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Abstract

The estimation and prediction of unsteady flows in real time offers significant advantages for the monitoring and

active control of complex hydrodynamic and aerodynamic systems, such as wind turbine blades, hydrofoils and

aircraft wings. A new data assimilation algorithm is proposed for the estimation and prediction of unsteady flows,

coupling in real time onboard measurements and fluid dynamics simulations at minimal computational expense.

The procedure combines a Proper Orthogonal Decomposition Galerkin method, a model under location uncertainty

stochastic closure, and a particle filtering scheme. The algorithm is validated using case studies of two- and three-

dimensional wake flows at low and moderate Reynolds numbers respectively. Following an initial learning window

to train the algorithm, and using only a single measurement point, our method is shown to perform well against

conventional reduced data assimilation agorithms for up to 14 vortex shedding cycles.

Keywords: Fluid dynamics, reduced order model, uncertainty quantification, stochastic closure, particle filtering

1. INTRODUCTION

Active control of complex aeroelastic and aerodynamic systems has the potential to yield significant advantages,

from the alleviation of load on turbine blades and optimization of electricity production from wind farms [1, 2], to

active flutter suppression for aircraft [3]. Such active controls can require state observers but estimating – or even

predicting – an unsteady turbulent flow state from sparse measurements in real-time can be challenging. Through

statistical estimation techniques, sensor observations can be assimilated to flow dynamical models’ predictions, but5

some difficulties must first be overcome for this data assimilation method to be a viable strategy.

Firstly, the simulation model is subject to a number of conditions. Notably, the simulation must resolve sufficient

spatiotemporal scales for the data assimilation outputs to be stable, specifically in real-time. Purely data-driven fluid

∗Corresponding author
Email address: valentin.resseguier@scalian.com (Valentin Resseguier)

Preprint submitted to Journal of Computational Physics March 2, 2022



dynamics models employing, for instance, machine learning techniques have the potential to achieve a significant

reduction in computation time. But, they generally require extensive data to assimilate, or else it may not be10

sufficiently robust for accurate and stable predictions of turbulent flows. As detailed later in this paragraph,

intermittency, sensitivity to perturbations and closure issues are probably responsible for these limitations. Time-

wise fluid flow estimations that do not consider underlying time dynamics – such as supervised linear and non-linear

interpolations [e.g. 4] – are likely to suffer from similar limitations. Conversely, pure physics-based models, such as

Large Eddy Simulation (LES) and Reynolds-averaged Navier-Stokes (RANS) remain too computationally intensive15

for real-time applications. Using coarser meshes to reduce computation times may prevent the resolution of crucial

spatio-temporal scales. Reduced Order Models (ROM) present a compromise between purely data-driven and purely

physics-based approaches (see, e.g., [5] for some aeroelastic applications). The Proper Orthogonal Decomposition

(POD) -Galerkin is a class of ROM derived from the physical equations but trained using data for the simplified

analysis or rapid resolution of particular flow systems, for instance a turbulent mixing layer [6]. The ROM solution20

is constrained to live inside a small subspace learned from the data. Nevertheless, the unsteady CFD ROM state

of the art limits itself to deterministic ROMs (often linear and/or with purely data-driven calibration) with limited

prediction capabilities when the ROM dimension is low. It is probably mainly due to the chaotic and intermittent

nature of turbulence and closure problems. Indeed, intermittency – ubiquitous in turbulence – is related to rare

events and long-memory processes. These long-memory processes make learning from a finite time window more25

complicated because turbulence data are hardly exhaustive. Therefore, the learned or partially-learned turbulent

flow ROMs remain inexact outside the learning time interval and uncontrolled in the long run, owing to their

chaotic nature (intrinsic sensitivity to perturbations [7]) and the growth of accumulated error along time. Thus,

predictions become less and less accurate. Additionally, we believe that ROM deterministic closures can hardly be

accurate in the long run. Indeed, energy fluxes between temporal modes corresponding to orthogonal divergence-30

free spatial modes (e.g., curl of Fourier modes or POD modes) of a real incompressible flow are described by dyads

and triads. The transfer of energy from one temporal mode to another is often dependent on a third temporal

mode [8]. It is also true for the transfers of energy from one temporal mode to the mean and from the mean to a

temporal mode. Unfortunately, in ROM, the mode truncation breaks many of these triads because the third mode is

unknown [9, 10]. The missing negative and positive energy fluxes induce instability and over-damping respectively.35

In order to stabilize ROMs, either an additional deterministic term (typically an eddy viscosity term) [11, 12, 13]

or an additional constraint [7], is often introduced, which may require calibration with the aid of data [14, 15, 16].

However, few authors address the missing positive energy fluxes issue. One reason is that adding relevant terms,

which increase energy, is much more difficult in a deterministic framework than in a stochastic one. Nevertheless,

these positive energy fluxes are essential to maintain sufficient variability in the linearly-stable temporal modes and40

thus to maintain coherent ROM dynamics over extended run-time integrations.

The coupling of the model with measurements, namely the data assimilation, presents a number of additional
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challenges. Significant advances have been made in the field of meteorology [17]. In the fluid dynamics ROM

literature, several variational data assimilation methods have been proposed to jointly learn the ROM (or part of

the ROM) [e.g. 18, 14, 19, 20, 15]. However, those variational approaches typically require a large amount of dense45

data to be assimilated – typically two-dimensional flow observables like particle image velocimetry (PIV). In such

a case, fluid flow estimation hardly necessitates ROM procedures since the inverse problem is over-determined.

A least-square estimation is often sufficient to estimate the first velocity temporal modes (i.e. the most energetic

modes if POD is considered). This is a kind of velocity mode-based spatial interpolation. For prediction of unsteady

turbulent flows in a near future, the use of ROM is more relevant, but, as discussed previously, those methods suffer50

diminished predictive performance outside of the learning interval.

Maintaining satisfactory predictions despite a reduction in the quantity of measurements to assimilate is best

realized through better state forecasts or through better adapted data assimilation methods. To obtain better

forecasts – i.e. better state prior distributions in an ensemble-based data assimilation framework – improvements to

the underlying ROM are required. Data assimilation algorithms fully addressing non-linearities of fluid mechanics55

are limited by the available computational resources and the dynamical model’s accuracy quantification (uncertainty

quantification). The use of ROM with severe dimension reduction alleviates the computational resource limitation

but may complicate the uncertainty quantification. Indeed, [21] have already demonstrated that a particle filter can

successfully assimilate pointwise measurements into a ROM of wake flows at a Reynolds numbers of 100 and 1000.

Nevertheless, this state-of-the-art algorithm suffers from a crude dynamical model’s uncertainty quantification.60

Accordingly, those good prediction skills require high ROM accuracy and informative measurements, i.e. many

modes (8 and 30 modes at a Reynolds numbers of 100 and 1000 respectively) and many measurement points (about

the number of modes). Thus, the dimension reduction is not that severe and, as discussed previously, their fluid flow

estimation may not require a ROM since many measurements are available. Dynamics under location uncertainty

(LU) [22, 23] provide a random fluid mechanics framework designed for improved quantification of dynamic model65

accuracy. Inspired from the theoretical work of [24], [22] has introduced that stochastic closure and [23] generalized

it. It has led to huge improvements in uncertainty and model error quantification both in high-dimensional CFD

[25, 26, 27] and reduced state spaces [28, 29]. Nevertheless, no associated ensemble-based data assimilation algorithm

has been proposed yet. This paper will be the first on this path. Our new fast data assimilation algorithm for

fluid flows includes both an efficient background state ensemble emulator [29] and a particle filter to correct this70

ensemble.

This paper will be organized as follows: section 2 will recall the main aspects of POD-Galerkin ROM (POD-

ROM), section 3 will present the key player of our algorithm: a randomized version of POD-Galerkin ROM, section

4 explains the data assimilation procedure, and finally, section 6 will showcase its potential through some of our

numerical results.75
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2. POD-ROM

Reduced Order Models (ROM) aim to reduce the computational expense of simulations by using approximations to

significantly diminish the solution’s degrees of freedom as compared with the full order model. The approximations

are typically achieved through a combination of existing simulation data and modeling based on physical equations.

