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Abstract. Farmers have been able to detect, quantify, and respond to
spatial and temporal variation in crops thanks to a variety of techno-
logical advancements in recent years. Precision farming aims to provide
precise targeting of agricultural inputs while reducing waste and neg-
ative consequences. Precision agriculture technologies are effective in-
struments for increasing farm sustainability and production. These tech-
nologies provide ways to create more with less resources. Nowadays, im-
proving agricultural production efficiency and crop yields is impossible
without the use of contemporary digital technologies and smart machin-
ery. The introduction of high-accuracy GPS technology into farm ma-
chinery, such as combine harvesters, has been a significant component of
precision farming. In this paper, we present a streaming-based method-
ology for detecting anomalies in combine harvester GPS recordings. The
key hypothesis is that, “similar points in a feature space have similar
anomaly scores”. We examine a data-driven strategy with the goal of
applying unsupervised detection algorithms to find anomalies on the fly.
Based on the results of the experiments, we can conclude that LSCP
beats all other strategies when the number of base detectors is varied.
The AUCPR performance of LSCP with two base detectors (HBOS and
MCD) is 8.02 percent better than the second best technique MCD.

Keywords: Anomaly detection · Data streams · Precision farming ·
unsupervised learning.

1 Introduction

Smart Agriculture refers to the application of digital methods to innovate, con-
trol, and optimize agricultural production systems. Human intervention in agri-
culture is boosted by digital transformation, which aids in reducing effort, im-
plementing particular measures, calibrating the use of chemical products on soil
and crops, as well as ensuring and boosting yield. It also aids in the management
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of all procedures that permit or support agricultural output, such as economic
and administrative ones. Smart Agriculture’s goal is to provide solutions that
can be used by all farmers, independent of farm size, location, or industry, while
leveraging scale effects and keeping costs low. The benefits envisioned from the
introduction and integration of technology processes in agriculture are now at-
tributed to increased production and quality efficiency, cost reduction, input
optimization, and environmental impact minimization.

The concept behind anomaly detection research is that exploitative behaviour
differs quantitatively from normal system behavior. Anomalies are “patterns in
data that do not conform to a well-defined notion of normal behaviour” [5].
These patterns reflect fresh, unexpected, or unknown data. Anomaly detection
may be performed as a binary classification problem in the presence of labeled
data using supervised learning approaches, with data labels being either normal
or abnormal. This is seldom the case due to the lack of labeled data and the rarity
of abnormal events. Unsupervised learning techniques are used in most anomaly
detection systems since huge volumes of unlabeled data are available [5]. Intru-
sion detection, fraud detection, fault detection, system health monitoring, event
detection in sensor networks, identifying ecological changes, and defect identifi-
cation in images using machine vision are some of the examples of anomaly detec-
tion. Anomalies can be classified as erroneous data due to device failure/system
failures or as odd data indicating rare/exceptional occurrences that occurred
despite being abnormal [19]. Surprising data is unique to each instance, making
it challenging to categorize these abnormalities using standard approaches.

This study examines anomaly detection in agricultural fields by analysing
GPS logs generated by a combine harvester during wheat harvesting season. We
utilize techniques based on hypothesis testing on the occurrence of an anoma-
lous movement pattern during in-field harvesting. The primary assumption of our
analysis is that, “Normal instances are far more frequent than anomalies”. The
key hypothesis is that, “similar points in a feature space have similar anomaly
scores”. When applied to grain harvesting : ”If a combine harvester changes its
speed rapidly at a particular point within the field, then it implies an anomaly
has occurred“. Our focus is on nonrecurring harvesting disruptions whose occur-
rence is usually unexpected and random.

We propose the following contributions:

1. We present a detailed state of the art on anomaly detection techniques with
a focus on precision agriculture;

2. We define and investigate the issue of completely unsupervised anomaly
ensemble construction.

3. We propose an ensemble based methodology for detection of anomalies from
a data stream of combine harvester GPS logs;

4. We evaluate the methodology using a real data-set of GPS logs generated by
a combine harvester during wheat harvesting and compare its performance
with state of the art techniques under the streaming context.

