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Abstract
Recently, independent groups of researchers have presented algorithms to compute a maximum
matching in Õ(f(k) · (n + m)) time, for some computable function f , within the graphs where
some clique-width upper bound is at most k (e.g., tree-width, modular-width and P4-sparseness).
However, to the best of our knowledge, the existence of such algorithm within the graphs of bounded
clique-width has remained open until this paper. Indeed, we cannot even apply Courcelle’s theorem
to this problem directly, because a matching cannot be expressed in MSO1 logic.

Our first contribution is an almost linear-time algorithm to compute a maximum matching
in any bounded clique-width graph, being given a corresponding clique-width expression. It can
be used to also compute the Edmonds-Gallai decomposition. For that, we do apply Courcelle’s
theorem, but in order to compute the cardinality of a maximum matching rather than the matching
itself, via the classic Tutte-Berge formula. To obtain with this approach a maximum matching, we
need to combine it with a recursive dissection scheme for bounded clique-width graphs based on
the existence of balanced edge-cuts with bounded neighbourhood diversity, and with a distributed
version of Courcelle’s theorem (Courcelle and Vanicat, DAM 2016) – of which we present here a
slightly stronger version than the standard one in the literature – in order to evaluate the Tutte-Berge
formula on various subgraphs of the input.

Finally, for the bipartite graphs of clique-width at most k, we present an alternative Õ(k2 ·(n+m))-
time algorithm for the problem. The algorithm is randomized and it is based on a completely
different approach than above: combining various reductions to matching and flow problems on
bounded tree-width graphs with a very recent result on the parameterized complexity of linear
programming (Dong et. al., STOC’21). Our results for bounded clique-width graphs extend many
prior works on the complexity of Maximum Matching within cographs, distance-hereditary graphs,
series-parallel graphs and other subclasses.
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15:2 Maximum Matching in almost linear time on graphs of bounded clique-width

1 Introduction

For any undefined graph terminology, see [7, 23]. Throughout the paper, for any graph
G = (V,E), let n := |V | be its order (number of vertices) and m := |E| be its size (number of
edges). Recall that a matching in a graph is a set of pairwise end-disjoint edges. A maximum
matching is one of maximum cardinality. The matching number of G, denoted by ν(G), is the
cardinality of a maximum matching of G. Matchings (possibly, with additional constraints)
are ubiquitous in scheduling, markets, resource allocation schemes and even chemistry [68].
We refer to [44, 55] for a compendium of matching problems and their applications.

This paper is about the (parameterized) complexity of Maximum Matching in graphs.
Unsurprisingly, a lot of research in Computer Science has been devoted to this question. The
first polynomial-time algorithm for Maximum Matching was proposed by Edmonds [30].
Later, Micali and Vazirani presented the state-of-the-art O(m

√
n)-time algorithm for this

problem [60], that has remained unchallenged since forty years. We here study Maximum
Matching in the context of “Fine-Grained Complexity in P” (see [72] for a survey of this
blossoming field). Specifically, can a maximum matching be computed in (almost) linear
time? There are a few reasons to believe that it is indeed the case. For instance, unlike
for the diameter problem and other fundamental graph problems, for which over the last
decades, conditional superlinear lower bounds were obtained, it is known [8] that proving such
lower bound for Maximum Matching would falsify the so-called Nondeterministic Strong
Exponential Time Hypothesis (NSETH). Furthermore, computing a maximum matching is
related to Maximum Flow [71], that is sometimes conjectured to be solvable in linear time.

The idea of using tools and concepts from parameterized complexity in the context of
polynomial-time solvable problems has been scarce [48]. In part motivated by the recent
“SETH-hardness” results, and other conditional lower bounds for such problems [73], a richer
theory of “FPT in P” has started to emerge recently [1, 5, 32, 36, 45]. In its simplest form,
the former is about the existence of O(f(k) · (n+m)1+o(1))-time algorithms for various graph
problems when some fixed parameter is at most k 1. As far as we are concerned here, such
running times were obtained in [13, 29, 28, 36, 45, 49, 50, 51, 59] for Maximum Matching,
for different parameterizations. For instance, for the graphs of tree-width at most k, Fomin
et. al [36] presented a randomized Õ(k4 · n)-time algorithm for computing a maximum
matching 2. This was later improved by Iwata et. al. [50], who designed a deterministic
Õ(k2 ·n)-time algorithm for that problem. – We recall the definition of tree-width in Sec. 2.2.
– Remarkably, the parameterized study of Maximum Matching has led to the development
of many nice techniques in this area, which brought Mertzios et. al. [59] to nickname the
problem the “drosophilia” of the study of the FPT algorithms in P.

Clique-width is one of the most studied graph parameters. It is a rough estimate of
the closeness of a graph to a cograph (a.k.a., P4-free graph). We refer to Sec. 2.1 for a
formal definition. Note that unlike for the tree-width, there exist dense graphs of bounded
clique-width (e.g., the complete graphs and the complete bipartite graphs). The applications
of clique-width to NP-hard problems, including Courcelle’s theorem [15] and some general
algorithmic frameworks [31], are now rather well understood [33, 34, 35]. However, the
study of its applications to polynomial-time solvable problems is comparatively much more

1 More generally, the goal is, for some problem solvable in O(mq+o(1)) time on arbitrary m-edge graphs,
to design an O(f(k)mp+o(1))-time algorithm, for some p < q, within the class of graphs where some
fixed parameter is at most k.