In traditional CFD, the degrees of freedom associated with the velocity fields, for instance, are proportional to

the number of grid points in the spatial domain (typically in the order of 106). To achieve a reduction in the

dimensionality of the solution using ROMs, velocity fields are traditionally decomposed as follows:

v(x, t) = w(x, t)︸ ︷︷ ︸
Resolved

by the ROM

+ v′(x)︸ ︷︷ ︸
Unresolved
by the ROM

, (1)

where the resolved field, w(x, t), is further partitioned into time-averaged and unsteady components:

w(x, t) = v(x)︸︷︷︸
Time

averaged

+

n∑
i=1

bi(t)ϕi(x)︸ ︷︷ ︸
Unsteady
component

, (2)

with 1 ⩽ n ⩽ 102. Proper orthogonal decomposition (POD) learns the time-averaged v(x) and the spatial modes

ϕ(x) through principal component analysis (PCA) of a series of high-resolution simulations (training set). Sub-

sequently, physical equations, such as the Navier-Stokes equations, can be projected onto these spatial modes,

providing a system of n coupled ordinary differential equations to describe the evolution of the temporal modes

bi(t). Combining temporal integration of this reduced-dimensionality system with a given initial condition and80

equation (2) enables an prior prediction (i.e. a prediction unconstrained by measurements)of the resolved velocity

field at any given time. Thus, the ROM calculation scheme represents a compromise between entirely data-driven

methods and purely physical models. It combines the available simulation data with physical modeling to achieve

reliable predictions with improved efficiently.

3. MODEL UNCERTAINTY QUANTIFICATION

Models under location uncertainty (LU) represents a stochastic approach to CFD [22, 25, 26, 27], providing both an85

efficient ROM closure to compensate for neglected degrees of freedom v′, and quantification of the errors induced

by this closure. LU relies on two assumptions, (1) the time decorrelation of the unresolved velocity component v′

(see eq. (1)) and (2) the stochastic transport (up to some forcing F ) of the resolved velocity component w. With

Itō stochastic calculus notations (see Appendix A), the Navier-Stokes equation under location uncertainty reads:

Dwk

Dt
= ∂twk +

(
w − 1

2 (∇·a)T + v′
)
· ∇wk − 1

2∇·(a∇wk) = Fk. (3)
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The unresolved velocity (Eulerian) absolute diffusivity, apq, is determined from the unresolved velocity components:

apq = v′pv
′
q τv′ , (4)

where v′pv
′
q is the time averaged product of the Eulerian unresolved velocities components of v′p and v′q. τv′ represents90

the unresolved velocity correlation time. In comparison with classical fluid dynamics conservation equations, models

under location uncertainty introduce three additional terms, corresponding to (i) a turbulent diffusion, 1
2∇·(a∇wk),

(ii) a large-scale advecting velocity correction, − 1
2 (∇·a)T , and (iii) a multiplicative noise term, v′ ·∇wk. To express

the uncertainty induced by the dynamic truncation (inherent to any closure method), multiple simulations can be

run in parallel using the stochastic model to efficiently realize the most probable future states of the fluid system95

[25, 28, 26, 27, 30, 31]. Since this stochastic closure method is based on physics [27], its robustness is proved, and

calibrations can be performed from all available physical quantities, including the unresolved velocities v′. Almost

no tuning nor fitting of the ROM is hence required.

Previous work by the current authors [32] makes use of this formalism in a POD-Galerkin context for data

analysis, but without considering the noise term v′ · ∇wk. Here, we do consider this noise term. As in [29], we100

have implemented the POD-Galerkin of the Navier-Stokes model under location uncertainty (3). We obtain the

following ROM:

dbi(t)

dt
= Mi

(
b(t), β̇(t)

)
△
=

n∑
p=0

lpi bp(t) +

n∑
p=0

n∑
q=0

cpqi bp(t)bq(t)︸ ︷︷ ︸
Usual POD-Galerkin terms

+

n∑
p=0

fpi bp(t) +

n∑
p=0

n∑
k=1

α̃R
pik bp(t)β̇k(t)︸ ︷︷ ︸

New POD-LU-Galerkin terms

, (5)

where (β̇k)k are n independent one-dimensional white noises and, by convention, the remaining parameters are

b0 = 1, M0 = 0 and ϕ0 = v. Using the physical equations (3) and (4) and corresponding technical statistical

estimators from stochastic calculus, the ROM coefficients l, f , c, and α̃R are determined from the resolved spatial105

modes ϕi, the resolved temporal modes bi, and the POD residual velocity v′. Interested readers can refer to

Appendix B or to [29] for more details. Aimed at applied mathematicians, [29] extensively rely on stochastic

calculus notations whereas we have tried to make this paper and its appendices accessible to a broader audience.

The inclusion of the noise terms into equation (5), enables the characterization of the model uncertainty and

enhances forecasting capabilities beyond the scope of the training window. In the following, we will refers to this110

ROM as reduced location uncertainty model, abbreviated Red LUM. By extension, our complete data assimilation

method will also referred to as Red LUM.

4. PARTICLE FILTERING FOR DATA ASSIMILATION

The final element of Red LUM’s pipeline employs a particle filter [33] in order to integrate the real-time measure-

ments from multiple sensors and to synchronize the ROM simulation with the real observed flow. We first explain
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why particle filtering was preferred to more common approaches, such as Ensemble Kalman Filter (EnKF). We115

then point out again the principle of this data assimilation algorithm.

The governing equations of fluid mechanics are non-linear and high-dimensional. Solutions are non-Gaussian.

Therefore, the Kalman filter, the well-known Gaussian data assimilation technique, does not have good performance.

Moreover, the curse of dimensionality prevents the construction of the huge state covariance matrix. Theoretically,

the proper method to approach such non-linear and non-Gaussian dynamics is particle filtering [34]. However, this120

method often requires a large ensemble of forecast realizations, also called particles. When the state dimension

increases, the problem quickly becomes intractable as even more particles are needed , and each new particle comes

with a severe additional computational cost. For this reason, EnKF or variational data assimilation approaches

have historically been preferred, especially for meteorological applications, although recently a number of studies

have employed variants of particle filtering to address high-dimensional problems [35, 36, 37, 38, 39]. Variational125

methods, in particular the widely-used 4D-Var algorithm [40] and its variants, have demonstrated promising per-

formance. However, the 4D-Var algorithm requires adjoint codes and neglects the non-Gaussian and statistical

non-stationary nature of the model errors. Furthermore, ensemble-based data assimilation methods are typically

easier to parallelize, since particles can be forecast between two assimilation steps independently. The EnKF and

its variants (such as the square-root EnKF with localized and inflated covariance) are less sensitive to the curse of130

dimensionality than particle filters, but rely on linear state corrections, which can lead to non-physical solutions

[27]. Here, a fully-nonlinear filter – the particle filter – can be used for two reasons. Firstly, the POD-ROM makes

the state dimension small enough to alleviate the curse of dimensionality. Secondly, models under location uncer-

tainty efficiently spread small ensembles of particles over the state space without introducing new errors [28, 27, 29].

Therefore, particle filtering accommodates a small ensemble in this context, which greatly reduces its computational135

cost.

Algorithm 1 presents an overview of the commonly used sequential importance resampling (SIR) particle filter

[41, 42] employed in this study. The first step initializes an ensemble of Np independent states which are assigned

equal weights. The independent states are referred to as particles or sometimes realizations . Particles are forecast

in time using the evolution model (5). On each assimilation of a new measurement, the weights are updated based140

on the particles’ likelihoods. An additional re-sampling step prevents the weights variance from increasing over time

(degeneracy or particle impoverishment), which results in poor state estimations. Ultimately, the ensemble forms

the shape of the posterior distribution (i.e. the state distribution conditioned on the assimilated data)and gives the

state estimation. The particles’ likelihoods computation depends on the type of assimilated measurements. The

next section deals with these computations for the measurements considered in this study.145
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Algorithm 1 Particle Filter SIR with Red LUM

Initialization

• Compute the ROM coefficients l, f , c, and α̃R from a simulation output dataset ▷ POD-Galerkin

(see Appendix B for definitions).

• Compute matrices A and B (see Appendix D for definitions). ▷ Log-likelihood matrices

• Sample


b
(j)
1 (0)
...

b
(j)
n (0)

 iid∼ N

0,


λ1 · · · 0
...

. . .
...