The rest of this paper is structured as follows: Section 2 presents the state of
the art investigation on Specialized Micro Transportation Systems, anomaly de-
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tection techniques and anomaly detection in agricultural data. Section 3 presents
the problem statement. Section 4 presents the methodology. Section 5 presents
the experimental evaluation of the proposed technique, and Section 6 presents
the conclusion and future work.

2 Related works

This section introduces works on Specialized Micro Transportation Systems,
anomaly detection techniques, and application of anomaly detection to agricul-
tural data.

2.1 Specialized Micro Transportation Systems

Intelligent Transportation Systems (ITS) offer substantial advances in trans-
portation system safety, mobility, productivity and environmental conservation
[7]. Specialized Micro Transportation Systems (SMTS) are a subset of ITS which
comprise of a limited number of vehicles cooperating on a specialized job [23].
SMTS vehicles frequently follow predictable and recognized patterns of activity,
which vary depending on the operation at hand. Due to the highly developed
and mechanized state of agriculture, it is quite usual for farmers to use nu-
merous vehicles in various essential agricultural operations in order to increase
efficiency. Harvesting is perhaps one of the more engaging of these tasks, since
it often involves three types of vehicles: combine harvesters, grain carts, and
semi trucks. During grain harvesting a single combine harvester is sufficient for
the majority of harvesting activities. However, due to due to its limited storage
capacity and transport speed, a semi truck is generally needed to convey har-
vested grain from fields to a grain elevator for storage or sale. Since trucks are
not adapted to the uneven field surfaces, grain carts are engaged to deliver the
grain from the harvesters to the trucks at the edges of the fields. With good co-
ordination between these three types of vehicles, a reasonable level of efficiency
may be achieved in completing the work. ITS may be used to enhance SMTS
management, monitoring, and efficiency.

2.2 Anomaly detection techniques

A lot of work has gone into developing a wide range of anomaly detection algo-
rithms, which can be broadly classified as: Classification based, Nearest Neigh-
bour based, Clustering based, Statistical methods, Information Theoretic based,
Spectral and Graph based methods [5], [18] . These categories are summarised
in figure 1 together with the workflow followed in anomaly detection.

In the discovery of outliers in high-dimensional data, the isolation-based tech-
nique employs the Isolation Forest (IForest) anomaly detection algorithm [11].
IForest is an unsupervised method that does not require labelled data and does
not presume data distribution. It is also non-parametric and performs well on
unbiased data with minimal noise points [2]. IForest is made up of a forest of
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Fig. 1. Anomaly detection workflow and anomaly detection techniques [18]

randomly generated isolation trees (itrees). Because anomalies are uncommon
and distinct from regular occurrences, a tree can be built to separate each one.
At each tree, a determination is made as to whether or not an observation is
normal. Anomalies are isolated closer to the tree’s root due to their sensitivity
to isolation, whereas normal points are isolated further down.

Locally Selective Combination in Parallel Outlier Ensembles (LSCP) [24] is
an unsupervised anomaly detection algorithm that uses the consensus of a test
instance’s nearest neighbors in randomly selected feature subspaces to create a
local area surrounding it. The Average of Maximum method is used to achieve
LSCP, which involves fitting a homogeneous/heterogeneous list of base detectors
to the training data, then picking the maximum outlier score to produce a pseudo
ground truth for each instance. LSCP investigates both global and local data
connections by training base detectors on the whole dataset and prioritizing data
locality when combining detectors.