2 The Õ() notation suppresses poly-logarithmic factors.
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recent and, so far, limited to cycle problems [5, 13] and distance problems [13, 16, 27, 52].
Parameterized almost linear-time algorithms for Maximum Matching are known for the
important subclasses of bounded tree-width graphs [36, 50], graphs of bounded modular-
width [13, 51], and some others [13, 28, 29]. However, as far as we know, the complexity
of this problem on bounded clique-width graphs has been open until this article. Indeed
we stress that, even allowing a super-polynomial dependency on the clique-width in the
running time, the existence of an almost linear-time (parameterized) algorithm for Maximum
Matching does not follow from Courcelle’s theorem, because a matching cannot be expressed
in MSO1 logic. This is in sharp contrast with bounded tree-width graphs, for which we
can apply Courcelle’s theorem for the stronger MSO2 logic (allowing quantification over
subsets of edges), and so, in particular in order to express a matching [18]. – We refer to
Sec. 3 for a reminder about MSO logic. – Furthermore if we consider the related problem
Maximum-Weight Matching, then it has been observed [51] that it is as hard on bounded
clique-width weighted graphs as on general weighted graphs under O(n2)-time reductions.
Again, this differs from the case of bounded tree-width graphs, for which an Õ(k2n)-time
algorithm also exists for this problem [50].

Beyond the study of the FPT algorithms in P, it also makes sense to study Maximum
Matching on restricted graph classes, both as a way to better understand the hard instances
for this problem, and to better model some of its real-life applications (see [46] for an
example of the latter). In this respect, a considerable amount of positive results have been
proved [9, 22, 26, 38, 37, 46, 54, 58, 61, 74, 76, 75]. Many such classes, starting from the
cographs [20], are known to have bounded clique-width. Therefore, having at hands an
almost linear-time algorithm for Maximum Matching on bounded clique-width graphs, one
can unify and generalize many prior works in this area.

1.1 Our results
Recall that a graph has clique-width at most k if and only if it admits a k-expression [20].
Such a k-expression can be computed in linear time on many interesting subclasses of
bounded clique-width graphs 3: ranging from cographs [20], switched cographs [11], distance-
hereditary graphs [47], (q, q − 3)-graphs [57], and graphs of either bounded tree-width [12],
modular-width [20] or split-width [65].

Hereafter, we use the notation Õx1,x2,...,xt(n+m) for a running time in Õ(f(x1, x2, . . . , xt)·
(n+m)), for some computable function f . The following is our first main result in the paper:

▶ Theorem 1. Given a graph G and a corresponding k-expression, one can compute a
maximum matching for G in deterministic Õk(n+m) time.

To the best of our knowledge, this is the first almost linear-time algorithm for Maximum
Matching on bounded clique-width graphs. The Õk() notation hides huge constants in k due
to our use of Courcelle’s theorem. Indeed, while we cannot express a matching in MSO1 logic,
we can write a CountingMSO1 formula in order to evaluate the matching number (Theorem 6).
For that, we use the well-known Tutte-Berge formula [6]. This alone does not lead to an
efficient computation of a maximum matching, but only of its size. However, by carefully
evaluating our formula for the matching number on various subgraphs, obtained by removing
specific vertex- and edge-subsets, one can compute a maximum matching incrementally. A

3 So far, the best-known approximation algorithms for clique-width run in O(n3)-time, that is slower
than the state-of-the-art algorithm for Maximum Matching [62]
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15:4 Maximum Matching in almost linear time on graphs of bounded clique-width

similar approach also works for computing the Edmonds-Gallai decomposition [30, 42, 43],
which somehow encodes the structure of all the maximum matchings in a graph (Theorem 8).
The main difficulty here is that the number of subgraphs on which we need to evaluate our
formula is not constant. Thus, applying Courcelle’s theorem to each subgraph separately
would result in a super-linear running time. We overcome this issue by using a distributed
version of this theorem [17]. In doing so, after we computed the matching number of a
bounded clique-width graph G in almost linear time, it becomes possible to evaluate our
formula on any subgraph H in time roughly proportional to the number of basic operations
needed to obtain H from G.

It seems that improving the dependency on k in the running time will require new
techniques. Our second main result is that it can be done for bipartite graphs of bounded
clique-width:

▶ Theorem 2. Given a bipartite graph G and a corresponding k-expression, one can compute
a maximum matching for G in randomized Õ(k2 · (n+m)) time.

Let us sketch below the main lines of our approach toward proving Theorem 2. We
first reduce Maximum Matching on bounded clique-width graphs to a related problem
on the graphs of bounded tree-width. The reduction preserves the property for a graph to
be bipartite. Its intuition goes as follows. Roughly, graphs of bounded tree-width can be
recursively disconnected by some small balanced vertex-separators. By comparison, graphs
of bounded clique-width can be recursively disconnected by some balanced edge-cuts of
small “neighbourhood diversity” (partitionable in a small number of complete joins) [19].
To reduce to the bounded tree-width case, we propose a transformation of edge-cuts of
small neighbourhood diversity into small vertex-separators (Sec. 5.1). The transformation
forces us to deal with a more general problem than Maximum Matching, sometimes called
Maximum b-Matching and well-studied on its own [4, 40, 41, 56, 63, 64]. We thus exchange
Maximum Matching for a more complex problem, but on a structurally simpler graph
class. Furthermore, because we restrict ourselves to bipartite graphs, we can solve Maximum
b-Matching as a linear program. To the matrix representation of any such linear program,
one can associate various graphs. Then, it becomes possible to define the tree-width of
a linear program. In [36], Fomin et. al. asked whether all linear programs of bounded
tree-width could be solved in almost linear time. Very recently, Dong et. al. gave a positive
answer [25]. – This is where we need randomization. – We apply this nice result to the
problem Maximum b-Matching within bipartite graphs. Here, some final technicalities arise
due to the algorithm of Dong et. al. only outputting an approximate fractional b-matching
whereas we aim at computing an exact integral solution. This can be overcome by using the
close connection between Maximum Flow and Maximum b-Matching on bipartite graphs,
along with a nice result from Madry to apply rounding to a fractional flow [56].