0 · · · λn


 where λi = b2i . ▷ Initializing the first state

Loop over time t

Importance sampling

• b(j)(t) = b(j)(t− dt) +M
(
b(j)(t− dt), β̇

(j)
(t− dt)

)
dt. ▷ State transition

• If an observation y(t) is available at the current time t:

– lj(t) = l
(
y(t)|b(j)(t)

)
= (b(j)(t))TA b(j)(t) + y(t)TB b(j)(t)); ▷ Log-likelihood up to a constant

(see Appendix D for the proof of this formula)

– lj(t) = lj(t)−maxj lj(t) + 90; ▷ Add a constant to prevent numerical errors when applying exp

– Wj(t) = exp (lj(t)); ▷ Computing weights

– Wj(t) =
Wj(t)∑Np

m=1 Wm(t)
; ▷ Normalization

Re-sampling

– Each new temporal mode b(j)(t) is replaced by one of the old temporal modes ▷ Resampling

b(1)(t), ..., b(Np)(t) with probability W1(t), ..., WNp(t), respectively.

Final posterior distribution at a time t larger than measurement times t1, . . . , tK

p (b(t)|y(t1), . . . ,y(tK)) ≈
∑Np

j=1
1
Np

δ
(
b(t)− b(j)(t)

)
. ▷ Posterior Distribution
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5. MEASUREMENTS TO ASSIMILATE

In theory, Red LUM can assimilate any measurements. Here, we choose a widely-used fluid flow velocimetry

technique: particle image velocimetry (PIV). The measurement method uses a high-power light source and high-

speed camera to acquire images of solid tracer particles immersed in the fluid. A combination of image processing

and optical flow algorithms are employed to characterize the spatio-temporal velocity distribution of the fluid.

Specifically, our algorithm was tested using a cropped two-dimensional, two-component PIV (2D2C PIV) ex-150

perimental configuration. In order to assimilate measurements, we need to mathematically model the link between

the system state – the full three-dimensional three-component velocity v or here its reduced representation b – and

the measurements – here the PIV field. Such a mathematical model is called observation model and is used to

compute the particle filter log-likelihoods lj(t) (see algorithm 1 and Appendix D). We here propose the following

linear observation model:155

y = H[v] + ϵy, (6)

=

n∑
i=0

H[ϕi] bi + (H[v′] + ϵy)︸ ︷︷ ︸
=ϵRy (t)

, (7)

where y is the raw PIV and ϵy represents the PIV measurement error. The linear operator H incorporates

a 3-dimensional spatial smoothing operation as well as occlusion of the horizontal plane, and its corresponding

component in the velocity field, to approximate the PIV measurements. The parameters inside H and ϵy are

estimated using experimental data, comparing the hot-wire and PIV measurements’ spectrum (using a Taylor

assumption). Appendix C details the definition of the H operator and the PIV measurement noise covariance.160

Additionally, to make the data assimilation task more challenging, the information relating to a large subset

of points in the grid was obscured through the operator H. This results in a small observation vector y. Indeed,

estimating a vector b of n ∼ 10 components from a noisy linearly-dependent observation vector y of MPIV ∼ 104(≫

n) components is often an over-determined inverse problem and could otherwise be solved using a straightforward

least-squares procedure.165

Note that the strong influence of the unresolved velocity v′ on the final observation model’s uncertainty ϵRy (t)

is taken into account through a noise term in (7). This will naturally influences the data assimilation algorithm

results, since the particle filter log-likelihoods lj(t) are computed from this reduced observation model (see algorithm

1 and Appendix D).

This study considers synthetic PIV data, generated applying the general observation model (6) to fully-resolved170

CFD simulation outputs v. The fully-resolved simulations provide a complete instantaneous 3D characterization

of the velocity field for the data assimilation validation. Note these synthetic PIV measurements are not generated

by the reduced observation model (7), which is used for the particle filter algorithm only.
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6. NUMERICAL RESULTS

A performance assessment of our reduced data assimilation algorithm (Red LUM) will be conducted in relation to

two distinct cylindrical wake flows. The two wake flows correspond to two- and three-dimensional flows past an175

isolated circular cylinder at Reynolds numbers of 100 and 300 respectively. Cylindrical wake flows exhibit pseudo-

periodic vortex shedding cycles at the rear surface of the cylinder. This complex flow behavior provides an excellent

basis to assess alternative flow prediction methods. In addition to Red LUM, data assimilation of the wake flows

measurements will also be presented for two state-of-the-art POD-ROMs, detailed in section 6.1, to provide a basis

of comparison. The predictive performance of each model will first be reviewed through a qualitative assessment of180

the vorticity and the Q-criterion of the reconstructed velocity fields, prior to a quantitative assessment of the errors

associated with the reconstructed velocity fields. Subsequently, sensitivity analysis will be performed to determine

the influence of the ensemble size and the size and location of the assimilated data on the model performance.

Finally, we provide some insights into our algorithm complexity.

Prior to investigation of the various POD-ROM methods, reference simulations were performed using direct185

numerical simulations (DNS), implemented using Incompact3d, a high-order flow solver based on the discretization

of the incompressible Navier-Stokes equations [43]. These fully-resolved simulations are illustrated in top of figure

1 and top right of figure 3. The two wake flows exhibit major differences in their complexity and number of degrees

of freedom. At a Reynolds number of 100, the flow remains laminar, whereas, at a Reynolds number of 300, the

flow appears to be three-dimensional and much more complex. The full-order simulation’s spatial grids at Reynolds190

numbers of 100 and 300 correspond to state-space dimensions of about 104 and 107, respectively. During the learning

period, 140 and 80 vortex shedding cycles are used to construct the ROMs. The remaining vortex shedding cycles

are used to build synthetic measurements and to validate the method. For both flows, a single spatial resolution

point of the synthetic PIV data is assimilated ten times for each vortex shedding cycle. The observation point,

indicated as a star in figure 1, is located just above the recirculation zone, at coordinates of x = 1.31D (streamwise195

direction), z = 0 (spanwise direction), and y = 1.27D (orthogonal direction). The cylinder, of diameter D, is

centered at (0, 0,−). We refer to this setting as observation case 1. Other observation cases will be considered at

the end of this section.

6.1 State-of-the-art ROMs

The Red LUM performance will be assessed against two alternative state of the art algorithms. To facilitate a200

fair comparison, the same observation model (7), assimilation method (SIR particle filter), and ensemble size (100

particles) will be employed in each case.
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6.1.1 Deterministic state-of-the-art ROM (D-SOTA)

The first state-of-the-art ROM is a usual deterministic POD-Galerkin model, with an optimally fitted eddy (using

a least square method), presented in (8):205

dbi(t)

dt
=

n∑
p=0

lpi bp(t) +

n∑
p=0

n∑
q=0

cpqi bp(t)bq(t)︸ ︷︷ ︸
Usual POD-Galerkin terms

+

(
νev

ν
− 1

) n∑
p=0

lpi bp(t)︸ ︷︷ ︸
Fitted on the resolved temporal modes dynamics

, (8)

where νev is the fitted eddy viscosity, and ν is the molecular viscosity. While this POD-ROM method is itself deter-

ministic, ensemble-based data assimilation can nonetheless be implemented through randomized initial conditions.

6.1.2 Stochastic state-of-the-art ROM (S-SOTA)

The randomization of initial conditions has been shown to typically underpredict errors in fluids dynamics forecasts

[44, 45, 46, 47] and so an alternative stochastic state-of-the-art ROM is investigated for comparison. The second210

baseline POD-ROM adds a white noise term to the first baseline ROM. The addition of white Gaussian noise

forcing is a simple adhoc randomization technique for a given deterministic dynamical system [e.g. 48, 49]. Despite

its potential lack of physical relevance, such a strategy is very often adopted in data-assimilation applications [28].

dbi(t)

dt
=

n∑
p=0

lpi bp(t) +

n∑
p=0

n∑
q=0

cpqi bp(t)bq(t)︸ ︷︷ ︸
Usual POD-Galerkin terms

+

(
νev

ν
− 1

) n∑
p=0

lpi bp(t) +

n∑
k=1

σev
ik β̇k(t)︸ ︷︷ ︸

Fitted on the resolved temporal modes dynamics

, (9)

where νev is the fitted eddy viscosity, ν is the molecular viscosity, and (σev)(σev)T is the fitted additive noise

covariance matrix. For more details about this state-of-the-art stochastic ROM, one can refer to [29] for example.215