Histogram-based Outlier Score (HBOS) [9] is based on the assumption that
features are independent, and hence computes outlier scores by creating his-
tograms for each feature. Modeling the precise features of produced histograms
and identifying deviations are used to identify anomalies. HBOS does not re-
quire data labeling and does not require any training or learning phase . With
scoring-based detection, it also provides a quick computation time. A collection
of k one-dimensional histograms is used by the Lightweight on-line detector of
anomalies (LODA) [14] to identify anomalies. The probability density of input
data projected onto a single projection vector is approximated by each histogram.
Because LODA’s output is proportional to the sample’s negative log-likelihood,
the greater the anomaly value, the less likely the sample is. This approach may
be used to rank features according to their contribution to the sample’s anoma-
lousness since each histogram with sparse projections in LODA provides an
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anomaly score on a randomly generated subspace. LODA works effectively with
data streams and isn’t influenced by missing values.

It is common practice to use diagnostics in conjunction with a traditional
fitting approach to try to find outliers. Outliers can, however, impact these tra-
ditional approaches, causing the fitted model to fail to discover deviating obser-
vations (the masking effect) [16]. By fitting the bulk of the data to the fitted
model and then identifying data points that vary from the fitted model, robust
statistics is a handy tool for detecting these deviating observations. A highly
robust estimator for multivariate anomaly detection is the Minimum Covariance
Determinant (MCD) [15]. MCD depends on two multivariate statistics features:
the determinant of a matrix and Mahalanobis distances (MD). It looks for ob-
servations in the data set with the smallest feasible determinant in the classical
covariance matrix.

2.3 Anomaly detection in agricultural data

DeepAnomaly is proposed in [6] where a combination of background subtrac-
tion and Deep Learning is used for detection of obstacles and anomalies in an
agricultural field. It takes advantage of the fact that agriculture field’s visual
features are homogeneous, and obstacles occur rarely. The main idea is to detect
distant and heavily occluded objects and unknown object types. The detected
obstacles included people, barrels, wells and a distant house. DeepAnomaly de-
tects humans more accurately and in real time at larger distances as compared
to state-of-the-art techniques. Anomaly detection of time series data by applying
two machine learning models, Autoregressive Integrated Moving Average model
(ARIMA) and Long Short-Term memory (LSTM) is presented in [1]. A temporal
anomaly detection approach is developed that takes into account the temporal
connections between digital farm sensor data. LSTM and ARIMA models are
tested on real data collected from deployed agricultural sensors with the aim of
identifying anomalous data readings. It was discovered that using LSTM results
in improved anomaly detection prediction but requires more training time.

The automated identification of crop parcels with abnormal vegetation devel-
opment is a current problem in precision agriculture. Detecting crop patches with
significantly different phenological behaviors from the rest of the crop might aid
users like farmers and agricultural cooperatives in improving agricultural prac-
tices, disease identification, and fertilizer management. In [13] Isolation forest
unsupervised outlier detection algorithm is applied to synthetic aperture radar
(SAR) and multispectral images acquired using Sentinel-1 (S1) and Sentinel-2
(S2) satellites to detect the most abnormal wheat and rapeseed crop parcels
within a growing season. The four primary types of anomalies investigated were
heterogeneity issues, growth anomalies, database errors, and non-agronomic out-
liers that were deemed irrelevant for crop monitoring. The results of the exper-
iments showed that the use of both S1 and S2 features in anomaly detection
resulted in more late growth anomalies and heterogeneous parcels being de-
tected.
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Detection of anomalous activity movement of combine harvesters was done
in [20] using a Kalman filter and DBSCAN algorithm. The latitude and longi-
tude values of GPS logs are converted to easting and northing coordinates and
recursively applied to a Kalman filter that is based on a constant velocity (CV)
dynamical model. Kalman filter residual is computed which gives the level of
deviation of the filter estimates from the actual measurements. The Kalman fil-
ter residual is a measure for the smoothness of the combine harvester motion
such that, sudden change in motion results in a higher residual value. The en-
gine load, vehicle speed, and computed Kalman filter residual are then applied to
DBSCAN algorithm algorithm which generates clusters indicative of the activity
being carried out by the combine harvester. Based on the results, it was possible
to identify clusters for uniform motion in field, uniform motion on road, station-
ary points and nonuniform motions (in-field turns, on-road turns, decelerating,
accelerating).

