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Abstract

To successfully monitor and actively control hydrodynamic and aerodynamic systems (e.g., wind turbine blade, wind

farm, hydrofoil, aircraft wings), it can be critical to estimate and predict the unsteady flow around them in real-time.

We propose to introduce a new algorithm to couple onboard measurements with fluid dynamics simulations and

data in real-time without the need to rely on an extensive computational infrastructure. This coupling is achieved

by combining a Proper Orthogonal Decomposition Galerkin method, a model under location uncertainty stochastic

closure, and a particle filtering scheme. We focus our numerical tests on a two- and a three-dimensional wake flows

at low and moderate Reynolds numbers, respectively. Using a single measurement point, we obtain almost optimal

flow estimations for up to 14 vortex shedding cycles after the learning time window.

Keywords: Fluid dynamics, reduced order model, uncertainty quantification, stochastic closure, particle filtering

1. INTRODUCTION

Accurate aeroelastic and aerodynamic active control can require state observers. It concerns, among others, gust

and load alleviation, wind farm production maximization, active flutter suppression, flight and sail stability aug-

mentation. However, estimating – or even predicting – an unsteady turbulent flow state from sparse measurements

in real-time can be challenging. Through statistical estimation techniques, sensor observations can be assimilated

to flow dynamical models’ predictions, but some difficulties must first be overcome to be a viable strategy.5

Firstly, the simulation must resolve sufficient spatiotemporal scales for the system to be stable, specifically in

real-time. Though tempting, tackling this problem with purely data-driven fluid dynamics models (e.g., through

machine learning techniques) may not be accurate and/or robust enough with turbulent flows, or else it would need a

large amount of data to assimilate. Note that this last statement is also true for time-wise fluid flow estimation that
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does not consider underlying time dynamics, such as supervised linear and non-linear interpolations [e.g. 1]. On the10

other hand, pure physics-based model simulations (e.g., Large Eddy Simulation, Reynolds-averaged Navier–Stokes)

are often too slow for real-time applications. Using coarser meshes to speed up the simulations would most likely

push them to miss critical spatiotemporal scales. Hence, Reduced Order Models (ROM) represent a excellent

compromise (see, e.g., [2] for some aeroelastic applications). In particular, the Proper Orthogonal Decomposition

(POD) -Galerkin method is a model that relies on physical equations while constraining the solution to live inside15

a small subspace learned from data (see, e.g., [3] for turbulent mixing layer dynamics analysis). Nevertheless, the

unsteady CFD ROM state of the art limits itself to deterministic ROMs (often linear and/or with purely data-

driven calibration) with limited prediction capabilities when the ROM dimension is low. It is probably mainly due

to the chaotic and intermittent nature of turbulence and closure problems. Indeed, intermittency – ubiquitous in

turbulence – is related to rare events and long-memory processes. These long-memory processes make learning from20

a finite time window more complicated because turbulence data are hardly exhaustive. Therefore, the learned or

partially-learned turbulent flow ROMs remain inexact and uncontrolled in the long run, owing to their chaotic nature

(intrinsic sensitivity to perturbations [4]) and the growth of accumulated error along time. Outside the learning

time interval, predictions become less and less accurate. Additionally, we believe that ROM deterministic closures

can hardly be accurate in the long run. Indeed, energy fluxes between temporal modes corresponding to orthogonal25

divergence-free spatial modes (e.g., curl of Fourier modes or POD modes) of a real incompressible flow are described

by dyads and triads. They bring energy from one temporal mode toward another temporal mode, possibly thanks

to a third temporal mode [5]. It is still true to treat the mean flow as one of the spatial modes. Unfortunately,

in ROM, the mode truncation breaks many of these triads because the third mode is missing [6, 7]. The missing

negative and positive energy fluxes create unstable modes and over-damped modes, respectively. Consequently, to30

stabilize ROMs, authors commonly introduce an additional deterministic term (typically an eddy viscosity term)

[8, 9, 10] or an additional constraint [4], along with a possible calibration on available data [11, 12, 13]. However, few

authors address the missing positive energy fluxes issue. One reason is that adding relevant terms, which increase

energy, is much more difficult in a deterministic framework. Nevertheless, these positive energy fluxes are essential

to maintain the linearly-stable temporal modes variability and thus to obtain coherent ROM dynamics in long-time35

integrations.

The simulation-measurement coupling, known in the literature as data assimilation, can be in itself a challenging

task too. However, thanks to the weather forecast community, there have been many advances in the field, with

promising research and many operational perspectives thriving lately [14]. Several variational data assimilation

methods have been proposed to jointly learn the ROM (or part of the ROM) and the state in fluid dynamics40

reduced-order context [e.g. 15, 11, 16, 17, 12]. Nevertheless, those approaches generally require a large amount of

dense data to be assimilated – typically two-dimensional flow observables like particle image velocimetry (PIV). In

such a case, fluid flow estimation hardly necessitates ROM procedures since the problem is over-determined. A least-
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square estimation can provide the first velocity modes (a kind of mode-based velocity interpolation). For prediction

of unsteady turbulent flows, the use of ROM is more relevant, but those methods often have bad prediction skills45

(outside the learning interval).

A smaller amount of data to assimilate shall be compensated somehow by a better prior ROM and an adapted

data assimilation algorithm. Algorithms fully addressing non-linearities of fluid mechanics are limited by the

available computational power and the dynamical model’s accuracy quantification. The use of our proposed ROM

can overcome the former. The so-called dynamics under location uncertainty [18, 19] – a random fluid mechanics50

framework explicitly designed for this purpose – can handle the later. Inspired from the theoretical work of [20],

[18] has introduced that stochastic closure and [19] generalized it. It has led to huge improvements in uncertainty

and model error quantification both in high-dimensional CFD [21, 22, 23] and reduced state spaces [24, 25].

This paper will be organized as follows: section 2 will recall the main aspects of POD-Galerkin ROM, section

3 will present our main contribution: a randomized version of POD-Galerkin ROM, section 4 explains the data55

assimilation procedure, and finally, section 6 will showcase its potential through some of our numerical results.