[21] also proposed a similar POD-ROM for application with a particle filter. During the training phase, their

algorithm estimates a whole additional linear term rather than just an eddy viscosity coefficient. Moreover, their

noise term forces the POD-ROM at each assimilation step only (as opposed to every simulation time step) and

employs a tuned variance. The (reduced) observation model benefits from greater simplicity as the observation

noise ϵRy (t) has a tuned spatially-uniform variance.220

6.2 Qualitative performance analysis

A performance assessment of each POM-ROM method will be conducted using the DNS predicted velocity field,

denoted vdns, as a full-order reference case. However, the solution of each POD-ROM method is confined to the

affine space spanned by the POD modes (a set of fields defined according to (2)). Consequently, the optimum1

prediction which can be achieved using a POD-ROM-based method (or theoretical performance limit) corresponds225

1Best in terms of L2 norm. Note that by definition, the POD is also the best modal decomposition in terms of L2 norm for a given

degree of freedom n.
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to the orthogonal projection of the DNS field onto this reduced affine space. This theoretically optimum field,

Π̃ϕ[vdns], is considered in the following as the reference field. It is defined as follows:

Π̃ϕ[vdns]
△
= v +

n∑
i=1

brefi ϕi with brefi
△
=
(
ϕp,vdns − v

)
. (10)

This projected field corresponds to the known temporal modes bi(t) = brefi (t) (i ⩽ n) in the equation (2). These

projected fields are indicated in the second panel of figures 1 and 2 for a Reynolds number of 100 and at the top

left of figures 3 and 4 for a Reynolds number of 300 respectively. Note that when the Reynolds number increases,230

even though the projected velocity field is still meaningful, it can be relatively far from the DNS field.

6.2.1 Reynolds number of 100

Figures 1 and 2 present estimated vorticity fields2 of the data assimilation results at a Reynolds number of 100 and

t = 64 s (after the training period), with n = 2 and 8 modes, respectively. The four simulation results presented

correspond to the 2D DNS, the DNS projection onto the POD modes (corresponding to the theoretical performance235

limit of POD-ROM simulations), Red LUM, and S-SOTA (the POD-Galerkin with optimally fitted eddy viscosity

and additive noise, see (9)). From an initial qualitative assessment of the flow field, Red LUM estimations appears

to closely resemble the DNS results and demonstrates excellent agreement with the theoretical performance limit,

indicating excellent predictive potential beyond the learning window in spite of the limited assimilated data (single

measurement point). Quadrupling the number of modes from 2 to 8 does not appear qualitatively to compromise the240

predictive performance of the proposed POD-ROM. In order to better appreciate the Red LUM potential, figures 1

and 2 also display the predictions from the stochastic state-of-the-art POD-ROM (S-SOTA) (9) (the POD-Galerkin

with optimally fitted eddy viscosity and additive noise). The fitted additive noise variance of this POD-ROM is

necessarily large in order to encompass the significant ROM error. Consequently, the prior probability distribution

(i.e. the probability distribution of the (background) state before taking account the measurement) generated by245

S-SOTA is hardly informative, while the single measurement gives little additional information. These limitations

result in a departure from the DNS predictions which becomes particularly apparent as the order of the ROM is

increased from 2 to 8 and the fitted additive noise variance is enhanced to accommodate the increased complexity

of the flow dynamics. The results of the deterministic POD-ROM method (D-SOTA) (8) were less promising than

the stochastic approach and so the vorticity fields are not presented. Instead, a quantitative assessment of D-SOTA250

will be presented later in section 6.3. In contrast, the physical structure of Red LUM, and in particular of its skew-

symmetric multiplicative noise, guarantees an efficient prior probability distribution [29], enabling more accurate

data assimilation.

2The vorticity field is the curl of the velocity field commonly used to visualize 2D vortices.
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Reference full-order simulation vdns

(2D DNS at Reynolds 100:

state space dimension

of about 104)

Optimum prediction:

Projection of the DNS

onto the POD basis Π̃ϕ[vdns]

(State space

of dimension 2)

Red LUM:

Our reduced data assimilation prediction

(ROM state space

of dimension 2)

S-SOTA:

State-of-the-art method prediction

(ROM state space

of dimension 2)

Figure 1: Vorticity field – of (from top to bottom) the 2D DNS at a Reynolds number of 100, the reference 2-dimensional representation

(projection of the DNS onto the POD modes), Red LUM, and S-SOTA.The red signs indicate the measurement locations for the different

observation cases considered: case 1 (star symbol) (considered in sections 6.2 and 6.3 and figures 1-5 and 8), case 2 (circle symbols), case

3 (cross symbol close to the cylinder) (both considered in section 6.4.1 and figure 6), case 4 (triangle symbol), and case 5 (downstream

cross symbol) (both considered in section 6.4.1 and figure 7).
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Reference full-order simulation vdns

(2D DNS at Reynolds 100:

state space dimension

of about 104)

Optimum prediction:

Projection of the DNS

onto the POD basis Π̃ϕ[vdns]

(State space

of dimension 8)

Red LUM:

Our reduced data assimilation prediction

(ROM state space

of dimension 8)

S-SOTA:

State-of-the-art method prediction

(ROM state space

of dimension 8)

Figure 2: Vorticity field – 13 vortex shedding cycles after the learning period – of (from top to bottom) the 2D DNS at a Reynolds

number of 100, the reference 8-dimensional representation (projection of the DNS onto the POD modes), Red LUM, and S-SOTA.The

red signs indicate the measurement locations for the different observation cases considered: case 1 (star symbol) (considered in sections

6.2 and 6.3 and figures 1-5 and 8), case 2 (circle symbols), case 3 (cross symbol close to the cylinder) (both considered in section 6.4.1

and figure 6), case 4 (triangle symbol), and case 5 (downstream cross symbol) (both considered in section 6.4.1 and figure 7).

13



Optimum

prediction:

projection

onto the

POD basis

Π̃ϕ[vdns]

Reference

full-order

simulation

(DNS)

Red LUM:

our reduced
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assimilation

prediction
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State-of-the-

art method

prediction

Figure 3: Q-criterion – 13 vortex shedding cycles after the learning period – from the reference 2-dimensional representation (projection

of the 3D DNS at Reynolds 300 onto the POD modes) (top left), the DNS (top right), Red LUM (bottom left), and S-SOTA (bottom

right).

6.2.2 Reynolds number of 300

Figures 3 and 4 show the Q-criterion3 isosurfaces of the data assimilation results at a Reynolds number of 300,255

with n = 2 and 8 modes, respectively. As with the 2D laminar case, the proposed estimations closely resemble the

theoretical POD-ROM performance limits. These projected references (top left plots in figures 3 and 4) correspond

to the known temporal modes bi(t) (i ⩽ n) in the equation (2). The qualitative departure between these optimums

estimations and the DNS reference correspond to the unresolved velocity v′. This velocity component is mainly

restricted to small-scale 3-dimensional effects at a Reynolds number of 300. S-SOTA demonstrates greater departure260

from both the DNS and the theoretical performance limit since, as for the Reynolds number of 100, the noise

structure of S-SOTA is not well adapted to the problem under investigation.

6.3 Quantitative performance analysis

Vorticity fields and Q-criterion isosurfaces provide useful qualitative assessments of the estimated flow fields, however

quantitative analysis is required for a comprehensive understanding of the model performance and limitations. The265

POD-ROM performance will be assessed using a global velocity estimation normalized error. The estimated velocity

field is denoted west =
∑n

i=0 b
est
i ϕi. The Mean Square Error (MSE) simplifies as follows, due to the orthogonality

3Q-criterion is a tool used for the visualization of vortices in 3D CFD.
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Figure 4: Q-criterion – 13 vortex shedding cycles after the learning period – from the reference 8-dimensional representation (projection

of the 3D DNS at Reynolds 300 onto the POD modes) (top left), the DNS (top right), Red LUM (bottom left), and S-SOTA (bottom

right).

properties of the orthogonal projection Π̃ϕ[vref] and of the POD modes ϕi:

MSE
△
=

∫
Ω

∥∥west − vdns

∥∥2 , (11)

=

∫
Ω

∥∥west − Π̃ϕ[vdns]︸ ︷︷ ︸
=
∑n

i=1(bi−brefi )ϕi

∥∥2 + ∫
Ω

∥∥vdns − Π̃ϕ[vdns]︸ ︷︷ ︸
=v′

∥∥2, (12)

=

n∑
i=1

(
bi − brefi

)2
︸ ︷︷ ︸
ROM-dependent

+

∫
Ω

∥∥vdns − Π̃ϕ[vdns]
∥∥2︸ ︷︷ ︸

ROM-independent

, (13)

where the integration is performed over the spatial domain denoted Ω and ∥ • ∥ represents the usual Euclidean

norm of R2 or R3. The first error term will be dependent on the ROM and associated data assimilation method,270

whereas the second error term depends solely on the POD modes ϕi. Consequently, the second error term is the

same for Red LUM, D-SOTA and S-SOTA. Note that this term is time-dependent in general. Here, the MSE is

normalized by the mean kinetic energy (MKE) in the far fluid moving frame (averaged over the training set), MKE

=
∫
Ω
∥v − v∞∥2, where v∞ = (1 m.s−1, 0, 0)T is the velocity far from the cylinder. Subtracting the far fluid frame

velocity, v∞, renders the MKE, and thus the proposed RMSE (its square root), independent of the spatial domain275

Ω for a sufficiently large spatial domain. It makes our normalized RMSE also independent of the spatial domain

choice (for a sufficiently large spatial domain) and hence makes it more objective. However, it should be noted that∫
Ω
∥v∥2, even normalized by the volume or the surface, remains dependent on the spatial domain since the velocity
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variability (the wake) is highly localized.