3 Problem Statement

In typical combine harvester operation (whether harvesting or travelling between
fields), the combine harvester travels in a straight path at a near constant pace.
The behaviour of combine harvesters depend on whether they are harvesting in
a field or traveling between fields. Changes in combine harvester speed, on the
other hand, usually signal in-field or on-road actions such as turning and accel-
erating. During harvesting a combine harvester should operate at a maximum
of 4mph for yield efficiency reasons and a maximum of 20mph on the road or
when moving between fields [23]. Moving at high speed can result in grain being
missed thus lowering the yield. The focus of this research is the identification
of abnormal harvesting behaviour by focusing on local regions (i.e. local contex-
tual anomalies). Detecting anomalies using GPS data logs is a multivariate task
where the data is modelled as a data stream and applied to anomaly detection
techniques using windowing concept. The primary assumption of the analysis is
that, “Normal instances are far more frequent than anomalies”. Therefore, the
key hypothesis is: similar points in a feature space have similar anomaly scores.
Harvesting perspective: ”If vehicles change their speed rapidly at a particular
point, then it implies an anomaly has occurred”. A deviation based anomaly de-
tection approach is applied with a focus on in-field harvesting data. To perform
multivariate anomaly detection we will consider the following data attributes:
latitude, longitude, altitude, speed, bearing and accuracy.

4 Methodology

A sliding window approach is employed in streaming anomaly detection, in which
data samples inside a window are sorted by an outlier score, with highly ranked
data samples being labeled anomalies. A pipeline framework was adopted where
each incoming new instance xt is passed through a pre-processor (unit norm
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scaler) which transforms xt into a scaled feature vector without changing its di-
mensions. The scaled feature vector is then processed by the streaming anomaly
detection model which predicts the label yt for the instance. This predicted label
is then passed to the running average post-processor which converts the score
to the average of all previous scores in the current window. Figure 2 depicts the
proposed anomaly detection framework.

Fig. 2. Anomaly Detection framework

4.1 Data pre-processing and transformation

In this study we used a GPS data-set [21] collected using Nexus 7 tablets on a
farm in Colorado U.S.A during 2017 wheat harvesting season. A GPS recorder
app was kept running for each involved vehicle (combine harvesters, grain carts
and trucks) during harvesting. In a typical harvesting scenario, there are more
than one harvester working simultaneously in the field. This results in overlap
of the trajectories of the vehicles. A single trajectory is considered as the consol-
idation of all GPS logs belonging to a single vehicle collected within a day. For
the purpose of this study, we use the movement trajectory of a single combine
harvester recorded in one day.

Definition: Trajectory : A raw trajectory consists of a sequence of n points
T = [p1, p2, . . . , pn], in which pi = x, y, z, t, A, where x, y ,z represent the position
(latitude, longitude and altitude) of the moving vehicle in space, t is the times-
tamp and A represents other attributes associated with the point (i.e. speed,
bearing and accuracy).

Trajectory mining was done using Quantum GIS (QGIS) an open-source
cross-platform desktop geographic information system application that supports
viewing, editing and visualization of geospatial data. The key interest were the
data points generated in the field during harvesting, therefore visualization and
map matching was done using QGIS to ensure the GPS points were mapped to
a field. The second step was to extract only those points within a specific field
using a bounding box. The extracted data exhibited normal harvesting behaviour
with all data points below 4mph which is the maximum harvesting speed. To
create an evaluation data-set, anomalies were introduced in the original data-set
by varying the vehicle speed at specific points along the trajectory such that for
specific sections of the trajectory a sequential number of points had their speed
increased by a random number between a given range of values above 4mph.
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Fig. 3. Area of interest; in-field trajectory of a combine harvester showing normal
points in green and anomalies in red

Figure 3 presents the in-field trajectory of a combine harvester after introduction
of anomalies with normal points in green, anomalies in red.

