subgraphs. The Computer Journal, 59(5):650–666, 2016.

24 K. Das, S. Samanta, and M. Pal. Study on centrality measures in social networks: a survey.
Social network analysis and mining, 8(1):1–11, 2018.

25 Reinhard Diestel. Graph Theory. Graduate Texts in Mathematics. Springer, 2010. 4th edition.
doi:10.1007/978-3-662-53622-3.

26 Feodor F Dragan and Chenyu Yan. Collective tree spanners in graphs with bounded parameters.
Algorithmica, 57(1):22–43, 2010.

27 Guillaume Ducoffe and Alexandru Popa. The b-matching problem in distance-hereditary
graphs and beyond. In International Symposium on Algorithms and Computation (ISAAC),
volume 123 of Leibniz International Proceedings in Informatics, pages 30:1–30:13. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.ISAAC.2018.30.

28 Guillaume Ducoffe and Alexandru Popa. The use of a pruned modular decomposition for
maximum matching algorithms on some graph classes. In International Symposium on
Algorithms and Computation (ISAAC), volume 123 of Leibniz International Proceedings
in Informatics, pages 6:1–6:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.
doi:10.4230/LIPIcs.ISAAC.2018.6.

29 Wolfgang Espelage, Frank Gurski, and Egon Wanke. How to solve NP-hard graph problems
on clique-width bounded graphs in polynomial time. In International Workshop on Graph-
Theoretic Concepts in Computer Science (WG), volume 1 of Lecture Notes in Computer Science,
pages 117–128. Springer, 2001. doi:10.1007/3-540-45477-2_12.

30 Michael R. Fellows, Frances A. Rosamond, Udi Rotics, and Stefan Szeider. Clique-width is
NP-complete. SIAM Journal on Discrete Mathematics, 23(2):909–939, 2009. doi:10.1137/
070687256.

31 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Intractability
of clique-width parameterizations. SIAM Journal on Computing, 39(5):1941–1956, 2010.
doi:10.1137/080742270.

32 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Almost optimal
lower bounds for problems parameterized by clique-width. SIAM Journal on Computing,
43(5):1541–1563, 2014. doi:10.1137/130910932.

33 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi.
Clique-width III: Hamiltonian Cycle and the Odd Case of Graph Coloring. ACM Transactions
on Algorithms, 15(1):9, 2019. doi:10.1145/3280824.

34 Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, Michal Pilipczuk, and Marcin Wrochna.
Fully polynomial-time parameterized computations for graphs and matrices of low treewidth.
ACM Transactions on Algorithms, 14(3):34:1–34:45, 2018. doi:10.1145/3186898.

35 Martin Fürer. A natural generalization of bounded tree-width and bounded clique-width. In
Latin American Symposium on Theoretical Informatics, pages 72–83. Springer, 2014.

36 C. Gavoille, D. Peleg, S. Pérennes, and R. Raz. Distance labeling in graphs. Journal of
Algorithms, 53(1):85–112, 2004.

37 Cyril Gavoille and Christophe Paul. Distance labeling scheme and split decomposition. Discrete
Mathematics, 273(1-3):115–130, 2003.

38 Archontia C. Giannopoulou, George B. Mertzios, and Rolf Niedermeier. Polynomial fixed-
parameter algorithms: A case study for longest path on interval graphs. Theoretical computer
science, 689:67–95, 2017. doi:10.1016/j.tcs.2017.05.017.

39 A. Goldman. Optimal center location in simple networks. Transportation science, 5(2):212–221,
1971.

40 Martin Charles Golumbic and Udi Rotics. On the clique-width of some perfect graph classes.
International Journal of Foundations of Computer Science, 11(03):423–443, 2000. doi:10.
1142/S0129054100000260.