Figure 5 presents the global velocity estimation normalized error at Reynolds numbers of 100 and 300, between280

the conclusion of the training period and the termination of the 20th and 14th vortex shedding cycle respectively. The

orange, light blue and dark blue profiles correspond to the errors associated with Red LUM, S-SOTA, and D-SOTA

respectively. Posterior standard deviations4 are also visible in shaded colors, and quantify the ensembles diversities

after data assimilation. Accordingly, they should be proxies for the velocity estimations error amplitudes. S-SOTA

errors appear very large and regularly exceed the black profile corresponding the condition that all temporal modes285

are set to zero. Furthermore, the S-SOTA errors escalate as the number of modes is increased, whereas the D-SOTA

performance quickly diminishes over time (with increased departure from the learning window), particularly at a

Reynolds number 300. Conversely, Red LUM error appears relatively stable over time and the magnitude of the

errors remains modest even as the number of modes is increased to 8. D-SOTA limitations are explained by the

underestimation of the variance outside of the learning window leading to degeneration of the filter, a prediction290

with escalating errors with increased departure from the learning window, and – at a Reynolds number of 300 –

divergence in time of the POD-ROM estimation (not shown). This variance decay illustrates the classical problem

of the alignment of ensembles along unstable directions [50, 51], which results from the over-damping of stable

temporal modes [9, 10]. This over-damping and, more generally, the variance decay is induced by the missing

positive energy fluxes toward each temporal mode (the mode truncation removes many triad-based fluxes) and the295

stabilizing corrective terms (the eddy viscosity term in this instance).

6.4 Influence of the available resources

In practice, the result of our algorithm can be influenced by several factors, such as the quantity and the quality of

the measurements available for assimilation, or limitations in the available computational resources.

6.4.1 Influence of the available measurements300

The dependence of model performance on the data available for assimilation will be assessed in relation to the more

complicated 3D wake flow at a Reynolds number of 300. The various observation points used for this analysis are

detailed in table 1. Figures 6 and 7 present the corresponding estimation errors for S-SOTA and Red LUM.

Predictably, the performance of each of the methods improves when more measurements are available for as-

similation (see observation case 2, left panel of figure 6). S-SOTA remains less efficient than Red LUM, although305

the predictions tend to converge as the number of observation points is increased, typically as the number of ob-

servations My exceeds the dimension n of the reduced space. This conclusion is consistent with the findings of [21]

4the square roots of the global velocity estimations variances conditioned on the assimilated data, integrated over the spatial domain,

and adequately normalized
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Figure 5: Global velocity prediction normalized error (after the learning period) for the wake flow at Reynolds 100 (left) and 300 (right)

in the observation case 1 with, from top to bottom n = 2, 4 and 8 modes for Red LUM (orange), S-SOTA (light blue), and D-SOTA

(dark blue). The shaded colors (light orange, light blue, and grey) correspond to the respective estimated posterior standard deviations.

The dashed black line at the bottom is the POD truncation error. The solid black line at the top is the error obtained by setting all

temporal modes bi to 0, i.e. keeping only the time averaged velocity v.
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Case name Description x/D y/D z/D Symbol on

figures 1 and 2

Case 1 1 observation point 1.31 1.27 0 ∗

near the recirculation zone

Case 2 3× 3 observation points 1.31 1.27 0 ◦

2.73 1.27 0

4.15 1.27 0

1.31 −0.15 0

2.73 −0.15 0

4.15 −0.15 0

1.31 −1.57 0

2.73 −1.57 0

4.15 −1.57 0

Case 3 1 observation point 1.31 −0.15 0 +

inside the recirculation zone

Case 4 1 point outside the wake 0.84 1.74 0
`

Case 5 1 observation point far downstream 10.31 1.27 0 ×

Table 1: Details of the observation cases considered for the assessment of the methods dependence on the quantity of measurements to

assimilate.

which demonstrated excellent flow predictions using a particle filter in conjunction with a POD-ROM similar to

S-SOTA employing 9 observations points. However, when the number of observation points is excessively large,

the standalone observation model represents an over-determined least-square problem (the number of equations310

exceeds the number of unknown variables), and so the requirement for a dynamic ROM for flow estimation is less

apparent. Note also that when the number of observation points is greatly increased, the likelihood becomes a

very peaky function of the state (i.e. the likelihood support is very localized). Accordingly, the particle filtering

algorithm needs to be adapted to prevent filter degeneracy. For the wake flow under consideration, tempering and

non-Gaussian jittering [35, 38] have been shown to provide efficient solutions at around My ∼ 104 observations315

points (not shown). Considering a single observation point may be considered as an over-complicated estimation

problem compared to practical applications. However, real industrial applications are often required to assimilate

data from limited, and sometimes low quality, sensors which provide relatively poor information on the flow char-

acterization. Additionally, many parameters (e.g., boundary conditions, Reynolds number) are either unknown or

poorly characterized for many realistic situations and must be estimated on top of the state variables. Consequently,320

the available information is often insufficient to constraint the estimation problem. For this reason, the extent to

which the requirement for external data can be minimized, perhaps to a single measurement as the proposed model

aims to achieve, though the incorporation of more physics into the POD-ROM and associated ensemble forecasts,

is potentially highly valuable for industrial applications.
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The performances of the estimation algorithms are not only sensitive to the quantity of data available for325

assimilation but the location of the observation points. For an observation point located within the recirculation

zone (see observation case 3 presented in the right panel of figure 6), S-SOTA performance marginally improves

however the RMSE remains close or above the zero solution RMSE indicates a comparable performance to the

mean-velocity solution, whereby all temporal modes bi tend to 0.

The Red LUM method exhibits similar flow predictions using observation points 1 and 3, and thus appears330

less sensitive to the precise location of the chosen observation point. For an observation point outside the wake

(observation case 4, left panel of figure 7), all method skills strongly deteriorate, as expected. For an observation

point far downstream (observation case 5, right panel of figure 7), S-SOTA keeps similar results. The skills of

Red LUM slightly deteriorate but remain much better than S-SOTA. To generalize, the flow predictions appear

satisfactory so long as the observation point contacts the wake but most accurate for observations close to the335

recirculation zone.

Additional tests were performed using assimilation data acquired at a diminished frequency, specifically a soli-

tary measurement per vortex shedding cycle. As with a reduction in the number observation points, reducing the

temporal frequency of data acquisition diminishes the performance of the flow estimation. For Red LUM, assimilat-

ing data from 3×3 observation points at a rate of one per vortex shedding cycle exhibits a comparable performance340

to simulations based on a solitary observation point with five times the data acquisition rate.

6.4.2 Influence of the number of realizations

Figure 8 presents the dependence of the RMSE on the ensemble size Np for Red LUM and for S-SOTA at n = 2,

4 and 8 modes. As the ROM dimension n is increased, larger ensemble sizes are typically required to achieve an

acceptable model error. In each case, no more than 100 realizations are required for Red LUM to converge to its345

optimum prediction. The rapid convergence of Red LUM in comparison with S-SOTA provides another indication

that the structure of the noise is better adapted to the fluid dynamics, and thus fewer particles are required to

investigate the most probable flow predictions. The requirement for a smaller ensemble size to converge to a stable

error of acceptable magnitude, can incur a significant saving in computational power and thus demonstrates a

greatly enhanced potential for real-time applications.350

6.5 Discussion on the implementation and run-time considerations

Several hours of simulation using on a supercomputer are necessary to generate the training simulation dataset with

the off-line high-resolution highly-optimized CFD code.