1.2 Related work
The are several meta-theorems deduced from Courcelle’s theorem in the literature. Indeed,
Courcelle’s approach not only applies to decision problems, but also to counting [14] and
optimization problems [15]. We actually use in our proof the optimization version of his
theorem. Applications to the design of distance-labelling schemes were proposed in [17], and
later refined in [16, 27] using alternative techniques. However, insofar most applications of
Courcelle’s theorem are about NP-hard problems. Indeed, Abboud et. al. [1] observed that
its use leads to huge dependencies on the parameter involved, that can often be sharpened
by preferring other techniques (their observation, on the other hand, also remains valid for
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NP-hard problems). What we find intriguing in our case is, first, the nontrivial use we need
to make of Courcelle’s theorem for a polynomial-time solvable problem, and second, that we
currently do not see any other way to obtain a quasi linear-time algorithm for Maximum
Matching on the bounded clique-width graphs. This is evidence, we believe, that Courcelle’s
theorem could help in expanding the nascent field of “FPT in P”.

The proof of our Theorem 1 also has several aspects that, we think, are equally intriguing.
For one, we avoid computing augmenting paths, and we do not need the Tutte matrix [70]
either. Both concepts are the cornerstone of almost all maximum matching algorithms in
the literature. To the best of our knowledge, our result is one of the very first algorithmic
applications of the Tutte-Berge formula. The latter also got used in [8], but the algorithm
in this related work was non-deterministic. Our repeated use of this formula in order to
compute a maximum matching is not unlike the celebrated result of Anari and Vazirani that
reduces the efficient parallel computation of such matching to the design of an oracle for a
decision version of the problem [3]. Nevertheless, both results have fairly different proofs.

About Theorem 2, we note that different reductions from Maximum Matching to
Maximum b-Matching have already been considered for graphs of bounded modular-
width [51] or bounded split-width [28], that are subclasses of bounded clique-width graphs.
However, from the algorithmic point of view, the instances of Maximum b-Matching
outputted by these former reductions are of bounded size, a much more restricted case than
bounded tree-width. To our best knowledge, the Maximum b-Matching problem has only
been solved in almost linear time on subclasses of graphs of tree-width at most two [29].
We left open the parameterized complexity of Maximum b-Matching within the graphs
of bounded tree-width. For general graphs, the so-called “Russian method” starts from the
linear relaxation of this problem (written as an integer program) and it repeatedly adds
“blossom constraints” that are violated by the current solution until it finds an optimal
integral outcome [63]. These blossom constraints are deduced from the good characterization
of the b-matching polytope by Edmonds and Pulleyblank [64]. It seems, however, that a
super-linear (but polynomial) number of linear programs needs to be solved on general graphs.
See also Anstee [4] and Gabow [40] for alternative algorithms.

1.3 Organization of the paper
In Sec. 2, we introduce some basic notations and terminology, as well as the two graph
parameters considered in this article. Sec. 3 is devoted to Courcelle’s theorem for bounded
clique-width graphs. We need a distributed version of this theorem, for optimization functions,
of which a proof by Courcelle and Vanicat can be found in [17] but, unfortunately, for a
more restricted setting than what we need. While it is not excessively difficult to check
that Courcelle and Vanicat’s proof indeed works in the broader setting that is here needed,
the proof is fairly long and it has several intermediate steps, which is why we found it
better to write it down almost completely. Then, in Sec. 4, we apply this result in order
to compute the matching number, a corresponding maximum matching, and the Edmonds-
Gallai decomposition, within bounded clique-width graphs. Sec. 5 is devoted to the proof of
Theorem 2. We then conclude in Sec. 6.

2 Preliminaries

First we complete the basic graph terminology given in Sec. 1. By a graph, we mean a
finite, simple, unweighted undirected graph. Let G = (V,E) be such a graph. The (open)
neighbourhood of a vertex v is defined as NG(v) := {u ∈ V | uv ∈ E}. Its closed neighbourhood

IPEC 2021



15:6 Maximum Matching in almost linear time on graphs of bounded clique-width

is defined as NG[v] := NG(v)∪{v}. Let dG(v) := |NG(v)| be the degree of vertex v. Similarly,
for a vertex-subset S, let NG(S) :=

⋃
v∈S NG(v) \S denote its (open) neighbourhood and let

NG[S] := S ∪NG(S) denote its closed neighbourhood. We sometimes omit the subscript if
the graph G is clear from the context.