2. POD-ROM

Reduced Order Models (ROM) aims to reduce the computational cost of simulations by drastically constricting the

solution’s degrees of freedom. This gain is typically enabled by a combination of simulation data and modeling

based on physical equations. In CFD, solutions, i.e., the velocity fields, have as many degrees of freedom as grid

points in the spatial domain (typically in the order of 106). Thus, to achieve such a dimensionality reduction using

ROMs, velocity fields are traditionally decomposed as follows:

v(x, t) = w(x, t)︸ ︷︷ ︸
Resolved

by the ROM

+ v′(x)︸ ︷︷ ︸
Unresolved

by the ROM

, (1)

with

w(x, t) = v(x)︸︷︷︸
Time

averaged

+
n∑
i=1

bi(t)φi(x)︸ ︷︷ ︸
Unsteady

component

, (2)

with 1 6 n 6 102. Proper orthogonal decomposition (POD) learns the time-averaged v(x) and the spatial modes

φ(x) through principal component analysis (PCA) applied to a set of high-resolution simulation solutions (learning

set). Then, the physical equations (e.g., Navier-Stokes equations) can be projected onto these spatial modes, thus

providing a system of n coupled ordinary differential equations that describe the evolution of the temporal modes60

bi(t). Through the time integration of this low-dimensional system, and from equation (2), we can predict an a

priori estimation of the velocity field at any given time. Consequently, this ROM construction scheme can be a

midpoint between fully data-driven methods and pure physics-based models. It uses both the available simulation

data and physical modeling to infer reliable predictions more efficiently.
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3. MODEL UNCERTAINTY QUANTIFICATION

Models under location uncertainty (LU) are a type of random CFD model [18, 21, 23] that provides both an65

efficient closure (i.e., an efficient way to model the effect of the neglected dynamics degrees of freedom v′) and a

quantification of the error induced by this closure. Though for it to be tractable, two assumptions must be made:

the time decorrelation of the unresolved velocity component v′ (see eq. (1)) and the stochastic transport – up to

some forces F – of the resolved velocity component w. With Ito stochastic calculus notations (see Appendix A),

this reads:70

Dwk
Dt

= ∂twk +
(
w − 1

2 (∇·a)
T

+ v′
)
· ∇wk − 1

2∇·(a∇wk) = Fk, (3)

with

apq = v′pv
′
q τv′ , (4)

being the unresolved velocity (Eulerian) absolute diffusivity, v′pv
′
q the time average of v′pv

′
q and τv′ the unresolved

velocity correlation time. Compared to classical fluid dynamics conservation equations, models under location

uncertainty involve three new terms: a turbulent diffusion 1
2∇·(a∇wk), a large-scale advecting velocity correction

− 1
2 (∇·a)

T
, and a multiplicative noise v′ · ∇wk. To express the uncertainty induced by the dynamic truncation

(inherent to any closure in CFD), we ran multiple simulations in parallel using the stochastic model to efficiently75

realize the most probable future states of the fluid system. Since that stochastic closure is based on physics, its

robustness is proved, and calibrations can be performed from available physical quantities. Almost no tuning nor

fitting is hence required.

[26] makes use of this formalism in a POD-Galerkin context for data analysis, but without considering the noise

term v′ · ∇wk. Here, we do consider this noise term. As in [25], we have implemented the POD-Galerkin of the80

Navier-Stokes model under location uncertainty (3). We obtain the following ROM:

dbi(t)

dt
=Mi

(
b(t), β̇(t)

)
4
=

n∑
p=0

lpi bp(t) +

n∑
p=0

n∑
q=0

cpqi bp(t)bq(t)︸ ︷︷ ︸
Usual POD-Galerkin terms

+

n∑
p=0

fpi bp(t) +

n∑
p=0

n∑
k=1

α̃Rpik bp(t)β̇k(t)︸ ︷︷ ︸
New POD-LU-Galerkin terms

, (5)

where (β̇k)k are n independent one-dimensional white noises and by convention b0 = 1,M0 = 0 and φ0 = v. Using

the physical equations (3) and (4) and corresponding technical statistical estimators based on stochastic calculus, we

computed the ROM coefficients l, f , c, and α̃R from the resolved spatial modes φi, the resolved temporal modes bi,

and the POD residual velocity v′. Interested readers can refer to Appendix B or to [25] for more details. The low-85

dimensional system (5) incorporates noise terms, thus enabling model uncertainty quantification and strengthening

its forecasting capabilities to allow for more reliable forecasts beyond the learning period.
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4. PARTICLE FILTERING

The final block in our stochastic POD-ROM model’s pipeline is a particle filter [27] in order to integrate the real-

time measurements from all the different sensors. We first explain why we choose particle filtering rather than more

usual methods like Ensemble Kalman Filter (EnKF). We then point out again the principle of this data assimilation90

algorithm.

In fluid mechanics, the equations describing the system behavior are non-linear, non-Gaussian, and high-

dimensional. Therefore, the Kalman filter, the well-known Gaussian data assimilation technique, does not have

good performance. Moreover, the curse of dimensionality prevents the construction of the huge state covariance

matrix. Theoretically, the proper method to approach such non-linear and non-Gaussian dynamics is particle filter-95

ing [28]. However, this method often requires a vast ensemble of realizations. When the state dimension increases,

the problem quickly becomes intractable as even more realizations are needed , and each new realization comes with

a severe additional computational cost. That is why most fluid dynamics practitioners prefer the EnKF or varia-

tional data assimilation approaches, especially in weather forecasts Note that there are some exceptions and variants

of particle filtering to address higher and higher dimensions [29, 30, 31, 32, 33]. Variational methods are indeed100

competitive, especially the widely-used 4D-Var algorithm [34] and its variants. Nevertheless, the 4D-Var algorithm

necessitates adjoint codes and neglects the statistical non-stationarity and the non-Gaussianity of models’ errors.

Moreover, ensemble-based data assimilation methods are easier to parallelize because one can generally forecast

each realization independently between two assimilation steps. The EnKF and its variants (e.g., square-root EnKF

with localized and inflated covariance) are less sensitive to the curse of dimensionality than particle filters, but the105

state correction is linear, which can lead to non-physical solutions [e.g. 23]. Here, we can use a fully-nonlinear filter

– the particle filter – for two reasons. Firstly, the POD-ROM makes the state dimension small enough. Secondly,

models under location uncertainty efficiently spread small ensembles over the state space without introducing new

errors [24, 23, 25]. Therefore, particle filtering accommodates a small ensemble in this context, which strongly

reduces its computational cost.110

Algorithm 1 points out again the skeleton of the most known particle filter, known as sequential importance

resampling (SIR) [35, 36]. We used this algorithm in this paper. The first step initializes an ensemble of Np

independent states and associates an equal weight to each state. The independent states are called particles or

realizations . They are forecast in time with the evolution model (5). Each time a new measurement is assimilated,

weights are updated based on their respective likelihoods. An additional step called re-sampling prevents the115

weights variances from increasing with time. Such a problem is known as degeneracy and would result in poor state

estimations. Eventually, the ensemble forms the shape of the posterior distribution and gives the state estimation.
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Algorithm 1 Particle Filter SIR with ROM under location uncertainty

Initialization

• Compute the ROM coefficients l, f , c, and α̃R from a simulation output dataset . POD-Galerkin

(see Appendix B for definitions).

• Compute matrices A and B (see Appendix D for definitions). . Log-likelihood matrices

• Sample


b
(j)
1 (0)

...

b
(j)
n (0)

 iid∼ N

0,


λ1 · · · 0
...

. . .
...