IPEC 2021

https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.4230/LIPIcs.ISAAC.2018.30
https://doi.org/10.4230/LIPIcs.ISAAC.2018.6
https://doi.org/10.1007/3-540-45477-2_12
https://doi.org/10.1137/070687256
https://doi.org/10.1137/070687256
https://doi.org/10.1137/080742270
https://doi.org/10.1137/130910932
https://doi.org/10.1145/3280824
https://doi.org/10.1145/3186898
https://doi.org/10.1016/j.tcs.2017.05.017
https://doi.org/10.1142/S0129054100000260
https://doi.org/10.1142/S0129054100000260

16:16 Optimal centrality computations within bounded clique-width graphs

41 P. Hage and F. Harary. Eccentricity and centrality in networks. Social networks, 17(1):57–63,
1995.

42 Torben Hagerup, Jyrki Katajainen, Naomi Nishimura, and Prabhakar Ragde. Characterizing
multiterminal flow networks and computing flows in networks of small treewidth. Journal of
Computer and System Sciences, 57(3):366–375, 1998.

43 Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM Journal on Computing, 13(2):338–355, 1984.

44 Yoichi Iwata, Tomoaki Ogasawara, and Naoto Ohsaka. On the power of tree-depth for fully
polynomial FPT algorithms. In International Symposium on Theoretical Aspects of Computer
Science (STACS), volume 96 of Leibniz International Proceedings in Informatics, pages 41:1–
41:14. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.STACS.
2018.41.

45 Shahin Kamali. Compact representation of graphs of small clique-width. Algorithmica,
80(7):2106–2131, 2018.

46 Stefan Kratsch and Florian Nelles. Efficient and adaptive parameterized algorithms on
modular decompositions. In European Symposia on Algorithms (ESA), pages 55:1–55:15, 2018.
doi:10.4230/LIPIcs.ESA.2018.55.

47 Stefan Kratsch and Florian Nelles. Efficient Parameterized Algorithms for Computing All-Pairs
Shortest Paths. In 37th International Symposium on Theoretical Aspects of Computer Science
(STACS 2020), volume 154 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 38:1–38:15, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.STACS.2020.38.

48 V Lozin and Dieter Rautenbach. Chordal bipartite graphs of bounded tree-and clique-width.
Discrete Mathematics, 283(1-3):151–158, 2004.

49 Johann A. Makowsky and Udi Rotics. On the clique-width of graphs with few P4’s.
International Journal of Foundations of Computer Science, 10(03):329–348, 1999. doi:
10.1142/S0129054199000241.

50 S. Oum and P. Seymour. Approximating clique-width and branch-width. Journal of Combin-
atorial Theory, Series B, 96(4):514–528, 2006.

51 Michaël Rao. Clique-width of graphs defined by one-vertex extensions. Discrete Mathematics,
308(24):6157–6165, 2008. doi:10.1016/j.disc.2007.11.039.

52 G. Sabidussi. The centrality index of a graph. Psychometrika, 31(4):581–603, 1966.
53 Karol Suchan and Ioan Todinca. On powers of graphs of bounded NLC-width (clique-width).

Discrete Applied Mathematics, 155(14):1885–1893, 2007.
54 Jean-Marie Vanherpe. Clique-width of partner-limited graphs. Discrete mathematics, 276(1-

3):363–374, 2004.

https://doi.org/10.4230/LIPIcs.STACS.2018.41
https://doi.org/10.4230/LIPIcs.STACS.2018.41
https://doi.org/10.4230/LIPIcs.ESA.2018.55
https://doi.org/10.4230/LIPIcs.STACS.2020.38
https://doi.org/10.1142/S0129054199000241
https://doi.org/10.1142/S0129054199000241
https://doi.org/10.1016/j.disc.2007.11.039

	1 Introduction
	2 Clique-width and partition trees
	3 Distance-labeling scheme
	4 Centrality indices and beyond
	4.1 Minimal partition of k-modules
	4.2 Orthogonal range queries
	4.3 Distance-preservers with weighted edges
	4.4 Proofs of the main results

	5 Facility location problems on bounded clique-width graphs

