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Abstract. We address the question of e�cient construction of geometric inte-
grators – numerical methods preserving some internal geometric structure of the
system of equations. Such methods are of particular importance for modelling
and simulation of mechanical systems, where these structures permit to control
the conservation of physically relevant quantities. We focus our attention on the
so called generalized geometry, for which we present an approach to design higher
order Runge–Kutta style numerical methods.
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Motivation / Introduction

In this contribution we study the structure preserving numerical methods, also often called
geometric integrators appearing naturally in the context of robust and reliable simulation
of mechanical systems. The key idea is that the equations governing mechanical systems
have some intrinsic description using the objects from modern di↵erential and algebraic
geometry, those objects serve as a “proxy” to mimic physical properties of the systems:
symmetries, conservation laws, qualitative behaviour, etc... The strategy itself is not exactly
new, it somehow dates back almost to the middle of the 20th century in the context of
integrable systems. However very often the implementation of it amounts to some “do-it-
yourself” constructions. What we discuss in this text is a part of a big project of bringing
“order and method” to this strategy, namely we work on explicit descriptions of the classes of
mechanical systems with the corresponding geometric structures, for which then we formulate
clear algorithmic approaches to construction of appropriate numerical methods. A recent
overview of the state of the art can be found in [1].

Symplectic integrators

As mentioned above, one of the folkloric examples of geometric integrators are symplectic
numerical methods in the context of Hamiltonian systems. One considers the phase space of
a mechanical system on which a symplectic form is naturally defined – locally this is a skew-
symmetric non-degenerate (constant) bilinear form1 ! – a multidimensional generalization of
the oriented area. Given a smooth function H, this ! permits to define a Hamiltonian vector
field XH governing the dynamics of the system. It is easy to show that ! is invariant by the
flow of XH , but a more interesting property is sort of converse: a vector field preserving !
will respect the level sets of H.

Phrased this way the symplectic property naturally gives the idea of a numerical method:
if a discretized flow of the system of di↵erential equations (better) preserves the symplectic

1In this text we will only give qualitative descriptions of the necessary geometric objects, skipping technical
details, they may sound vague, but are globally correct. For more precise definitions and details a motivated
reader may consult [2].
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form, it conserves the energy of the system (better). However, to the best of our knowledge,
the symplectic integrators were not constructed this way, they were merely discovered by
chance. In some simulation of planetary systems it has been observed that neither explicit
nor implicit methods produced satisfactory results in terms of stability, while a semi-implicit
method did. And only after, for example in [3], the result was interpreted as above.

Let us, for pedagogical reasons, deduce the form of the symplectic Euler method. Con-
sider a Hamiltonian system

q̇ =
@H

@p
, ṗ = �

@H

@q
,

defined by the Hamiltonian H and the symplectic form ! = dp ^ dq. Here q are the co-
ordinates of the system, and p are its momenta; they are both multidimensional (vector)
variables, but we omit the indeces not to overload the presentation. To solve this system
consider a family of first order methods

qn+1 = qn + h
@H

@p
(q, p), (1)

pn+1 = pn � h
@H

@q
(q, p), (2)

where h is the timestep, and (q, p) in the right hand sides is a point to be determined. More
precisely, let

q = aqn + bqn+1 and p = cpn + dpn+1

with unknown coe�cients a, b, c, d, in principal allowed to be all di↵erent. We want the
symplectic form to be conserved, thus compute dpn+1

^ dqn+1
� dpn ^ dqn and determine the

conditions for it to vanish up to the maximal possible power of h, for arbitrary choice of H.
Plugging in the (implicit) expressions (1) and (2), and using the Taylor expansion for the
right hand sides, one obtains for the linear term the condition

a+ b� c� d = 0,

which is trivially satisfied due to the consistency of the method: a + b = 1, c + d = 1. But
already the quadratic term adds to this a non-trivial condition

a� d = 0,

which precisely means that the method should be neither purely explicit nor implicit. It is
satisfied by the standard symplectic Euler method, where a = d = 1, b = c = 0. The com-
putation may go further and potentially produces other conditions. The same strategy can
eventually be applied for higher order methods that replace (1) and (2), and as mentioned,
is relevant for other geometric structures – we describe them in the next section.