0 · · · λn


 where λi = b2i . . Initializing the first state

Loop over time t

Importance sampling

• b(j)(t) = b(j)(t− dt) +M
(
b(j)(t− dt), β̇

(j)
(t− dt)

)
dt. . State transition

• If an observation y(t) is available at the current time t:

– lj(t) = l
(
y(t)|b(j)(t)

)
= (b(j)(t))TA b(j)(t) + y(t)TB b(j)(t)); . Log-likelihood up to a constant

(see Appendix D for the proof of this formula)

– lj(t) = lj(t)−maxj lj(t) + 90; . Add a constant to prevent numerical errors when applying exp

– Wj(t) = exp (lj(t)); . Computing weights

– Wj(t) =
Wj(t)∑Np

m=1Wm(t)
; . Normalization

Re-sampling

– Each new temporal mode b(j)(t) is replaced by one of the old temporal modes . Resampling

b(1)(t), ..., b(Np)(t) with probability W1(t), ..., WNp(t), respectively.

Final posterior distribution at a time t larger than measurement times t1, . . . , tK

p (b(t)|y(t1), . . . ,y(tK)) ≈
∑Np

j=1
1
Np

δ
(
b(t)− b(j)(t)

)
. . Posterior Distribution
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5. MEASUREMENTS TO ASSIMILATE

Theoretically, our method can assimilate any measurements. Here, we choose a widely-used fluid flow velocimetry

technique: particle image velocimetry (PIV). The method principle uses solid particles submerged in a fluid com-

bined with a high-power light emission source. A camera with a high frame rate takes photos of the fluid flow with120

the submerged particles. Image processing and optical flow algorithms are then applied to the image sequence to

estimate the fluid flow velocity.

Specifically, our algorithm was tested with a cropped two-dimensional, two-component PIV (2D2C PIV) exper-

imental arrangement with a linear observation model as in (7).

y = H[v] + εy, (6)

=

n∑
i=0

H[φi] bi + (H[v′] + εy) , (7)

where y is the measured signal, εy represents the PIV measurement error. The linear operator H incorporates a125

3-dimensional spatial smoothing operation, the occlusion of the horizontal plane, and its corresponding component

in the velocity field to mimic the PIV measurement process. The parameters inside H and εy are estimated

using experimental data, comparing the hot-wire and PIV measurements’ spectrum (using a Taylor assumption).

Appendix C details the definition of H and the measurement noise covariance. Additionally, to make the data

assimilation task more challenging, the information relating to a subset of points in the grid was obscured through130

the operator H. Indeed, estimating a vector b of n ∼ 10 components from a noisy linearly-dependent observation

vector y of MPIV ∼ 104(� n) components is often an over-determined problem and could otherwise be solved

using a straightforward least-squares procedure. Note that the strong influence of the unresolved velocity v′ on the

final observation model’s uncertainty is taken into account through a noise term in (7).

For the first tests presented here, we only consider synthetically generated measurements that were produced135

using the aforementioned observation model (6). It allows us to know the exact values of the velocity field everywhere

on the 3-dimensional space to perform the algorithm validation.

6. NUMERICAL RESULTS

We have performed numerical experiments with two test flows in order to evaluate the prediction skills of the

proposed data assimilation method. For comparison, we have pursued the same numerical evaluations with two

state-of-the-art POD-ROMs, presented below in this section. We first evaluate the prediction skills visually from the140

vorticity and the Q-criterion of the reconstructed velocity fields. Then, we quantitatively compare the reconstructed

velocity errors of each method. After this, we numerically investigate the influence of the number and positions of

measurements and the ensemble size. Finally, we provide some insights into our algorithm complexity.

Our data assimilation procedure has been applied to two different cylinder wake flows, two- and three-dimensional
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at Reynolds numbers 100 and 300, respectively. In wake flows, vortices are shed from the cylinder in a pseudo-145

periodic way. Before our data assimilation tests, we performed direct numerical simulations (DNS) using Incom-

pact3d, a high-order flow solver based on the discretization of the incompressible Navier-Stokes equations [37].

These fully-resolved simulations are illustrated in top of figure 1 and top right of figure 3. A big difference in terms

of degrees of freedom exists between these two flows. At Reynolds number 100, the flow remains laminar, whereas,

at Reynolds number 300, the flow is already three-dimensional and very complex. The simulation’s spatial grids150

correspond to state-space dimensions of about 104 and 107, respectively. During the learning period, 140 and 80

vortex shedding cycles are used to construct the ROM. The remaining vortex shedding cycles are used to build

synthetic measurements and to test the method. For both flows, a single spatial resolution point of the synthetic

PIV data is assimilated ten times for each vortex shedding cycle. The observation point – visible in figure 1 – is

outside but close to the recirculation zone. Specifically, its coordinates are x = 1.31D (streamwise direction), z = 0155

(spanwise direction), and y = 1.27D (orthogonal direction), where the cylinder is centered on (0, 0,−) and has a

diameter D. We refer to this setting as observation case 1. Other observation cases will be considered at the end

of this section.

6.1 State-of-the-art ROMs

To better appreciate the prediction skills of our methodology, we will compare it to state-of-the-art algorithms.160

As a baseline, we will consider two state-of-the-art POD-ROMs. To facilitate the comparison, we use the same

observation model (7), assimilation method (particle filter SIR), and ensemble size (100 particles).

6.1.1 Deterministic state-of-the-art ROM

The first state-of-the-art ROM considered is a usual deterministic POD-Galerkin with optimally fitted eddy (via

least square):165

dbi(t)

dt
=

n∑
p=0

lpi bp(t) +

n∑
p=0

n∑
q=0

cpqi bp(t)bq(t)︸ ︷︷ ︸
Usual POD-Galerkin terms

+

(
νev

ν
− 1

) n∑
p=0

lpi bp(t)︸ ︷︷ ︸
Fitted on the resolved temporal modes dynamics

, (8)

where νev is the fitted eddy viscosity, and ν is the molecular viscosity. This POD-ROM is deterministic but

ensemble-based data assimilation can still be used by randomizing initial conditions.

6.1.2 Stochastic state-of-the-art ROM

Unfortunately, simple randomization of the initial conditions is known to lead to error underestimation in fluids

dynamics usually [38, 39, 40, 41]. So, to keep things simple, we define a second baseline POD-ROM by adding170

a white noise term to the first baseline ROM. It constitutes a simple adhoc randomization technique for a given
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dynamical system through a Gaussian additive forcing. Despite its potential lack of physical relevance, such a

strategy is very often adopted in data-assimilation applications [24].

dbi(t)

dt
=

n∑
p=0

lpi bp(t) +

n∑
p=0

n∑
q=0

cpqi bp(t)bq(t)︸ ︷︷ ︸
Usual POD-Galerkin terms

+

(
νev

ν
− 1

) n∑
p=0

lpi bp(t) +

n∑
k=1

σev
ik β̇k(t)︸ ︷︷ ︸

Fitted on the resolved temporal modes dynamics

, (9)

where νev is the fitted eddy viscosity, ν is the molecular viscosity, and (σev)(σev)T is the fitted additive noise

covariance matrix. For more details about this state-of-the-art stochastic ROM, one can refer to [25] for example.175

[42] also propose a similar POD-ROM to be used with a particle filter. The authors estimate a whole additional

linear term and not just an eddy viscosity coefficient. Their noise term forces the POD-ROM at each assimilation

step only (not at every time step) and has a tuned variance. Their observation model is somehow simpler as their

observation noise has a tuned spatially-uniform variance.