By contrast, the off-line ROM construction is performed in a few hours on a laptop using the original non-

parallelized MATLAB code employed during this study. The POD-ROM building algorithm has now been im-355

plemented in C++ using the OpenFOAM-based library ITHACA-FV [52]. While the C++ code remains non-
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Figure 6: Global velocity prediction normalized error (after the learning period) for the wake flow at a Reynolds number of 300 in the

observation cases 2 (9 observation points, left) and 3 (1 observation point inside the recirculation zone, right) with, from top to bottom

n = 2, 4 and 8 modes for Red LUM (orange) and S-SOTA (light blue). The shaded colors (light orange and light blue) correspond to

the respective estimated posterior standard deviations. The dashed black line at the bottom is the POD truncation error. The solid

black line at the top is the error obtained by setting all temporal modes bi to 0, i.e. keeping only the time averaged velocity v.
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Figure 7: Global velocity prediction normalized error (after the learning period) for the wake flow at Reynolds 300 in the observation

cases 4 (1 point outside the wake, left) and 5 (1 observation point far downstream, right) with, from top to bottom n = 2, 4 and 8

modes for Red LUM (orange) and S-SOTA (light blue). The shaded colors (light orange and light blue) correspond to the respective

estimated posterior standard deviations. The dashed black line at the bottom is the POD truncation error. The solid black line at the

top is the error obtained by setting all temporal modes bi to 0, i.e. keeping only the time averaged velocity v.
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Figure 8: Loglog plots of the global velocity prediction normalized error (averaged on a time window of about 10 vortex shedding cycles,

beginning about 2 vortex shedding cycles after the learning period) as a function of the ensemble size Np for the wake flow at Reynolds

300 with, from left to right and from top to bottom n = 2, 4 and 8 modes for Red LUM (orange) and S-SOTA (light blue). The dashed

black line at the bottom is the POD truncation error. The solid black line at the top is the error obtained by setting all temporal modes

bi to 0, i.e. keeping only the time averaged velocity v.
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parallelized, most calculation run-times have been reduced to an order of minutes on a laptop, with the exception

of the POD decomposition, and in particular the velocity temporal covariance calculation. This velocity temporal

covariance calculation can be computationally demanding for large datasets (roughly 104 velocity snapshots of large

dimensions in this instance).360

The on-line data assimilation algorithm runs in a few minutes (about real-time) on a laptop computer, imple-

mented without parallelization in Python. The time interval between two assimilation steps (0.5 s) is much larger

than the time step used for the ROM time integration, and so the bulk of the computational expenditure is a

product of the ROM time integration step. In the interval between consecutive assimilation steps, each realization

is simulated independently. So, the CPU demand increases approximately linearly with the ensemble size, and365

moreover parallelization of the code could be achieved relatively easily. Leaded by the ROM time integration,

the CPU consumption also scales with the number of coefficients in the ROM system, says O(n3). In practice,

the ROM dimension n, can be selected to target a required accuracy. The eigenvalues of the POD decomposition

express the amount of solution energy that can be encompassed for a specific value of n. A considerable further

gains in run-time could be achieved through converting the online data assimilation code to C++, parallelizing the370

code, and through improvements to the time integration scheme. At term, the online algorithm should allow for

measurements to be assimilated on the fly.

7. CONCLUSION

This work presents a novel reduced order model – referred to as Red LUM – to estimate and predict a flow velocity

field in the entire domain in real time from sparse measurements. The proposed algorithm is based on a stochastic,

low-dimensional system built from fundamental physics equations, reduced using simulated DNS data, and coupled375

with real-time measurements. The proposed approach has demonstrated much more accurate flow estimations,

and convergence to an optimum solution with significantly smaller ensembles than current state-of-the-art reduced

data assimilation methods, enabling a significant reduction in computational expenditure. Assimilating data from

a single measurement point proved sufficient for our method to accurately predict the unsteady velocity field across

the whole 3-dimensional domain. Combining particle filtering with models under location uncertainty, Red LUM380

has demonstrated an excellent performance in treating particle impoverishment. As such, Red LUM shows excellent

promise for fluid dynamics applications requiring real-time fluid data assimilation.

Based on the initial promise of the proposed reduced order model, further work is planned to assimilate real,

rather than simulated, particle image velocimetry data. Further enhancements are on going to adapt the model to

the requirements of more turbulent flows thanks to the OpenFOAM-based Ithaca-FV library [52, 53]. Finally, it385

is envisaged to adapt Red LUM for parametric dependency and construction from noisy and possibly incomplete

data sets.
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APPENDIX A. STOCHASTIC CALCULUS

Stochastic calculus is a field of Mathematics devoted to differential equations involving noises. Numerous tools

exist in this framework, including theoretical moments computation, statistical estimations, or simulation of both

ordinary differential equations [54] and partial differential equations [55, 56, 57, 58]. Several notations co-exist in390

this field, in particular Stratonovich or Itō conventions. This section introduces the Itō notation employed in this

paper and some of its advantages. The discussion about relying whether on one notation or the other is recurrent

in physics, but it is beyond the scope of this paper. For a more complete discussion on this subject, the reader can

refer to sections 1.6 (pages 10-12) and 10.1 (pages 189-190) of [59]. For this short note, we highlight an important

point: under appropriate assumptions, it is easy to switch from one notation to the other [54]. As a consequence,395

the most convenient form can be used to tackle a given issue.

In the Itō convention, time derivatives correspond to first-order forward-in-time differentiatials. Thus, the deriva-

tive, ∂twk(x, t) in equation (3) and dbi(t)
dt in equation (5) stand for wk(x,t+dt)−wk(x,t)

dt and bi(t+dt)−bi(t)
dt respectively,

for an infinitesimal time step dt. The forward-in-time differential equations enable relatively simple computation.

Alternative stochastic calculus conventions require much more complicate integration schemes. Furthermore, the400

Itō notation more explicitly identifies and separates the zero-mean noise terms – v′ · ∇wk in equation (3) and

α̃R
pik bp(t)β̇k(t) in equation (5) – from the other terms induced by randomization of equations (e.g., diffusion,

noise-induced drift). Consequently, Itō calculus greatly simplified the derivation of the evolution law of statistical

moments (see for instance [27]).

APPENDIX B. ESTIMATIONS OF THE REDUCED LOCATIONUNCERTAINTY

MODEL’S COEFFICIENTS

In this section, the various terms of the reduced location uncertainty model (5), initially proposed in a previous405

study by the current authors [29], are defined. In the following notation, (ζ, ξ)
△
=
∫
Ω
ζ ·ξ denotes the scalar product

of the vectorial functions ζ and ξ. P denotes the non-local Leray operator P = Id − ∇∇T∆−1. The evaluation

of this operator requires the resolution of a Poisson equation. It is used to simplify the fluid mechanics equations

through the removal of the pressure term.

Appendix B.1 Time down-sampling rate410

Under the LU Navier-Stokes model hypothesis, the unresolved component of the velocity field v′ corresponds to a

noise uncorrelated in time (i.e. white with respect to time). This assumption is consistent with the fact that the

higher-order coefficients of the reduced-order solution often tend to have a shorter correlation time in fluid dynamics

systems. However, in practice, this assumption has not proven to be entirely accurate and has presented recurring

problems for the data-driven modeling of systems combining fast and slowly evolving components [60, 61, 62, 63].415
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Consequently, a time down-sampling scheme is used to force the noise terms to be as uncorrelated as possible.

Assuming that the spatially averaged covariance function has a Gaussian form with a standard deviation equal

to the correlation time τ , a simple expression allows the computation of the correlation time. For a given ve-

locity correlation matrix Cv
ij = (vobs(•, ti),vobs(•, tj)) (evaluated during the POD decomposition), the following

unresolved velocity correlation matrix can be evaluated:420

Cv′

ij = (v′
obs(•, ti),v′

obs(•, tj)) = Cv
ij −

n∑
k=1

bobsk (ti)b
obs
k (tj), 0 ⩽ i, j ⩽ N − 1, (B.1)

along with its associated stationary covariance function

Covs(tp) =
1

N−p

N−1−p∑
q=0

Cv′

q,q+p, 0 ⩽ p ⩽ N − 1. (B.2)

The correlation time is estimated as follow:

τ̂ =

√√√√2
Cov2s(
∆Covs

∆t

)2 , (B.3)

which is evaluated using a forward Euler temporal discretization of the stationary covariance:

∆Covs
∆t

(tp)
△
=

Covs(tp +∆t)− Covs(tp)

∆t
, 0 ⩽ p ⩽ N − 1. (B.4)

Before computing the estimations presented in the following of this appendix, this estimated correlation time τ̂

is used to down-sample the entire DNS velocity dataset and the observed coefficients of the reduced order solution,425

leaving us with a time step ∆t ≈ τ̂ .