Multivariate anomaly detection is performed by considering the latitude,
longitude, altitude, speed, bearing and accuracy. The data is modelled as a data
stream and applied to ensemble based technique for anomaly detection using
windowing concept.

4.2 Performance indicators

In order to evaluate the performance of the different approaches, we use the Area
Under the Curve of the Receiver Operating Characteristic (AUC-ROC) [10] and
the Area Under the Curve of Precision-Recall (AUCPR) [3]. Both indicators are
based on the concepts of:

– True Positive (TP): True Positives are the correctly identified anomalies.
– False Positive (FP): False positive are incorrectly identified normal data.
– True Negative (TN): True negative are correctly identified normal data.
– False Negative (FN): False negative are incorrectly rejected anomalies.

The True Positive Rate (TPR), or Recall, is:

TPR =
TP

TP + FN
.

The False Positive Rate (TPR) is:

FPR =
FP

FP + TN
.

AUC-ROC receiver operating characteristics are TPR and FPR. The higher
the AUC-ROC is, the better the detection is. AUC-ROC is the most popular
evaluation measure for unsupervised outlier detection methods [4]. The AUCPR
baseline is equivalent to the fraction of positives [17]:
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Table 1. Experimental parameters

Parameters Values

Window sizes 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000

Sliding window size 50

Initial window (training set) 500

AUCPR− baseline =
TP

TP + FP + FN + TN

AUCPR uses Precision and Recall. Precision is the fraction of retrieved in-
stances that are relevant [8].

Precision =
TP

TP + FP

5 Experimental Evaluation and Results

In this section, we present results obtained by experimenting anomaly detection
techniques on GPS logs. The algorithms were implemented in Python program-
ming language using PySAD framework [22] which allows us to integrate batch
processing algorithms from PyOD [25] and to apply them to streaming data
using sliding windows. HBOS, LODA, LSCP, MCD and IForest algorithms were
implemented by adapting them to the streaming context using a reference win-
dow model. Since LSCP is an ensemble framework, we varied the number of
base detectors in its implementation resulting in three models. LSCP 3 imple-
ments HBOS, MCD and IForest as the base detectors. LSCP 2 implements MCD
and IForest as the base detectors. LSCP 1 implements MCD and HBOS as the
base detectors. The reason for variation of base detectors was to attain unbiased
overall detection accuracy with little variance by incorporating the capabilities of
various base detectors while carefully combining their outputs to form a robust
detector.

In the experiments we sort to find answers to the following questions:

– Which model best predicts anomalous cases given a streaming data set?
– Does the size of the window have an impact on how well models identify

anomalies?
– What role does data association play in anomaly detection?

Multiple experiments with variation in the window size were carried out to es-
tablish the impact of the window size on the performance of the algorithms.
Table 1 summarises the parameters used in the experiments.

AUC-ROC and AUCPR were utilized to investigate the algorithms’ perfor-
mance since they are suited for imbalanced data sets. The applied models output
probabilities for each instance which are transformed into predicted labels us-
ing a decision threshold. These predicted labels are then used to compute the
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Table 2. AUC-ROC performance results for window size variation

Window size LODA HBOS IForest MCD LSCP 1 LSCP 2 LSCP 3

100 0.5391 0.8851 0.9590 0.9913 0.9950 0.9960 0.9890

200 0.6529 0.8874 0.9739 0.9948 0.9926 0.9942 0.9891

300 0.7138 0.8950 0.9763 0.9948 0.9940 0.9924 0.9884

400 0.7719 0.9102 0.9788 0.9926 0.9905 0.9938 0.9907

500 0.7894 0.9208 0.9800 0.9953 0.9893 0.9932 0.9904

600 0.8067 0.9257 0.9783 0.9955 0.9911 0.9921 0.9889

700 0.8102 0.9328 0.9786 0.9923 0.9910 0.9927 0.9896

800 0.8168 0.9412 0.9800 0.9917 0.9918 0.9910 0.9899

900 0.8070 0.9502 0.9803 0.9926 0.9912 0.9911 0.9888

1000 0.8104 0.9560 0.9795 0.9900 0.9920 0.9902 0.9888

Average 0.7518 0.9204 0.9765 0.9931 0.9918 0.9927 0.9894

AUC-ROC and AUCPR values. Table 2 and 3 summarises the AUC-ROC and
AUCPR results obtained from the experiments.