6.2 Qualitative analysis of the prediction skills180

To appreciate the skills of each method, we will compare the predicted velocity fields of the different methods to

a reference velocity field. A natural reference field is the DNS field, which will be denoted vdns. Nevertheless, the

solution of any POD-ROM is confined to the affine space spanned by the POD modes (the set of fields which write

as (2)). Therefore, the best1 field reachable by a POD-ROM-based method is the orthogonal projection of the

DNS field onto this reduced affine space, i.e., the projection onto the POD basis. Let us denote Π̃φ[vdns] this new185

reference field. It reads:

Π̃φ[vdns]
4
= v +

n∑
i=1

bref
i φi with bref

i
4
=
(
φp,vdns − v

)
. (10)

This projected field is the theoretical performance limit: it corresponds to the case of exactly known temporal

modes bi(t) = bref
i (t) (i 6 n) in the equation (2). We have represented these projected fields in the second panel

of figures 1 and 2 for the Reynolds number 100 and at the top left of figures 3 and 4 for the Reynolds number

300 respectively. Note that when the Reynolds number increases, even though the projected velocity field is still190

meaningful, it can be relatively far from the DNS field.

6.2.1 Reynolds number 100

Figures 1 and 2 show the vorticity field2 of the data assimilation results at Reynolds number 100, with n = 2

and 8 modes, respectively. Despite the small amount of information in the measurements, our ROM shows a

1Best in terms of L2 norm. Note that by definition, the POD is also the best modal decomposition in terms of L2 norm for a given

degree of freedom n.
2The vorticity field is the curl of the velocity field and is a classical visual tool of CFD to visualize 2D vortices.
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excellent predictive power even outside the learning period. The proposed observers are very close to the projected195

references, positively demonstrating the vast potential of our approach. For n = 8, the projected reference is also

very close to the DNS field. In order to better appreciate the potential of our method, figures 1 and 2 also display

the predictions from the stochastic state-of-the-art POD-ROM (9) (the POD-Galerkin with optimally fitted eddy

viscosity and additive noise). The fitted additive noise variance of this POD-ROM is huge in order to encompass

the significant ROM error. Therefore, the prior probability distribution generated by the state-of-the-art ROM is200

hardly informative, while the single measurement gives little additional information. That is why this state-of-the-

art method fails to estimate the proper flow. This behavior worsens when the ROM order n increases since the

dynamics become more complicated, the is more erroneous, and the fitted additive noise variance is more prominent.

The results of the deterministic POD-ROM method (8) are even worse and are hence not discussed here. The skills

of this model will be presented later in section 6.3. In contrast, the physical structure of our POD-ROM – and in205

particular of its skew-symmetric multiplicative noise – guarantees an efficient prior probability distribution [25] and

then an accurate data assimilation.

6.2.2 Reynolds number 300

Figures 3 and 4 show the Q-criterion3 isosurfaces of the data assimilation results at Reynolds number 300, with

n = 2 and 8 modes, respectively. Again, the proposed observers are almost identical to the projected references. We210

point out again that these references (top left plots in figures 3 and 4) are the theoretical performance limits: they

correspond to the case of exactly known temporal modes bi(t) (i 6 n) in the equation (2). The differences between

these theoretical optimums and the DNS reference correspond to the unresolved velocity v′, mainly restricted to

small-scales 3-dimensional effects at Reynolds number 300. In contrast, the stochastic state-of-the-art POD-ROM

method strongly differs from the reference. The reasons are the same that for Reynolds number 100, i.e. the noise215

structure of the state-of-the-art POD-ROM is not adapted.

6.3 Quantitative analysis of the prediction skills

Vorticity fields and Q-criterion isosurfaces provide good qualitative analyses. For a quantitative one, figure 5 plots

the global velocity prediction normalized error for Reynolds numbers 100 and 300, from the end of the learning

period until 20 and 14 vortex shedding cycles later, respectively. Let us specify how we define and compute this220

prediction error. If we denote west =
∑n
i=0 b

est
i φi the estimated velocity field, the expression of the Mean Square

Error (MSE) simplifies due the orthogonality properties of the orthogonal projection Π̃φ[vref] and of the POD modes

3Q-criterion is a classical visual tool of CFD to visualize vortices.
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Reference simulation vdns

(2D DNS at Reynolds 100:

state space dimension

of about 104)

Projection of the DNS

onto the POD basis Π̃φ[vdns]

(State space

of dimension 2)

Our reduced data assimilation prediction

(ROM state space

of dimension 2)

State-of-the-art method prediction

(ROM state space

of dimension 2)

Figure 1: Vorticity field – of (from top to bottom) the 2D DNS at Reynolds number 100, the reference 2-dimensional representation

(projection of the DNS onto the POD modes), our POD-ROM approach, and the state-of-the-art stochastic POD-ROM method.The

red signs indicate the measurement locations for the different observation cases considered: case 1 (star symbol) (considered in sections

6.2 and 6.3 and figures 1-5 and 8), case 2 (circle symbols), case 3 (cross symbol close to the cylinder) (both considered in section 6.4.1

and figure 6), case 4 (triangle symbol), and case 5 (downstream cross symbol) (both considered in section 6.4.1 and figure 7).
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Reference simulation vdns

(2D DNS at Reynolds 100:

state space dimension

of about 104)

Projection of the DNS

onto the POD basis Π̃φ[vdns]

(State space

of dimension 8)

Our reduced data assimilation prediction

(ROM state space

of dimension 8)

State-of-the-art method prediction

(ROM state space

of dimension 8)

Figure 2: Vorticity field – 13 vortex shedding cycles after the learning period – of (from top to bottom) the 2D DNS at Reynolds

number 100, the reference 8-dimensional representation (projection of the DNS onto the POD modes), our POD-ROM approach, and

the state-of-the-art stochastic POD-ROM method.The red signs indicate the measurement locations for the different observation cases

considered: case 1 (star symbol) (considered in sections 6.2 and 6.3 and figures 1-5 and 8), case 2 (circle symbols), case 3 (cross symbol

close to the cylinder) (both considered in section 6.4.1 and figure 6), case 4 (triangle symbol), and case 5 (downstream cross symbol)

(both considered in section 6.4.1 and figure 7).
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Projection
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Π̃φ[vdns]

Reference

simulation

(DNS)

Our reduced

data

assimilation

prediction

State-of-the-

art method

prediction

Figure 3: Q-criterion – 13 vortex shedding cycles after the learning period – from the reference 2-dimensional representation (projection

of the 3D DNS at Reynolds 300 onto the POD modes) (top left), the DNS (top right), our POD-ROM approach (bottom left), and the

state-of-the-art stochastic POD-ROM method (bottom right).