Appendix B.2 Deterministic terms and noise-induced terms

The deterministic coefficients of Red LUM are summarized in table B.2.

Appendix B.3 Noise correlations estimation

This section will discuss the estimation of the noise statistics.430

For any function ξ, the linear functional Kjq can be defined as:

Kjq[ξ]
△
=

(
ϕj ,−P

[
(ξ · ∇)ϕq

]
+ δq0 ν∆ξ

)
, 1 ⩽ j ⩽ n, 0 ⩽ q ⩽ n. (B.5)

Using this notation, the noise’s covariance can be estimated as follows:

Σ̂α
pi,qj = ∆t

λobs
p

Kjq

[
bobsp

(
∆bobsi

∆t

)′′
v′
obs

]
, 1 ⩽ i, j ⩽ n, 0 ⩽ p, q ⩽ n, (B.6)
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Physical meaning Full-order term ROM term

Molecular viscous L = 1
Re∆ lpi =

(
ϕi,L(ϕp)

)
dissipation

Usual C(w, •) = − (w · ∇) cpqi =
(
ϕi,PC(ϕp,ϕq)

)
advection

Turbulent diffusion Fdif = ∇ ·
(
1
2a∇•

)
+ 1

2 (∇ · a)∇ fpi =
(
ϕi,PF (ϕp)

)
+ Advecting velocity

correction

Absolute a(x) = ∆t v′
obs (v

′
obs)

T
(x)

diffusivity v′
obs = vobs − Π̃ϕ[vobs]

Table B.2: Deterministic terms and noise-indueced terms of the reduced location uncertainty model.

where bobs0 = λobs
0 = 1 and for 1 ⩽ i ⩽ n,

bobsi = (ϕi,vobs) , (B.7)

λobs
i = (bobsi )2, (B.8)(

∆bobs
i

∆t

)′′
=

(
∆bobs

i

∆t

)′
−
(

∆bobsi

∆t

)′
, (B.9)(

∆bobs
i

∆t

)′
=

(
∆bobsi

∆t

)
−
((

bobs
)T

(l + f)•i +
(
bobs

)T

c••i b
obs
)
, (B.10)(

∆bobs
i

∆t

)
(tk) =

bobsi (tk +∆t)− bobsi (tk)

∆t
, 0 ⩽ k ⩽ N − 1. (B.11)

To ensure that noise covariance matrix conforms to the required symmetric, non-negative structure, the symmetric

part of the estimated tensor (B.6) is retained and negative eigenvalues are set to zero. The consistency of this435

estimator is proven in a previous study by the current authors [29].

The dimension of the noise is reduced through a tensorial PCA of Σ̂α, retaining the initial n first eigenvectors.(
α̃R

k

)
1⩽k⩽n

⊂ R(n+1)×n are the matrix forms of the first n eigenvectors (weighted by the square roots of the

corresponding eigenvalues). Since the noise is multiplicative and the temporal coefficients bi have various amplitudes
√
λi, the covariance matrix Σ̂α is adequately re-normalized by the amplitudes

√
λi before applying the PCA.440

APPENDIX C. DESIGN OF THE OBSERVATION MODEL

An observation model aims at representing the link between measured values and an observed state. Here the state

is b and the observation model is represented in equation C.1

y = H[v] + ϵy = H v +LF Ẇ , (C.1)

26



where y is the vector of the My PIV measurements to assimilate, ϵy = LF Ẇ is the PIV measurement noise,

Ẇ is a vector of MPIV independent white noise (in discrete time), LFLF
T is the covariance matrix of the

PIV measurement noise, v is the reshaped version of v as a single vector of M × d coefficients and H is a

reshaped version of the linear operator H as My × (M × d) matrix. For instance, if d = 3, we have v(t) =

(v1(x1, t), . . . , v1(xM , t), v2(x1, t), . . . , v2(xM , t), v3(x1, t), . . . , v3(xM , t))
T
. The two-scale representation v(t) = w(t)+445

σḂ(t) can be extended to the reshaped version of v:

v = w + v′ = Φ b+ σ Ḃ, (C.2)

with w a reshaped vector of (M × d) coefficients, Ḃ is a vector of (M × d) independent white noise (in discrete

time), σ a matrix of dimension (M × d)× (M × d) and Φ the reshaped matrix Φ =
(
ϕ0, . . . ,ϕn

)
with dimension

(M × d)× n. Finally, the observation model equation can be represented as the equation C.3

y = H Φb+H σ Ḃ +LF Ẇ . (C.3)

The matrices H and LF are unknown and must be estimated. The H matrix is a spatial transformation from450

one space to another and mathematically it executes a spatial filtering and a cropping on the velocity field. We

decompose the two operations through two operators:

H = HcropHPIV, (C.4)

where Hcrop is a rectangular matrix of 0 and 1 that defined the cropping of the PIV image and HPIV is a matrix

representing the PIV measurement and postprocessing. The LF matrix is a quantification of uncertainty from

the measures after post treatment. In order to estimate HPIV and LF , we have to compare the PIV data with a455

reference accurate measurement method : the hot wire.

Let us first focus on the matrix HPIV. Since we focus on 2D2C PIV, that matrix should include the slicing of

the 3D data and the selection of the horizontal velocity components through two matrices of 0 and 1, that we name

H2D and H2C respectively:460

HPIV = H2DH2CHBlur, (C.5)

with HBlur to encode the blurring induced by the PIV measurement. This blurring is approximated by an isotropic

3D spatial convolution on each velocity component:

vPIV
k = hS ∗ vk + ϵPIV

k , (C.6)

where hS is the spatial filter and ϵPIV the measurement noise. We consider an isotropic Gaussian filter.

hS(x, y, z) = hs(x)hs(y)hs(z), (C.7)
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Figure C.9: Measure configuration plan of PIV and hot-wire.[64]

with

hs(x) = Ah exp

(
− 1

2

(
x

σh
s

)2
)
. (C.8)

In Fourier space, the modulus of the filter is also a Gaussian function and can then be estimated as:

|ĥS | ≈ |v̂PIV
k |
|v̂k|

. (C.9)

Unfortunately, the hot wire data do not have a significant spatial extension. Accordingly, for our experimental

data comparison we must focus on the temporal signatures. We will estimate a blurring temporal filter ht instead

of the blurring spatial filter hs. And subsequently, we will transform the temporal filter into a spatial filter using a465

Taylor assumption. Let us now estimate the blurring temporal filter ht from the experimental, keeping a Gaussian

filter form.

Since the large-scale structures should be well reconstructed by the PIV, we can expect that the first Fourier

mode is ĥt(0) = 1. This sets the amplitude of the filter. In Fourier space, the modulus of the filter is Gaussian and

its logarithm writes:

log

(
|v̂PIV

k (f)|
|v̂k(f)|

)
≈ log

(
|ĥt(f)|

)
= −αf2. (C.10)

This gives a simple way to fit the last filter parameter: the standard deviation σh
t =

√
α

2π2 . It is estimated with a

simple linear regression in loglog plot.

The data used to estimate the matrices were presented in the work of [64]. The measure configuration is detailed470

by the Figure C.9, where the blue dotted line boundsthe PIV area estimation and the green line represents the

hot wire converters position. The sampling frequency used in PIV is 500 Hertz and 6000 Hertz in hot wire. The

hot wire data spectrum and the PIV data spectrum are compared in figure C.10. The Gaussian fitting of ĥt is

illustrated in figure C.11.

After that, the Taylor hypothesis is used again to transform the time filter ht into a space filter hs by the axis475

rescaling x = Ut where U is the mean flow velocity. Therefore, the space filter hs is a Gaussian function with a
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standard deviation σh
x = Uσh

t .