Dirac structure based methods

The Hamiltonian–symplectic formalism described above is appropriate for conservative iso-
lated mechanical systems. Since its establishment several other directions have been ex-
plored, here in particular we discuss systems with constraints. It has been observed ([4])
that the relevant geometry for those is related to Dirac structures, not going into technical
details, let us just give an idea of those. For classical mechanics one can describe the system
using coordinates and either velocities or momenta – that gives Lagrangian or Hamiltonian
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picture respectively. Dirac structures, roughly speaking use both of them simultaneously, so
the considered space is enlarged; but they also take into account that velocities and momenta
are not independent, so the space is restricted back in a non-trivial way. Hence, if the system
is subject to some constraints, those can be formulated in terms of velocities, or momenta,
or both.

The main message of [4], reviewed in [5], is that considering the Dirac structure associated
to the constraint distribution, one can apply the techniques of variational integrators to
design a numerical method which preserves the constraints better than the usual one. In [5,
6] we have constructed an improvement of such a Dirac based method, and considered some
applications of it. But as mentioned, this has been done rather by an “educated guess”,
than by a generalizable procedure. In this text, we present a more algorithmic approach, in
the style of the above symplectic discussion.

The starting point of [4, 5] is the data of a Lagrangian L = L(q, v), and constraints
'(q, v) = 0, again all the variables are of appropriate dimension, but the indeces are dropped.
The dynamics will however be viewed in the (q, p)-space:

q̇ = v, ṗ =
@L

@q
+ �↵, (3)

where ↵ = d' – the generators of the vanishing ideal for the constraints, � is the set of
Lagrange multipliers. The constraints are rewritten as

↵(v) = 0, (4)

and the relation of v and p is given by the Legendre transform

p =
@L

@v
. (5)

These two (algebraic) conditions as well as the di↵erential equations (3) are deduced directly
from the Dirac structure.

We will now apply the Runge–Kutta type methods to solve (3). Recall that for an
equation ẏ = f(y) the method reads

yn+1 = yn + h
sX

i=1

biki, ki = f(yn + h
sX

j=1

aijkj). (6)

This general form of solution is applied to both equations in (3), obviously with di↵erent f .
Note that the method is a priori allowed to be implicit, and the coe�cients aij and bi can
and will eventually be di↵erent for the two equations.

The same procedure as for the symplectic form above is now applied to the equations
(4) – (5): suppose that they are satisfied at the n-th step — compute the approximation
of them for the (n + 1)-st one, using the Taylor expansion — force it to be satisfied up to
the maximal possible power of h. As a result, for s = 1, i.e. for the simplest first order
Runge–Kutta method, one reproduces up to h2 the Dirac-1 integrator spelled-out explicitly
in [6]. Moreover one sees that holonomic constraints, that is not depending explicitly on v,
are better preserved.

Higher order methods (s > 1) will be presented in detail in the extended version of this
paper ([7]), together with careful benchmark tests and examples of application to mechanical
systems. But already here it is important to note, that in contrast to the original approach
of [4] their derivation sketched here is rather straightforward. The only arising complication
is because of lengthy formal computation, potentially treated by computer algebra tools.
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Conclusions / Outlook

Let us mention several remarks in conclusion.
First, the main framework discussed above – systems with constraints – seem to be a very

particular class of systems. This is true from the mechanical point of view, but not exactly
from the geometric perspective: for instance, apparently the Dirac structures constructed
from the constraint distribution behave similarly to the ones from symplectic foliations of
Poisson manifolds, this makes us think about Poisson integrators.

Second, Dirac structures also appear naturally for dissipative and coupled systems –
the preservation of it by the continuous or discrete flow corresponds to power balance. We
discussed some open questions on that in [2], and we can now add one more near at hand
direction to them – constructing appropriate higher order discretizations.

Third, and probably conceptually the most important, is the relation of the above
discussion to so called graded geometry. In fact all the above mentioned geometric
constructions have a uniform and rather convenient description in terms of di↵erential
graded manifolds. We have sketched their description in [1] and [2], and mentioned some
open computer algebra problems. Note here, that the discretization in the “graded world”
is also a totally unexplored field that we plan to address in the nearest future.
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