2.1 Clique-width

A k-labeled graph is a triple G = (V,E, ℓ) where ℓ : V → {1, 2, . . . , k} is called a labeling
function. A k-expression is an algebraic expression where the four allowed operations are:

i(v): we add a new isolated vertex with label ℓ(v) = i;

G1 ⊕G2: we make the disjoint union of two k-labeled graphs;

η(i, j): we add a join (complete bipartite subgraph) between all vertices with label i and
all vertices with label j;

ρ(i, j): for all vertices v s.t. ℓ(v) = i, we set ℓ(v) = j.
The generated graph is the one obtained from the k-expression by deleting all the labels.
The clique-width of a graph G, denoted by cw(G), is the least k such that it is the graph
generated by some k-expression.

It is useful to see a k-expression as a rooted tree. Namely, the leaves of this tree are labeled
by the operations i(v) for vertex-creation. The internal nodes are labeled by the other
operations, with the degree of each such node being the arity of the corresponding operation:
1 for the join operations and the relabeling operations, and 2 for the disjoint union operations.
See Fig. 1 for an example. We call this tree representation the parse tree of the k-expression.

η(1, 2)

⊕

2(d)ρ(2, 3)

η(1, 2)

⊕

1(c)ρ(1, 3)

η(1, 2)

⊕

1(a) 2(b)

Figure 1 The parse tree of some 3-expression of P4.

The size of a k-expression is its number of operations (= number of nodes in its parse
tree). Throughout the remainder of the paper, we assume each given k-expression for a graph
to be of linear size O(n+m). Note that it is always the case if we restrict ourselves to a
subclass where a k-expression can be computed in linear time, that is anyway the relevant
case for which our results in this paper could be applied. More generally, any k-expression
can be transformed into an equivalent k-expression of size O(n+m) [39].
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2.2 Tree-width

A tree decomposition (T,X ) of G = (V,E) is a pair consisting of a tree T and of a family
X = (Xt)t∈V (T ) of subsets of V indexed by the nodes of T and satisfying:⋃

t∈V (T ) Xt = V ;
for any edge e = {u, v} ∈ E, there exists t ∈ V (T ) such that u, v ∈ Xt;
for any v ∈ V , the set of nodes {t ∈ V (T ) | v ∈ Xt} induces a subtree Tv of T .

The sets Xt are called the bags of the decomposition. The width of a tree decomposition is
the size of a largest bag minus one. Finally, the tree-width of a graph G, denoted by tw(G),
is the least possible width over its tree decompositions. We only use tree-width in Sec. 5.

3 Courcelle’s theorem

We refer to [14] for a thorough treatment of graph logics and their algorithmic applications.
Recall that in monadic second-order logic (for short, MSO logic), we are given first-order
variables x (written in lower-case), and set variables X (written in upper-case). We allow
atomic formulas of the form x ∈ X, expressing the membership of x to a set X. The counting
MSO (for short, CMSO) further allows atomic formulas of the form Cardp,q(X), expressing
that |X| ≡ p (mod q) and sometimes called counting predicates. – We here assume p and
q to be fixed constants, but it should be noted that in the general case, the complexity
of CMSO model checking also depends on the values of p and q. – The CMSO logic is
stronger than MSO logic: for instance, there is no MSO formula expressing that a set has
even cardinality [14]. In Sec. 4, we will need the counting predicates of CMSO logic in order
to express the Tutte-Berge formula. Before that, we need to define CMSO optimization
functions.

Let φ be some CMSO formula with r + s free variables, and let a1, a2, . . . , as be fixed
integers — possibly, null or negative. Let Z1, Z2, . . . , Zr be fixed subsets of the domain of
the first-order variables. We define ψ(Z1, Z2, . . . , Zr) as the minimum value

∑s
i=1 ai · |Xi|

amongst all subsets X1, X2, . . . , Xs such that φ(Z1, Z2, . . . , Zr, X1, X2, . . . , Xs) is true. Then,
ψ is a CMSO optimization function of arity r. We define the size of ψ as |ψ| = r+ s (a.k.a.,
as the arity of the underlying CMSO formula φ).

To a c-labelled graph G = (V,E, ℓ), we can associate the relational structure ⟨V, {inc, lab1,

lab2, . . . , labc}⟩ where the vertex-set V is the domain of first-order variables, the binary
operator inc : V × V → {0, 1} asserts whether two vertices are adjacent in G and, for each
i, labi : V → {0, 1} asserts whether the label of a given vertex equals i. The (C)MSO1
logic on graphs is the above (C)MSO logic restricted to such structures. We define CMSO1
optimization functions in the exact same way. There is a more general (C)MSO2 logic,
where we also allow variables to represent edges, but it is not discussed here. Finally, define
the underlying graph of G as the graph obtained from G by removing all its labels.

The following result was proved by Courcelle and Vanicat [17], but only for MSO1 logic
and for a more restricted type of optimization problems.

▶ Theorem 3. Let ψ be a CMSO1 optimization function on c-labelled graphs, for some
fixed constant c, and of arity r. For every c-labelled graph G of clique-width at most k,
if a k-expression is given for the underlying graph of G then, after a pre-processing in
Õk,|ψ|(n+m) time, for every vertex-subsets Z1, Z2, . . . , Zr of G, we can compute the value
ψ(Z1, Z2, . . . , Zr) in Õk,|ψ|

(∑r
j=1 |Zj |

)
time.
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15:8 Maximum Matching in almost linear time on graphs of bounded clique-width

As a particular case of the above Theorem 3 (for r = 0), we retrieve the optimization
version of Courcelle’s theorem for bounded clique-width graphs (see [15]):

▶ Theorem 4. Let φ be a CMSO1 formula on c-labelled graphs, for some fixed constant
c, and with s free variables. Let. also a1, a2, . . . , as be fixed integers. For every c-labelled
graph G of clique-width at most k, if a k-expression is given for the underlying graph of G
then, in Õk,|φ|(n+m) time, one can compute the minimum value

∑s
i=1 ai · |Xi| amongst all

vertex-subsets X1, X2, . . . , Xs such that φ(X1, X2, . . . , Xs) is true.