Projection

onto the

POD basis

Π̃φ[vdns]

Reference

simulation

(DNS)

Our reduced

data

assimilation

prediction

State-of-the-

art method

prediction

Figure 4: Q-criterion – 13 vortex shedding cycles after the learning period – from the reference 8-dimensional representation (projection

of the 3D DNS at Reynolds 300 onto the POD modes) (top left), the DNS (top right), our POD-ROM approach (bottom left), and the

state-of-the-art stochastic POD-ROM method (bottom right).
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φi:

MSE
4
=

∫
Ω

∥∥west − vdns

∥∥2
, (11)

=

∫
Ω

∥∥west − Π̃φ[vdns]︸ ︷︷ ︸
=
∑n

i=1(bi−brefi )φi

∥∥2
+

∫
Ω

∥∥vdns − Π̃φ[vdns]︸ ︷︷ ︸
=v′

∥∥2
, (12)

=

n∑
i=1

(
bi − bref

i

)2
︸ ︷︷ ︸
ROM-dependent

+

∫
Ω

∥∥vdns − Π̃φ[vdns]
∥∥2

︸ ︷︷ ︸
ROM-independent

, (13)

where the integrations are performed over the spatial space denoted Ω and ‖ • ‖ is the usual Euclidean norm of R2

or R3. The first error term depends on which ROM and data assimilation we choose, whereas the second depends225

solely on the POD modes φi. Therefore, the last term is the same for the proposed method and the state-of-the-

art POD-ROMs. Note that this term is time-dependent in general. In figure 5, we normalize the MSE by the

mean kinetic energy (MKE) in the fluid moving frame (averaged over the training set), MKE =
∫
Ω
‖v − v∞‖2,

with v∞ = (1, 0, 0)T the velocity far from the cylinder. Then, we take the square root of the normalized MSE.

Subtracting the far fluid frame velocity, v∞, makes the MKE independent of the spatial domain choice Ω for a230

spatial domain large enough. It makes our normalized RMSE also independent of the spatial domain choice (for

a spatial domain large enough) and hence more objective. Note that even divided by the volume (or surface) of

Ω,
∫
Ω
‖v‖2 still depends on the spatial domain choice because the velocity variability (the wake) is localized in a

region of the spatial domain.

In the plots, we readily see that our method outperforms the stochastic state-of-the-art POD-ROMs. Note that235

when the light blue line goes above the solid black line, it means that taking all temporal modes equal to zero is more

accurate than using the stochastic state-of-the-art POD-ROM. The performances of this state-of-the-art POD-ROM

are also getting worse for larger n, unlike our method performances. In figure 5, we also superimpose the results

of the deterministic POD-ROM. As expected, the variance of the corresponding ensemble quickly decreases, which

leads to variance underestimation, and thus filter degeneracy, wrong estimation, and – at Reynolds number 300 –240

divergence in time of the POD-ROM estimation. This variance decay is an illustration of the classical alignment

of ensembles along with unstable directions [43, 44], which is due to the over-damping of stable temporal modes

[6, 7]. This over-damping and, more generally, the variance decay is induced by the missing positive energy fluxes

toward each temporal mode (the mode truncation removes many triad-based fluxes) and the stabilizing corrective

terms (here the eddy viscosity term).245

6.4 Influence of the available resources

In practice, the result of our algorithm can be influenced by several factors, such as the amount and the quality of

the available measurement or the available computational power.
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Figure 5: Global velocity prediction normalized error (after the learning period) for the wake flow at Reynolds 100 (left) and 300

(right) in the observation case 1 with, from top to bottom n = 2, 4 and 8 modes for our POD-ROM method (orange), the stochastic

state-of-the-art POD-ROM method (light blue), and the deterministic state-of-the-art POD-ROM method (dark blue). The shaded

colors (light orange, light blue, and grey) correspond to the respective estimated a posteriori standard deviations. The dashed black

line at the bottom is the POD truncation error. The solid black line at the top is the error obtained by setting all temporal modes bi

to 0, i.e. keeping only the time averaged velocity v.
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Case name Description x/D y/D z/D Symbol on

figures 1 and 2

Case 1 1 observation point 1.31 1.27 0 ∗

near the recirculation zone

Case 2 3× 3 observation points 1.31 1.27 0 ◦

2.73 1.27 0

4.15 1.27 0

1.31 −0.15 0

2.73 −0.15 0

4.15 −0.15 0

1.31 −1.57 0

2.73 −1.57 0

4.15 −1.57 0

Case 3 1 observation point 1.31 −0.15 0 +

inside the recirculation zone

Case 4 1 point outside the wake 0.84 1.74 0
`

Case 5 1 observation point far downstream 10.31 1.27 0 ×

Table 1: Description of the considered observation cases.

6.4.1 Influence of the available measurements

We have simulated different observation cases of the wake flow at Reynolds number 300, summarized in table 1. We250

now focus on this Reynolds number because the estimation problem is more difficult at Reynolds number 300 than

at Reynolds number 100. Figures 6 and 7 plot the corresponding estimation errors for the stochastic POD-ROM

approach and for the method we propose.

As expected, all methods improve when more measurements are available (observation case 2, left panel of figure

6). The stochastic state-of-the-art ROM remains less efficient than our method. However, the two methods tend to255

become similar for a larger number of observation points – typically for a number of observations My superior to the

dimension n of the reduced space. It is coherent with the good prediction results obtained by [42] with a particle

filter and a POD-ROM similar to the stochastic state-of-the-art POD-ROM (9), with typically 9 observations

points. Note however that, for many observation points, the observation model alone is often an over-determined

least-square problem (number of equations superior to the number of unknown variables), and that a dynamic260

ROM is hardly needed for flow estimation. Note also that when the number of observation points increases too

much, the likelihood becomes very peaky, and the particle filtering algorithm needs to be improved to prevent filter

degeneracy. For our wake flow example, tempering and non-Gaussian jittering [29, 32] have been found to be an

efficient solution even for about My ∼ 104 observations points (not shown). Considering a single observation point

may be considered as an over-complicated estimation problem compared to practical applications. Nevertheless,265
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industrial applications often rely on cheap sensors which provide very little information on the flow. Additionally,

many parameters (e.g., boundary conditions, Reynolds number) are unknown or poorly known in more realistic

situations and should be estimated on top of the state variables. Thus, more information is needed to constraint

the estimation problem, and this information may not be available in the few available measurements. We believe

that ROM relying more on physical a priori can bring that missing information, as our proposed POD-ROM does270

here by performing data assimilation from a single measurement.

We also challenge the data assimilation algorithms with a single observation point at different locations. For

an observation point inside the recirculation zone (observation case 3, right panel of figure 6), the state-of-the-art

ROM slightly improves but its RMSE remains close or above the zero solution RMSE, i.e. the error obtained by

setting all temporal modes bi to 0. The Red LUM method prediction skills are equivalent to observation case 1.275

For an observation point outside the wake (observation case 4, left panel of figure 7), all method skills strongly

deteriorate, as expected. For an observation point far downstream (observation case 5, right panel of figure 7), the

state-of-the-art method keeps similar results. The skills of our method slightly deteriorate but remain much better

than the state of the art. To conclude, the results depend on this location, but remain satisfactory as long as the

observation point is in contact with the wake. Results seem more accurate for observations close to the recirculation280

zone.