Eventually, the filter hs is used to define the PIV blurring matrix HBlur. According to equation (C.7), we can

write the matrix HPIV as a reshaped version of a tensor product of 3 matrices representing the spatial smoothing

along x, y and z:480

HBlur = Hx
PIV ⊗Hy

PIV ⊗Hz
PIV. (C.11)

Each of this matrix is defined in the same way though the filter hs. In order to restrict the number of non-zero

coefficient of those huge matrices, we crop the filter after one standard deviation h(x) = hs(x)1{|x|⩽σx}. and

Hx
PIV =



h(−nh∆x) . . . h(0) . . . h(nh∆x) . . . . . . . . . 0

0 . . . . . . . . . . . . . . . . . . . . . 0

0 . . . h(−nh∆x) . . . h(0) . . . h(nh∆x) . . . 0

0 . . . . . . . . . . . . . . . . . . . . . 0

0 . . . . . . . . . h(−nh∆x) . . . h(0) . . . h(nh∆x)


, (C.12)

where nh is the floor function of σx/∆x.

This finally leads to the observation matrix

H = HcropHPIV = HcropH2DH2CH
x
PIV ⊗Hy

PIV ⊗Hz
PIV. (C.13)

On top of the observation matrix, we need to estimate the matrix LF . To do so, we use the noisy part of the

PIV spectrum (see figure C.10). To simplify we assume that the noise ϵy is white in time and in space. We estimate

the noise variance σ2
ϵ from the PIV spectrum. With the cropping of this PIV image, this leads to:485

LPIV = Hcrop (σϵId) = σϵHcrop. (C.14)

APPENDIX D. LOG-LIKELIHOOD EXPRESSION

The log-likelihood is necessary in order to assimilate the PIV measurements. Since the observation model (C.3) is

linear with an additive Gaussian noise ϵRy = H σ Ḃ +LF Ẇ , the log-likelihood is a quadratic function of the state

b:

p (y(t)|b(t)) ∝ exp
(
− 1

2∥y(t)−H Φ b(t)∥2Σ−1

)
, (D.1)

∝ exp
(
− 1

2

(
yT (t)Σ−1y(t) + yT (t)Bb(t) + bT (t)Ab(t)

))
, (D.2)

with Σ the covariance matrix of the whole additive noise ϵRy = H σ Ḃ +LF Ẇ

Σ =
(
H σ

) (
H σ

)T
+LFL

T
F , (D.3)
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and490

A = − 1
2 (H Φ)

T
B, (D.4)

B = Σ−1 (H Φ) . (D.5)

In practice, σ and σ σT are huge and cannot be even memorize. Depending on the PIV cropping, Σ can be huge

as well which prevents the computation of its inverse. Therefore, for the computation of Σ and its inverse only, we

estimate
(
H σ

) (
H σ

)T
with the following time average:

(
H σ

) (
H σ

)T
= (H[v′]) (H[v′])

T
= Hcrop (HPIV v′) (HPIV v′)

T
HT

crop. (D.6)

Further simplification is achieved through the negations of the spatial correlation inH[v′]. Subsequently,
(
H σ

) (
H σ

)T
and then Σ become quasi-diagonal, which enables the computation of Σ−1.495

Besides, the factor exp
(
− 1

2y(t)
TΣ−1y(t)

)
in equation (D.2) is equivalent for all realizations b(j). So, it will

disappear in the state distribution normalization step and so does not required computation:

p (y(t)|b(t)) ∝ exp
(
yT (t)Bb(t) + bT (t)Ab(t)

)
. (D.7)
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[30] W. Bauer, P. Chandramouli, L. Li, E. Mémin, Stochastic representation of mesoscale eddy effects in coarse-

resolution barotropic models, Ocean Modelling 151 (2020) 101646.570
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[32] V. Resseguier, E. Mémin, D. Heitz, B. Chapron, Stochastic modelling and diffusion modes for proper orthogonal

decomposition models and small-scale flow analysis, Journal of Fluid Mechanics 826 (2017) 888–917.

[33] A. Doucet, A. Johansen, A tutorial on particle filtering and smoothing: Fifteen years later, Handbook of575

Nonlinear Filtering 12 (2009) 656–704.

[34] A. Doucet, N. De Freitas, N. Gordon, Sequential Monte Carlo methods in practice, Springer, 2001.

[35] N. Kantas, A. Beskos, A. Jasra, Sequential monte carlo methods for high-dimensional inverse problems: A case

study for the navier–stokes equations., SIAM/ASA Journal on Uncertainty Quantification 2.1 (2014) 464–489.

[36] P. Rebeschini, R. Van Handel, et al., Can local particle filters beat the curse of dimensionality?, The Annals580

of Applied Probability 25 (5) (2015) 2809–2866.

[37] A. Beskos, D. Crisan, A. Jasra, K. Kamatani, Y. Zhou, A stable particle filter for a class of high-dimensional

state-space models, Advances in Applied Probability 49 (1) (2017) 24–48.

[38] C. Cotter, D. Crisan, D. D. Holm, W. Pan, I. Shevchenko, A particle filter for stochastic advection by lie

transport: A case study for the damped and forced incompressible two-dimensional euler equation, SIAM/ASA585

Journal on Uncertainty Quantification 8 (4) (2020) 1446–1492.

[39] A. Farchi, M. Bocquet, Comparison of local particle filters and new implementations., Nonlinear Processes in

Geophysics 25 (4).

[40] F.-X. Le Dimet, O. Talagrand, Variational algorithms for analysis and assimilation of meteorological observa-

tions: theoretical aspects, Tellus A 38 (2) (1986) 97–110.590

[41] J. S. Liu, Monte Carlo strategies in scientific computing, Springer Science & Business Media, 2008.

34



[42] A. Doucet, X. Wang, Monte carlo methods for signal processing: a review in the statistical signal processing

context, IEEE Signal Processing Magazine 22 (6) (2005) 152–170.

[43] S. Laizet, E. Lamballais, High-order compact schemes for incompressible flows: a simple and efficient method

with the quasi-spectral accuracy, J. Comp. Phys. 228 (15) (2009) 5989–6015.595

[44] J. Berner, S.-Y. Ha, J. Hacker, A. Fournier, C. Snyder, Model uncertainty in a mesoscale ensemble prediction

system: Stochastic versus multiphysics representations, Monthly Weather Review 139 (6) (2011) 1972–1995.

[45] C. Franzke, T. O’Kane, J. Berner, P. Williams, V. Lucarini, Stochastic climate theory and modeling, Wiley

Interdisciplinary Reviews: Climate Change 6 (1) (2015) 63–78.

[46] G. Gottwald, J. Harlim, The role of additive and multiplicative noise in filtering complex dynamical sys-600

tems, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 469 (2155) (2013)

20130096.

[47] L. Mitchell, G. Gottwald, Data assimilation in slow-fast systems using homogenized climate models, Journal

of the atmospheric sciences 69 (4) (2012) 1359–1377.

[48] C. Penland, L. Matrosova, A balance condition for stochastic numerical models with application to the El605

Nino-southern oscillation, Journal of climate 7 (9) (1994) 1352–1372.

[49] C. Penland, P. Sardeshmukh, The optimal growth of tropical sea surface temperature anomalies, Journal of

climate 8 (8) (1995) 1999–2024.

[50] A. Trevisan, F. Uboldi, Assimilation of standard and targeted observations within the unstable subspace of

the observation-analysis-forecast cycle system, Journal of the atmospheric sciences 61 (1) (2004) 103–113.610

[51] G.-H. Ng, D. McLaughlin, D. Entekhabi, A. Ahanin, The role of model dynamics in ensemble Kalman filter

performance for chaotic systems, Tellus A 63 (5) (2011) 958–977.

[52] G. Stabile, S. Hijazi, A. Mola, S. Lorenzi, G. Rozza, POD-Galerkin reduced order methods for CFD using finite

volume discretisation: vortex shedding around a circular cylinder, Communications in Applied and Industrial

Mathematics 8 (1) (2017) 210–236.615

[53] G. Stabile, G. Rozza, Finite volume POD-Galerkin stabilised reduced order methods for the parametrised

incompressible navier–stokes equations, Computers & Fluids 173 (2018) 273–284.

[54] B. Oksendal, Stochastic differential equations, Spinger-Verlag, 1998.

[55] H. Kunita, Stochastic flows and stochastic differential equations, Vol. 24, Cambridge university press, 1997.

35



[56] G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its620

Applications, Cambridge University Press, 1992.
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