Theorem 3 should not be considered as completely new. As it was stated above, it
was first proved by Courcelle and Vanicat [17], but under more restricted conditions. Still,
their proof also applies to this more general case. It could also be deduced from the heavy
machinery from [14]. Our presentation marginally differs from these previous works, while it
avoids using explicitly some logic concepts such as MSO transductions. Roughly, we rewrite
a CMSO1 formula on a c-labelled graph as a longer CMSO formula on the parse tree of its
clique-width expression. Then, we make this parse tree of logarithmic depth, using a modified
centroid decomposition, updating the CMSO formula along the way. We end up designing
a dynamic programming procedure on this parse tree, using prior work of Doner [24] and
Thatcher and Wright [67] on tree automata.

4 Algorithms: the general case

Our main result in this section (Theorem 1) is proved in Sec. 4.3. In Sec. 4.1 we first compute
the matching number, a key step toward the final proof of Theorem 1. Sec. 4.2 is devoted
to computing the Edmonds-Gallai decomposition, and it is a gentle introduction to the
techniques we also use in Sec. 4.3.

4.1 Size of a maximum matching
We explain in this section how to compute the matching number of bounded clique-width
graphs. For that, we need a classic result from Matching theory:

▶ Lemma 5 (Tutte-Berge formula [6, 7]). For any graph G = (V,E), we have:

ν(G) = min
U⊆V

1
2 (|V | + |U | − odd(G \ U))

where odd(G \ U) denotes the number of connected components of odd size of G \ U .

Our main insight below is that evaluating the Tutte-Berge formula can be written as a
CMSO1 optimization problem. We prove it next:

▶ Theorem 6. For any graph G = (V,E) of clique-width at most k, if a k-expression is
given then, we can compute ν(G) in Õk(n+m) time.

Proof. By Theorem 4, it suffices to prove that the Tutte-Berge formula (see Lemma 5) can
be written as a CMSO1 optimization problem. For that, let us first define inc(x, y, U) :=
inc(x, y)∧x /∈ U∧y /∈ U in order to suppress all edges incident to a given set U . The following
formula can be used to test whether two vertices are in the same connected component of
G\U , for a given set U : connected(x, y, U) := ∀X((x ∈ X ∧y /∈ X) =⇒ ∃x′, y′(x′ ∈ X ∧y′ /∈
X ∧ inc(x′, y′, U))). Then, we can relate a vertex to its connected component of G \ U as
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follows: comp(x,X,U) := ∀y(y ∈ X ⇐⇒ connected(x, y, U)). We are now ready to define
our formula for computing ν(G). It has two free variables.

TutteBerge(U,W ) :=∀x ∈ W (x /∈ U ∧ ∃X(comp(x,X,U) ∧ Card1,2(X)))
∧ ∀x, y ∈ W (x = y ∨ ¬connected(x, y, U)).

The first line ensures that every vertex of W is in an odd component of G \ U . The second
line ensures that two distinct vertices of W are in different components of G \ U . If we set
a1 = 1, a2 = −1, the objective becomes to minimize |U | − |W |. Therefore, we get as solution
δ = minU⊆V (|U | − odd(G \ U)). By Lemma 5, we have ν(G) = 1

2 (n+ δ). ◀

This above Theorem 6 is the cornerstone of all the remainder of Sec. 4.

4.2 Edmonds-Gallai decomposition
We continue with a known structural result about maximum matchings in a graph. Recall
that a graph is hypomatchable if the removal of any one vertex results in a graph with a
perfect matching.

▶ Theorem 7 (Edmonds-Gallai [30, 42, 43]). Let G = (V,E) be a graph, and let A ⊆ V be
the set of all vertices v so that there is a maximum matching of G that does not cover v. Set
B = NG(A) and C = V \ (A ∪B). Then:

Every odd component H of G \B is hypomatchable and it has V (H) ⊆ A;
Every even component H of G \B has a perfect matching and it has V (H) ⊆ C;
For every X ⊆ B, the set N(X) contains vertices in > |X| odd components of G \B.

The partition (A,B,C) is called the Edmonds-Gallai decomposition of G.

In [10], the author proposes a randomized O(nω)-time algorithm for computing the
Edmonds-Gallai decomposition of an n-vertex graph, where ω < 2.37286 [2] denotes the
exponent of square matrix multiplication. We improve this result to deterministic almost
linear-time for all classes of bounded clique-width graphs (under the standard assumption in
the field that a corresponding clique-width expression is given in the input):

▶ Theorem 8. For any graph G = (V,E) of clique-width at most k, if a k-expression is
given then, we can compute its Edmonds-Gallai decomposition in Õk(n+m) time.