We have also performed tests with observation data available less often, precisely one assimilation per vortex

shedding cycle. As expected, fewer observations (in time or space) always seem to deteriorate the results. For

our POD-ROM method, assimilating 3 × 3 observations points one time per vortex shedding cycle is more or less

equivalent to assimilating a single observation point (observation case 1) five times per vortex shedding cycle (not285

shown).

6.4.2 Influence of the number of realizations

Figure 8 shows how RMSE varies with the ensemble size Np for our approach and for the stochastic state-of-the-

art POD-ROM method. When the ROM dimension n increases, a larger ensemble size seems to be needed. Our

approach converges faster with the ensemble size than the state-of-the-art one. Only 100 realizations are needed290

with our method. It is also due to the specific structure of the noise. It is well adapted to represent the potential

ROM errors, and thus few samples are sufficient to cover the likely system evolutions. Note that a smaller ensemble

size means a smaller CPU cost and is of great advantage for real-time applications with embedding systems.

6.5 Complexity

Several hours of runs on a supercomputer are necessary to generate the simulation dataset with the off-line high-295

resolution highly-optimized CFD code.

In contrast, the off-line ROM construction takes a few hours on a laptop with our original non-parallelized
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Figure 6: Global velocity prediction normalized error (after the learning period) for the wake flow at Reynolds number 300 in the

observation cases 2 (9 observation points, left) and 3 (1 observation point inside the recirculation zone, right) with, from top to bottom

n = 2, 4 and 8 modes for our POD-ROM method (orange) and the stochastic state-of-the-art POD-ROM method (light blue). The

shaded colors (light orange and light blue) correspond to the respective estimated a posteriori standard deviations. The dashed black

line at the bottom is the POD truncation error. The solid black line at the top is the error obtained by setting all temporal modes bi

to 0, i.e. keeping only the time averaged velocity v.
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Figure 7: Global velocity prediction normalized error (after the learning period) for the wake flow at Reynolds 300 in the observation

cases 4 (1 point outside the wake, left) and 5 (1 observation point far downstream, right) with, from top to bottom n = 2, 4 and 8

modes for our POD-ROM method (orange) and the stochastic state-of-the-art POD-ROM method (light blue). The shaded colors (light

orange and light blue) correspond to the respective estimated a posteriori standard deviations. The dashed black line at the bottom is

the POD truncation error. The solid black line at the top is the error obtained by setting all temporal modes bi to 0, i.e. keeping only

the time averaged velocity v.
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Figure 8: Loglog plots of the global velocity prediction normalized error (averaged on a time window of about 10 vortex shedding cycles,

beginning about 2 vortex shedding cycles after the learning period) as a function of the ensemble size Np for the wake flow at Reynolds

300 with, from left to right and from top to bottom n = 2, 4 and 8 modes for our POD-ROM method (orange) and the stochastic

state-of-the-art POD-ROM method (light blue). The dashed black line at the bottom is the POD truncation error. The solid black line

at the top is the error obtained by setting all temporal modes bi to 0, i.e. keeping only the time averaged velocity v.
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MATLAB code used for this study. We have now implemented the POD-ROM building algorithm in C++ using

the OpenFOAM-based library ITHACA-FV [45]. Our C++ code is not parallelized yet. However, a run now takes

minutes only on a laptop, except for the POD decomposition – the velocity temporal covariance computation in300

particular. This step can be very long for a large dataset (here, about 104 velocity snapshots of large dimensions).

The on-line data assimilation algorithm runs in a few minutes (about real-time) on a laptop computer, with a

non-parallelized Python implementation. The time between two assimilation steps (0.5 s) is much larger than the

time step used for the ROM time integration. Therefore, most of the CPU cost is from the ROM time integration.

Between two assimilation steps, each realization is simulated independently. So, the CPU cost varies approximately305

linearly with the ensemble size, and future code parallelization could be done easily. The CPU cost also scales

with the number of coefficients of our ROM, says O(n3). In practice, to choose the value of the ROM dimension

n, we can target a specific solution accuracy. The eigenvalues of the POD decomposition express the amount of

solution energy that can be encompassed for a specific value of n. A considerable speed-up should be expected when

converting the online data assimilation code to C++, parallelizing the code, and using a better time integration310

scheme (adapted to stochastic differential equations). At term, the online algorithm should allow for measurements

to be assimilated on the fly.

7. CONCLUSION

In this paper, we have presented a novel, accurate yet efficient method to estimate and predict a flow velocity

field in the entire space from sparse measurements. Our algorithm is based on a stochastic, low-dimensional

system built using physics equations and simulated DNS data, enabling the coupling with real-time measurements.315

Comparisons with state-of-the-art approaches have shown a remarkable improvement. A single measurement point

was enough to accurately predict the unsteady velocity field in the whole 3-dimensional space with our method. The

particle filtering with models under location uncertainty has shown an excellent performance in treating particle

impoverishment. We believe that the data assimilation strategy used in this work can be extended to other fluid

models and real-time fluid data assimilation.320

Naturally, as a continuation of this work, we will perform some tests with actual particle velocimetry (PIV)

measurements. Some enhancements to address more turbulent flows are also underway using the OpenFOAM-based

Ithaca-FV library [45, 46]. Finally, we envisage the introduction of parametric ROMs and ROM construction from

noisy and/or incomplete data.

APPENDIX A. STOCHASTIC CALCULUS

Stochastic calculus is a field of Mathematics devoted to differential equations involving noises. Numerous tools325

exist in this framework, e.g., theoretical moments computation, statistical estimations, or simulation of both finite-
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dimensional differential equations [47] and partial differential equations [48, 49, 50, 51]. Several notations co-exist

in this field, in particular Stratonovich or Itō conventions. Here, we will mention the Ito notation – used in this

paper – and some of its advantages. The discussion about relying whether on one notation or the other is recurrent

in physics, but it is beyond the scope of this paper. For a more complete discussion on this subject, the reader can330

refer to sections 1.6 (pages 10-12) and 10.1 (pages 189-190) of [52]. For this short note, we highlight an important

point: under appropriate assumptions, it is easy to switch from one notation to the other [47]. As a consequence,

the most convenient form can be used to tackle a given issue.

In the Ito convention, time derivatives correspond to first-order forward-in-time differentiations. In particular,

∂twk in equation (3) and dbi(t)
dt in equation (5) stand for wk(x,t+dt)−wk(x,t)

dt and bi(t+dt)−bi(t)
dt respectively, both335

with an infinitesimal time step dt. A main advantage of this formalism is the straightforward simulation method

associated to this forward-in-time differentiation. Other stochastic calculus conventions need much more complicate

integration schemes. Moreover, the Itō notation more explicitly identifies and separates the zero-mean noise terms

– v′ · ∇wk in equation (3) and α̃Rpik bp(t)β̇k(t) in equation (5) – from the other effects induced by randomization

of equations (e.g., diffusion, noise-induced drift). A consequence is a much easier derivation of the evolution law of340

moments.