The experimental results reveal that the performance of LSCP with variation
in the number of base detectors is very competitive. The performance is partic-
ularly notable in LSCP 1 which achieves a AUCPR value of 0.7661 which is
8.02 percent better than the second best technique MCD. Figure 4 and 5 shows
that the performance of all algorithms in terms of AUC-ROC and AUCPR. The
performance of LODA and HBOS in terms of AUC-ROC and AUCPR increases
progressively with increase in window size. IForest, MCD and variants of LSCP
show slight variation in AUC-ROC as the window sizes are varied.

Fig. 4. Comparison of models’ AUC-ROC performance
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Table 3. AUCPR performance results for window size variation

Window size LODA HBOS IForest MCD LSCP 1 LSCP 2 LSCP 3

100 0.0464 0.2162 0.4190 0.7072 0.8156 0.8567 0.7426

200 0.0563 0.2778 0.4853 0.7501 0.7730 0.7914 0.6989

300 0.1034 0.2936 0.4882 0.7398 0.8081 0.7538 0.7257

400 0.1283 0.3467 0.4937 0.6450 0.7441 0.7283 0.6844

500 0.2234 0.3626 0.5123 0.7553 0.7521 0.7408 0.7282

600 0.2026 0.3707 0.5079 0.7591 0.7500 0.7178 0.7085

700 0.2017 0.3956 0.5009 0.6404 0.7477 0.7328 0.7055

800 0.1994 0.4128 0.4974 0.6239 0.7637 0.7072 0.6913

900 0.1899 0.4364 0.5055 0.6516 0.7470 0.7229 0.6995

1000 0.1842 0.4662 0.4884 0.5867 0.7602 0.7099 0.7083

Average 0.1536 0.3578 0.4899 0.6859 0.7661 0.7462 0.7093

The baseline AUC-ROC is usually set at a value of 0.5 which suggests no dis-
crimination, 0.7 to 0.8 is considered acceptable, 0.8 to 0.9 is considered excellent,
and more than 0.9 is considered outstanding [12]. Generally, apart from LODA
which achieves an average AUC-ROC value of 0.7518 (considered acceptable),
all the other approaches achieved AUC-ROC values above 0.9 which is outstand-
ing performance. The baseline AUCPR for the data-set was 0.0333 (based on
a sample size of 7416 with 247 true positive anomalies). Based on the results
obtained for AUCPR, it is safe to conclude that all the techniques are able to
distinguish anomalies from normal instances.

6 Conclusion

Improving agricultural production efficiency and crop yields is impossible with-
out the use of contemporary digital technologies and smart machinery. The intro-
duction of high-accuracy GPS technology into farm machinery, such as combine
harvesters, has been a significant component of precision farming. To address the
issue of anomaly detection, several techniques have been developed. Anomaly
detection has a wide range of applications that necessitate a dependable and
precise solution. In this study we have considered the analysis of GPS logs col-
lected from a combine harvester in order to detect anomalous behaviour during
wheat harvesting. The implementation of the windowing concept facilitates the
detection of anomalies on the fly. It is worth noting that, through the use of ma-
chine learning it is possible to detect deviating behaviour of combine harvesters.
Also the application of ensemble techniques improves the precision and recall
detection performance. Based on the obtained results, LSCP 1 with two base
detectors (HBOS and MCD) is able to handle GPS logs and detect anomalies
with efficiency and therefore can be used to detect anomalous behaviour during
farm operations.
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Fig. 5. Comparison of models’ AUCPR performance

Our future work will focus on adjustments of the ensemble learning decision
rules for efficiency improvement. It will also be interesting to perform anomaly
detection in field production using yield values.
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