Proof. If we are given the set A of all vertices left exposed by at least one maximum
matching then, by Theorem 7, the sets B and C can be computed in additional O(n+m)
time. Recall (see Theorem 6) that there exists a CMSO1 formula TutteBerge(U,W ) to
express that all vertices of W are in pairwise different odd components of G \ U . Let
EdmondsGallai(X,U,W ) := TutteBerge(U ∪ X,W ). It is also a CMSO1 formula since
the union of two subsets can be easily expressed in MSO [14]. Then, for any X, let
ψ(X) be the problem of minimizing |U | − |W | among all the subsets U,W such that
EdmondsGallai(X,U,W ) is true. Observe that ψ is a CMSO1 optimization function.
We apply Theorem 3 to ψ. Then, we claim that v ∈ A if and only if ψ({v}) = 2ν(G) + 1 − n.
Indeed, by construction we have ψ({v}) = minU⊆V \{v}(|U | − odd(G \ ({v} ∪ U))), and
therefore by Lemma 5, ν(G \ {v}) = 1

2 (n− 1 + ψ({v})). Then:

v ∈ A ⇐⇒ν(G) = ν(G \ {v}) ⇐⇒ ν(G) = 1
2(n− 1 + ψ({v}))

⇐⇒2ν(G) = n− 1 + ψ({v}) ⇐⇒ ψ({v}) = 2ν(G) + 1 − n.
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Computing ν(G) can be done in Õk(n + m) time (Theorem 6). Computing ψ({v}) takes
Õk(1) time per vertex v up to an Õk(n+m)-time pre-processing (Theorem 3). As a result, we
can compute the set A, and so, the Edmonds-Gallai decomposition, in Õk(n+m) time. ◀

4.3 Computation of a maximum matching
Let us first recall our main result in this section:

▶ Theorem 1. Given a graph G and a corresponding k-expression, one can compute a
maximum matching for G in deterministic Õk(n+m) time.

Let us sketch our strategy to prove this above result. Given a graph G = (V,E), we first
recall that an edge-cut is, for a given subset A, the set of all edges between A and V \A. It
is balanced if we further have max{|A|, |V \A|} ≤ 2n/3. Roughly, we compute a balanced
edge-cut for G, we compute a subset of edges of the cut to be included in some maximum
matching of G, then we recurse on subgraphs of G[A] and G[V \A] separately.

The computation of a balanced edge-cut in Õ(k · (n + m)) time follows from prior
works [19, 27] and is omitted here due to lack of space. An important property for this cut is
that it can be edge-partitioned into at most k joins. We handle each join separately. For that,
both Lemma 9 and Lemma 10 below apply Theorem 3 (distributed Courcelle’s theorem).

▶ Lemma 9. Let X,Y be the two sides of a join in a graph G = (V,E), where |X| ≤ |Y |
and cw(G) ≤ k. If a k-expression is given then, in Õk(n + m) time, we can compute an
inclusion-wise minimal subset X ′ ⊆ X such that, in some maximum matching of G:
1. every vertex of X ′ is matched to some vertex of Y ;
2. no vertex of X \X ′ is matched to a vertex of Y .

▶ Lemma 10. Let X,Y be the two sides of a join in a graph G = (V,E), where |X| ≤ |Y |
and cw(G) ≤ k. We are given a subset X ′ ⊆ X as stated in Lemma 9. If a k-expression is
given then, in Õk(n+m) time, we can compute the intersection of the edges of the join with
some maximum matching of G.

Finally, once we computed from a join a subset of edges to be added into a maximum
matching, all other edges of the join can be removed from the graph. We must also remove
all the end-vertices of the edges included into the matching. Doing so, we need the following
two lemmas in order to update the k-expression of the graph considered.

▶ Lemma 11. Let G = (V,E) be a graph, let (U,W ) be a cut of G, and let U ′ ⊆ U .
If cw(G) ≤ k then the graph H, obtained from G by removing all edges between U ′ and
W ′ := N(U ′)∩W , has clique-width at most 3k. Furthermore, we can compute a 3k-expression
of H from a k-expression of G in O(n+m) time.

▶ Lemma 12. Let G = (V,E) be a graph and let H = (X,EX) be an induced subgraph of G.
If a k-expression of G is given then, in O(k · (n+m)) time, we can compute a k-expression
of H of size O(|X| + |EX |).

We are now ready to prove the main result in this section:

Sketch Proof of Theorem 1. We compute some balanced cut (U,W ) and a partition U1, U2,

. . . , Uk of U such that the edges of the cut are partitioned into k joins (one of them having
possibly no edge) with respective sides Ui and Wi = N(Ui) ∩ W for every i. Details are
omitted due to lack of space. Since we are given the Ui’s, all the corresponding sides Wi

can be computed in total O(n+m) time. We consider these k joins sequentially, from i = 1
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to i = k. At each step i, we are given a subgraph Gi of G such that cw(Gi) ≤ 3k and a
corresponding 3k-expression is given (initially, G1 := G). We apply Lemmas 9 and 10 in
order to compute the intersection of a maximum matching of Gi with the join with sides
Ui,Wi. It takes Õk(n+m) time. Denote Fi ⊆ Ui ×Wi the set of edges in this intersection,
and let V (Fi) be the set of vertices incident to an edge of Fi. We obtain Gi+1 from Gi by
removing the vertices in V (Fi) and all remaining edges between Ui \ V (Fi) and Wi \ V (Fi).