APPENDIX B. ESTIMATIONS OF THE REDUCED LOCATION UNCERTAINTY

MODEL’S COEFFICIENTS

We here specify the definition of each term of the reduced location uncertainty model (5), initially proposed by [25].

In this appendix, (ζ, ξ)
4
=
∫
Ω
ζ · ξ denotes the scalar product of the vectorial functions ζ and ξ. P denotes the

non-local Leray operator P = Id −∇∇T ∆−1. This projection, which requires the resolution of a Poisson equation

is used to simplify the fluid mechanics equations by removing the pressure term.345

Appendix B.1 Time down-sampling rate

Under the LU Navier-Stokes model hypothesis, the unresolved term of the velocity field v′ corresponds to a noise

uncorrelated in time. This assumption is consistent with the fact that the higher-order coefficients of the reduced-

order solution often tend to have a shorter correlation time in fluid dynamics systems. However, in practice, this

assumption is not found to be precisely accurate, and it is a recurrent issue for the data-driven modeling of systems350

combining fast and slowly evolving components [53, 54, 55, 56]. Consequently, a time down-sampling scheme is

used to force the noise terms to be as uncorrelated as possible.

Assuming that the spatially averaged covariance function has a Gaussian form with a standard deviation equal to

the correlation time τ , a simple expression allows us to compute this correlation time. For a given velocity correlation

matrix Cvij = (vobs(•, ti),vobs(•, tj)) (evaluated during the POD decomposition), the following unresolved velocity355
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Physical meaning Full-order term ROM term

Molecular viscous L = 1
Re∆ lpi =

(
φi,L(φp)

)
dissipation

Usual C(w, •) = − (w · ∇) cpqi =
(
φi,PC(φp,φq)

)
advection

Turbulent diffusion Fdif =∇ ·
(

1
2a∇•

)
+ 1

2 (∇ · a)∇ fpi =
(
φi,PF (φp)

)
+ Advecting velocity

correction

Absolute a(x) = ∆t v′obs (v′obs)
T
(x)

diffusivity v′obs = vobs − Π̃φ[vobs]

Table B.2: Deterministic terms and noise-indueced terms of the reduced location uncertainty model.

correlation matrix can be computed:

Cv
′

ij = (v′obs(•, ti),v′obs(•, tj)) = Cvij −
n∑
k=1

bobs
k (ti)b

obs
k (tj), 0 6 i, j 6 N − 1, (B.1)

and its associated stationary covariance function

Covs(tp) = 1
N−p

N−1−p∑
q=0

Cv
′

q,q+p, 0 6 p 6 N − 1. (B.2)

We then estimate the correlation time as follow:

τ̂ =

√√√√2
Cov2

s(
∆Covs

∆t

)2 , (B.3)

using a forward Euler temporal discretization of the stationary covariance:

∆Covs
∆t

(tp)
4
=

Covs(tp + ∆t)− Covs(tp)
∆t

, 0 6 p 6 N − 1. (B.4)

Before computing the estimations presented in the following of this appendix, we use this estimated correlation360

time τ̂ to down-sample both the entire DNS velocity dataset and the observed coefficients of the reduced order

solution, leaving us with a time step ∆t ≈ τ̂ .

Appendix B.2 Deterministic terms and noise-induced terms

The deterministic coefficients of the proposed POD-ROM are summarized in table B.2.
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Appendix B.3 Noise correlations estimation365

Let us now focus on noise statistics estimation.

For any function ξ, we introduce the linear functional:

Kjq[ξ]
4
=

(
φj ,−P

[
(ξ · ∇)φq

]
+ δq0 ν∆ξ

)
, 1 6 j 6 n, 0 6 q 6 n. (B.5)

Using this notation, the noise’s covariance can be estimated as follows:

Σ̂αpi,qj = ∆t
λobs
p

Kjq

[
bobs
p

(
∆bobsi

∆t

)′′
v′obs

]
, 1 6 i, j 6 n, 0 6 p, q 6 n, (B.6)

where bobs
0 = λobs

0 = 1 and for 1 6 i 6 n,

bobs
i = (φi,vobs) , (B.7)

λobs
i = (bobs

i )2, (B.8)(
∆bobs

i

∆t

)′′
=

(
∆bobs

i

∆t

)′
−
(

∆bobsi

∆t

)′
, (B.9)(

∆bobs
i

∆t

)′
=

(
∆bobsi

∆t

)
−
((
bobs

)T

(l+ f)•i +
(
bobs

)T

c••i b
obs
)
, (B.10)(

∆bobs
i

∆t

)
(tk) =

bobs
i (tk + ∆t)− bobs

i (tk)

∆t
, 0 6 k 6 N − 1. (B.11)

To ensure the noise’s covariance matrix to have the desired symmetric non-negative structure, we only keep the370

symmetric part of the estimated tensor (B.6) and set its possible negative eigenvalues to zero. [25] prove the

consistency of this estimator.

Then, we reduce the noise dimension through a tensorial PCA of Σ̂α, eventually only keeping the n first

eigenvectors.
(
α̃Rk

)
k
∈ R(n+1)×n are the matrix forms of the first n eigenvectors (weighted by the corresponding

eigenvalues’ square roots). Since we consider a multiplicative noise and the temporal coefficients bi have various375

amplitudes
√
λi, the covariance matrix Σ̂α is adequately re-normalized by the amplitudes

√
λi before applying the

PCA.

APPENDIX C. DESIGN OF THE OBSERVATION MODEL

An observation model aims at representing the link between measured values and an observed state. Here the state

is b and the observation model is represented in equation C.1

y =H[v] + εy =H v +LF Ẇ , (C.1)

where y is the vector of the My PIV measurements to assimilate, εy = LF Ẇ is the PIV measurement noise,

Ẇ is a vector of MPIV independent white noise (in discrete time), LFLF
T is the covariance matrix of the

PIV measurement noise, v is the reshaped version of v as a single vector of M × d coefficients and H is a380

reshaped version of the linear operator H as My × (M × d) matrix. For instance, if d = 3, we have v(t) =
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(v1(x1, t), . . . , v1(xM , t), v2(x1, t), . . . , v2(xM , t), v3(x1, t), . . . , v3(xM , t))
T

. The two-scale representation v(t) = w(t)+

σḂ(t) can be extended to the reshaped version of v:

v = w + v′ = Φ b+ σ Ḃ, (C.2)

with w a reshaped vector of (M × d) coefficients, Ḃ is a vector of (M × d) independent white noise (in discrete

time), σ a matrix of dimension (M × d)× (M × d) and Φ the reshaped matrix Φ =
(
φ0, . . . ,φn

)
with dimension385

(M × d)× n. Finally, the observation model equation can be represented as the equation C.3

y = H Φb+H σ Ḃ +LF Ẇ . (C.3)

The matrices H and LF are unknown and must be estimated. The H matrix is a spatial transformation from

one space to another and mathematically it executes a spatial filtering and a cropping on the velocity field. We

decompose the two operations through two operators:

H = HcropHPIV, (C.4)

where Hcrop is a rectangular matrix of 0 and 1 that defined the cropping of the PIV image and HPIV is a matrix390

representing the PIV measurement and postprocessing. The LF matrix is a quantification of uncertainty from

the measures after post treatment. In order to estimate HPIV and LF , we have to compare the PIV data with a

reference accurate measurement method : the hot wire.