Let Mi :=
⋃i
j=1 Fj be the matching constructed so far, and let V (Mi) be the set of vertices

incident to it. Let. also Xi :=
⋃i
j=1 Uj . By induction, the union of Mi with a maximum

matching of Gi+1 is a maximum matching of G. Also by induction, Gi+1 is obtained from
G \ V (Mi) by removing all edges between Xi \ V (Mi) and W \ V (Mi). Therefore, we can
apply Lemma 12 (for X = V \ V (Mi)) then Lemma 11 (for U ′ = Xi \ V (Mi)) to compute
a 3k-expression of Gi+1. It takes O(k · (n+m)) time. – Note that since we always apply
Lemma 11 to G, and not to the Gi’s, there is no blow-up of the clique-width value, i.e., the
clique-width of any Gi is at most 3k. –

Since all k joins got removed, we are left with computing a maximum matching in
G[U \V (Mk)] and in G[W \V (Mk)] respectively. Apply Lemma 12 to compute k-expressions
for both subgraphs, then call our above algorithm recursively in order to compute a maximum
matching. Since the cut is balanced, the recursive depth is in O(logn). ◀

5 Algorithms: the bipartite case

We present in this section an alternative to Theorem 1, with polynomial dependency on
the clique-width, but only for bipartite graphs (see Theorem 2). The structure of bipartite
graphs of bounded clique-width can be quite complex. For instance, let G = (V,E) be
any graph and let V ′ = {v′ | v ∈ V } be a disjoint copy of V . We can define the bipartite
graph BG = (V ∪ V ′, {u′v | uv ∈ E}) and, if G has clique-width at most k, then BG has
clique-width at most 2k. Some classes of monogenic bipartite graphs are also known to have
bounded clique-width [21].

5.1 Reduction to Maximum b-matching

Let G = (V,E) be a graph and let b : V → N assign a non negative capacity to each vertex.
We say that x : E → N is a b-matching if we have

∑
u∈NG(v) xuv ≤ b(v) for each vertex v.

Observe that a matching is a b-matching for the trivial function b(v) = 1 for each v ∈ V .
The cardinality of a b-matching is defined as ∥x∥1 =

∑
e∈E xe. We denote by ν(G, b) the

cardinality of a maximum b-matching in G. Let also ∥b∥1 =
∑
v∈V b(v) be the sum of all the

vertex capacities. More generally, for every vertex-subset S, let b(S) =
∑
v∈S b(v). Given a

b-matching x, and a vertex v, let also dx(v) :=
∑
u∈NG(v) xuv ≤ b(v).

We start with the following reduction rule:

▶ Lemma 13. Let (G, b) be some instance of Maximum b-Matching, and let U and W

be disjoint vertex-subsets such that there is a join between U and W . Consider the new
instance (G′, b′) obtained from (G, b) by removing all edges between U and W , adding two
new vertices u,w /∈ V (G) and edges {uw}∪{uv | v ∈ U}∪{wv′ | v′ ∈ W}, and finally setting
b′(u) = b′(w) = min{b(U), b(W )}. Then, we have ν(G′, b′) = ν(G, b) + min{b(U), b(W )}.

Moreover, if G is bipartite, then so is G′.

By repeatedly applying Lemma 13 to some special balanced edge-cuts, we obtain:
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3 3

Figure 2 Transformation of Lemma 13.

▶ Proposition 14. There is an O(k ·(n+m) logn)-time reduction from Maximum Matching
on graphs with clique-width at most k (if a k-expression is known) to Maximum b-Matching
on graphs with tree-width O(k logn). For the resulting instance (H, b), the algorithm also
outputs a corresponding tree decomposition. Furthermore, |V (H)| ≤ ∥b∥1 ≤ O(min{n +
m,n logn}), and if G is bipartite, then so is H.

5.2 Reduction to Linear Programming
The Maximum b-Matching problem is a classic example of an integer linear program. It is
well-known that for the special case of Maximum Matching within bipartite graphs, we
can drop the condition for all variables to be integers, thus reducing the computation of the
matching number to the solving of a linear program [55]. Because of Tutte’s quasi-polynomial
reduction from Maximum b-Matching to Maximum Matching [69], this is also true for
Maximum b-Matching within bipartite graphs. Very recently, Dong et. al. [25] answered
an open question from Fomin et. al. [36] about bounded tree-width linear programs. We
restate below their main result:

▶ Theorem 15 ([25]). Given a linear program maxMx=b,ℓ≤x≤u c
⊺x 4, where M ∈ Rd×n is

a full-rank matrix with d ≤ n, define the dual graph GM to be the graph with vertex-set
{1, 2 . . . , d}, such that ij ∈ E(GM ) if there is a column r such that Mi,r ≠ 0 and Mj,r ≠ 0.
Suppose that a tree decomposition of GM with width τ is given, and R is the diameter of
the polytope, namely, for any ℓ ≤ x ≤ u with Mx = b, we have ∥x∥2 ≤ R. Then, for any
0 < ε ≤ 1, we can find ℓ ≤ x ≤ u such that

c⊺x ≥ max
Mx=b,ℓ≤x≤u

c⊺x− ε · ∥c∥2 ·R and ∥Mx− b∥2 ≤ ε · (∥M∥2 ·R+ ∥b∥2)

in expected time Õ(n · τ2 log (1/ε)).

Dong et. al. [25] referred to [66] and [53] for a detailed discussion about converting an
approximate solution to an exact solution. We give a direct proof for Maximum b-Matching
within bipartite graphs. For that, we combine a folklore reduction to Maximum Flow with
a nice rounding technique by Madry [56].

▶ Proposition 16. The Maximum b-Matching problem within bipartite graphs of tree-width
at most τ can be solved in expected Õ(nτ2) time, if a corresponding tree decomposition is
given in the input.

4 The result is stated in [25] for minimization problems. Since we only consider it here for Maximum
b-Matching, we rather write it as a maximization problem.
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Proof. Let G = (V0 ∪ V1, E) be a bipartite graph and let b : V0 ∪ V1 → N. The incidence
matrix of G is the n × m matrix M such that Mv,e = 1 if v is an end-vertex of edge e
and Mv,e = 0 otherwise. Let also c be the all-one vector. To compute the cardinality of a
maximum b-matching for G, it suffices to solve the linear program maxMx≤b c

⊺x. We slightly
modify this above program so that we fit in the conditions of Theorem 15. First, if we let
ℓ, u ∈ Rm such that ℓ is all-zero and uvv′ = min{b(v), b(v′)} for each edge vv′ ∈ E, then we
must now solve maxMx≤b,ℓ≤x≤u c

⊺x. If we further add n new variables (xv)v∈V such that
0 ≤ xv ≤ b(v) for each v ∈ V , then we can replace all constraints by xv +

∑
vv′∈E xvv′ = b(v)

for each vertex v ∈ V , thus getting a new linear program maxM ′x=b,ℓ′≤x≤u′ c′⊺x to solve,
where M ′ ∈ Rn×(m+n).

Note that, since we constructed M ′ from M by adding n new columns with exactly
one nonzero value each, we have GM ′ = GM = G. Furthermore, an easy upper bound
on the diameter R of the polytope is R ≤ ∥b∥2 ≤ ∥b∥1. We also have ∥c′∥2 =

√
m and

∥M ′∥2 ≤
√∑

v(1 + d(v))2 ≤ n3/2.
Assume G to be given with a tree decomposition of width at most τ , and apply Theorem 15

to the above linear program with ε = 1/(4 · ∥b∥1 · n2). We denote by x its output. Set all
variables xv, v ∈ V to 0. Then, for all vertices v such that

∑
vv′∈E xv′v > b(v), we decrease

the variables xv′v of incident edges until we reach equality. In doing so, we obtain a fractional
b-matching y. By construction:

∥x∥1 − ∥y∥1 ≤
∑
v

max{0, (M ′x)v − b(v)} ≤ ∥M ′x− b∥1 ≤
√
n · ∥M ′x− b∥2

≤ ε
√
n · (∥M ′∥2 ·R+ ∥b∥2) ≤ ε

√
n · ∥b∥1 · (n3/2 + 1) ≤ 2εn2 · ∥b∥1 ≤ 1/2.

We now construct a network D from G by adding two new vertices s and t, an arc (s, u) for
every u ∈ V0, an arc (v, t) for every v ∈ V1, and finally by orienting all the edges of G from
V0 to V1. The capacities of the arcs are defined as follows: κ(s, v) = b(v) for every v ∈ V0;
κ(v′, t) = b(v′) for every v′ ∈ V1; κ(v, v′) = min{b(v), b(v′)} for every vv′ ∈ E such that
v ∈ V0, v

′ ∈ V1. Then, we construct a fractional st-flow as follows: fy(s, v) =
∑
vv′∈E yvv′

for every v ∈ V0; fy(v′, t) =
∑
vv′∈E yvv′ for every v′ ∈ V1; and fy(v, v′) = yvv′ for every

vv′ ∈ E such that v ∈ V0, v
′ ∈ V1. Note that the value of this flow is exactly ∥y∥1. Let f ′

y be
an integral st-flow of value ⌊∥y∥1⌋. It can be constructed from fy in Õ(m) = Õ(τn) time [56,
Corollary 3.4]. There is a one-to-one mapping between b-matchings in G and integral st-flows
in D. In particular, the maximum value of a st-flow is exactly ν(G, b). Furthermore,

∥y∥1 ≥ ∥x∥1 − 1/2 ≥ ν(G, b) − ε · ∥c∥2 ·R− 1/2 ≥ ν(G, b) − 1.

Therefore, we can transform f ′
y into a maximum st-flow fz by computing at most one

augmenting path in the residual graph Df ′
y
. It can be done in O(m) = O(τn) time.

The resulting b-matching is maximum: for every vv′ ∈ E with v ∈ v0, v
′ ∈ V1, we set

zvv′ = fz(v, v′). ◀

We are finally ready to prove our second main result in this paper:

▶ Theorem 2. Given a bipartite graph G and a corresponding k-expression, one can compute
a maximum matching for G in randomized Õ(k2 · (n+m)) time.

Proof. The result follows from the combination of Proposition 14 with Proposition 16. ◀
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6 Conclusion

Our first main result in the paper is a quasi linear-time algorithm for computing a maximum
matching within the graphs of bounded clique-width. We left open whether an Õ(kc ·(n+m))-
time algorithm exists within the graphs of clique-width at most k, for some constant c. Our
second main result is to prove the existence of such an algorithm for the bipartite graphs
of clique-width at most k. For that, we reduce the Maximum Matching problem on
bounded clique-width (bipartite) graphs to the Maximum b-Matching problem on bounded
tree-width (bipartite) graphs. We left open the complexity of Maximum b-Matching within
bounded tree-width graphs in general. Furthermore, we observe that an Õ(kc · (n+m))-time
algorithm for this problem within the graphs of tree-width at most k would imply a similar
algorithm for Maximum Matching within graphs of clique-width at most k.
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