Let us first focus on the matrix HPIV. Since we focus on 2D2C PIV, that matrix should include the slicing of395

the 3D data and the selection of the horizontal velocity components through two matrices of 0 and 1, that we name

H2D and H2C respectively:

HPIV = H2DH2CHBlur, (C.5)

with HBlur to encode the blurring induced by the PIV measurement. This blurring is approximated by an isotropic

3D spatial convolution on each velocity component:

vPIV
k = hS ∗ vk + εPIV

k , (C.6)

where hS is the spatial filter and εPIV the measurement noise. We consider an isotropic Gaussian filter.

hS(x, y, z) = hs(x)hs(y)hs(z), (C.7)

with

hs(x) = Ah exp

(
− 1

2

(
x

σhs

)2
)
. (C.8)
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Figure C.9: Measure configuration plan of PIV and hot-wire.[57]

In Fourier space, the modulus of the filter is also a Gaussian function and can then be estimated as:

|ĥS | ≈ |v̂
PIV
k |
|v̂k|

. (C.9)

Unfortunately, the hot wire data do not have a significant spatial extension. Accordingly, for our experimental400

data comparison we must focus on the temporal signatures. We will estimate a blurring temporal filter ht instead

of the blurring spatial filter hs. And subsequently, we will transform the temporal filter into a spatial filter using a

Taylor assumption. Let us now estimate the blurring temporal filter ht from the experimental, keeping a Gaussian

filter form.

Since the large-scale structures should be well reconstructed by the PIV, we can expect that the first Fourier

mode is ĥt(0) = 1. This sets the amplitude of the filter. In Fourier space, the modulus of the filter is Gaussian and

its logarithm writes:

log

(
|v̂PIV
k (f)|
|v̂k(f)|

)
≈ log

(
|ĥt(f)|

)
= −αf2. (C.10)

This gives a simple way to fit the last filter parameter: the standard deviation σht =
√

α
2π2 . It is estimated with a405

simple linear regression in loglog plot.

The data used to estimate the matrices were presented in the work of [57]. The measure configuration is detailed

by the Figure C.9, where the blue dotted line boundsthe PIV area estimation and the green line represents the

hot wire converters position. The sampling frequency used in PIV is 500 Hertz and 6000 Hertz in hot wire. The

hot wire data spectrum and the PIV data spectrum are compared in figure C.10. The Gaussian fitting of ĥt is410

illustrated in figure C.11.

After that, the Taylor hypothesis is used again to transform the time filter ht into a space filter hs by the axis

rescaling x = Ut where U is the mean flow velocity. Therefore, the space filter hs is a Gaussian function with a

standard deviation σhx = Uσht .

Eventually, the filter hs is used to define the PIV blurring matrix HBlur. According to equation (C.7), we can415

write the matrix HPIV as a reshaped version of a tensor product of 3 matrices representing the spatial smoothing
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along x, y and z:

HBlur = Hx
PIV ⊗H

y
PIV ⊗H

z
PIV. (C.11)

Each of this matrix is defined in the same way though the filter hs. In order to restrict the number of non-zero

coefficient of those huge matrices, we crop the filter after one standard deviation h(x) = hs(x)1{|x|6σx}. and

Hx
PIV =



h(−nh∆x) . . . h(0) . . . h(nh∆x) . . . . . . . . . 0

0 . . . . . . . . . . . . . . . . . . . . . 0

0 . . . h(−nh∆x) . . . h(0) . . . h(nh∆x) . . . 0

0 . . . . . . . . . . . . . . . . . . . . . 0

0 . . . . . . . . . h(−nh∆x) . . . h(0) . . . h(nh∆x)


, (C.12)

where nh is the floor function of σx/∆x.

This finally leads to the observation matrix

H = HcropHPIV = HcropH2DH2CH
x
PIV ⊗H

y
PIV ⊗H

z
PIV. (C.13)

On top of the observation matrix, we need to estimate the matrix LF . To do so, we use the noisy part of the420

PIV spectrum (see figure C.10). To simplify we assume that the noise εy is white in time and in space. We estimate

the noise variance σ2
ε from the PIV spectrum. With the cropping of this PIV image, this leads to:

LPIV = Hcrop (σεId) = σεHcrop. (C.14)

APPENDIX D. LOG-LIKELIHOOD EXPRESSION

The log-likelihood is necessary in order to assimilate the PIV measurements. Since the observation model (C.3) is

linear with an additive Gaussian noise H σ Ḃ +LF Ẇ , the log-likelihood is a quadratic function of the state b:

p (y(t)|b(t)) ∝ exp
(
− 1

2‖y(t)−H Φ b(t)‖2Σ−1

)
, (D.1)

∝ exp
(
− 1

2

(
yT (t)Σ−1y(t) + yT (t)Bb(t) + bT (t)Ab(t)

))
, (D.2)

with Σ the covariance matrix of the whole additive noise H σ Ḃ +LF Ẇ425

Σ =
(
H σ

) (
H σ

)T
+LFL

T
F , (D.3)

and

A = − 1
2 (H Φ)

T
B, (D.4)

B = Σ−1 (H Φ) . (D.5)
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In practice, σ and σ σT are huge and cannot be even memorize. Depending on the PIV cropping, Σ can be huge

as well which prevents the computation of its inverse. Therefore, for the computation of Σ and its inverse only, we

estimate
(
H σ

) (
H σ

)T
with the following time average:

(
H σ

) (
H σ

)T
= (H[v′]) (H[v′])

T
= Hcrop (HPIV v′) (HPIV v′)

T
HT

crop. (D.6)

Moreover, we neglect the spatial correlation in H[v′]. This makes
(
H σ

) (
H σ

)T
and then Σ quasi-diagonal and430

enables the computation of Σ−1.

Besides, the factor exp
(
− 1

2y(t)TΣ−1y(t)
)

in equation (D.2) is the same for every realizations b(j). So, it will

disappear in the state distribution normalization and we do not need to compute it:

p (y(t)|b(t)) ∝ exp
(
yT (t)Bb(t) + bT (t)Ab(t)

)
. (D.7)
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[23] V. Resseguier, L. Li, G. Jouan, P. Dérian, E. Mémin, C. Bertrand, New trends in ensemble forecast strategy:

uncertainty quantification for coarse-grid computational fluid dynamics, Archives of Computational Methods

in Engineering (2020) 1–82.
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