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Abstract :

The local granular phase rheology in bedload transport is investigated from discrete numerical simula-
tions. The numerical model is based on a coupled Discrete Element Method with a 1D space-averaged
fluid momentum balance. Using this model the averaged granular stress tensor profile can be computed
from particle-particle interactions. In bed-load transport, the granular media exhibits quasi-static and
dynamical behaviors. This physical situation can be used as a rheometer and the actual granular rhe-
ology can be deduced from a single simulation. Preliminary results suggests that the denser part of
the flow, close to the static bed, is well described by a µ(I)/φ(I) rheology. Above this layer, the dense
granular flow rheology fails to explain the observed shear and normal stresses, meaning that other
mechanisms come into play.
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1 Introduction
In sediment transport, bedload is characterized by particles rolling, sliding or in saltation above the bed.
This regime is especially important in mountain streams and is mostly responsible for the morphological
evolution of rivers. The limited understanding of the physical processes involved, reflected by the poor
agreement between prediction and field measurement of transport rate [1], motivates the development
of alternative modeling approaches on this subject. In particular, Frey & Church [2, 3] noted the interest
to analyze the phenomenon focusing on the granular phase behavior, and using the recent important
developments made in the granular media community [4].
The dry µ(I) granular rheology developed in the past few years [5] has been extended to cases with
interstitial fluid [6, 7, 8], and has been shown to describe well various situations from immersed granular
avalanches [6, 9, 10] to sediment transport [11, 12, 13].

In the present paper, we study the rheology of the granular phase in bedload transport using a numer-
ical model coupling a Discrete Element Method (DEM) with a 1D volume-averaged fluid momentum
balance. This model has been designed to focus on the granular phase and allows to explicitly compute
the particle phase stress tensor through the contact forces. The paper is organized as follows, the model
is presented in section 2, and section 3 is devoted to an application to bedload transport with a special
focus on the dense granular rheology.
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2 Numerical model

2.1 Discrete Element Method
Discrete element method has been first applied to granular media by Cundall & Strack [14], and has
recently known an important intererest in the community with the increasing computational power. It
consists in resolving the motion of each sphere using Newton’s law, expressing the contact forces ex-
plicitely with defined contact laws depending on particles overlap. Considering bedload, the particles
also undergo hydrodynamical forces so that the evolution of the position ~xp of each particle p is expressed
as:

m
d2~xp

dt2
= ~fpc + ~fpg + ~fpf , (1)

where ~fpc are the contact forces, ~fpg is the gravity force and ~fpf represents the force applied by the fluid
on the particle. The latter will be detailed in section 2.3. The contact law used is the classical spring-
dashpot law which defines a constant restitution coefficient and allows to describe both quasi-static and
dynamical regimes encountered in bedload. The open-source DEM code Yade [15] is used.

2.2 Fluid phase resolution
The fluid phase is described using a volume-averaged description based on the averaged continuous two-
phase equations [16]. Considering bedload at equilibrium, the fluid equation can be simplified using
steady, unidirectional and uniform flow assumptions. Consequently the average fluid velocity reduces to
its streamwise component

〈
ufx
〉
and depends only on the wall-normal direction z. The equation reads

[13]:

0 =
d
〈
τ fxz
〉

dz
+
dRfxz
dz

+ ερfg sinα− n 〈fx〉s , (2)

where ε is the fluid volume fraction, ρf is the fluid density,
〈
τ fxz
〉
is the averaged fluid viscous stress

tensor,Rfxz is the Reynolds stress tensor, g is the acceleration of gravity, α is the slope angle, and n 〈fx〉s

is the average momentum transfer associated to the fluid force transmitted to the granular phase. The
operators 〈.〉s and 〈.〉 denote spatial averaging over respectively the solid and the fluid phase.

To close equation 2, the fluid is considered as newtonian so that:

〈
τ fxz

〉
= ρfνf

d
〈
ufx
〉

dz
, (3)

where νf is the clear fluid kinematic viscosity. The average effect of the turbulent velocity fluctations is
taken into account in the Reynolds stress tensor. We adopt for simplicity a mixing length formulation,
therefore Rfxz reads:

Rfxz = ρf νt
d
〈
ufx
〉

dz
with νt = ε l2m

∣∣∣∣∣∣
d
〈
ufx
〉

dz

∣∣∣∣∣∣ , (4)

in which the mixing length lm formulation proposed by Li & Sawamoto[17] is used:

lm(z) = κ

∫ z

0

φmax − φ(ζ)

φmax
dζ, (5)
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where κ = 0.41 represents the von Karman constant.
To finish, the term associated to the fluid-solid n 〈fx〉s interaction will be detailed in the next section.

2.3 Fluid/Solid coupling
The main difficulty lies in the coupling of the two phases: discrete particle phase and continuous fluid
phase. The influence of the fluid phase is represented in the solid phase model through the hydrodynam-
ical forces ~fpf applied on each particle in the corresponding equation of motion. In the present model,
for simplification only the main hydrodynamical forces are taken into account, i.e. drag ~fpD and buoy-
ancy ~fpb forces. The drag force formulation account for local particle Reynolds number (Rep) and solid
volume fraction (φ) dependencies, as follows:

~fpD =
1

2
ρf
πd2

4
CD

∣∣∣∣∣∣〈 ~uf〉
~xp
− ~vp

∣∣∣∣∣∣ (〈 ~uf〉
~xp
− ~vp

)
, (6)

where
〈
~uf
〉
~xp
− ~vp is the relative velocity between the particle and the average fluid velocity taken at

the particle center, and the drag coefficient CD is expressed as [13, 18]:

CD =

(
0.4 +

24.4

Rep

)
(1− φ)−3.1. (7)

The buoyancy force is classically applied in the wall-normal direction considering the buoyant weight
of each particles.

The coupling for the fluid phase is achieved through the volume fraction ε = 1 − φ and the average
momentum transfer term associated with the interaction term n 〈fx〉s. These terms have to be evaluated
at each fluid resolution step from the particles positions and applied drag forces in the streamwise direc-
tion. The expression of the average should be consistent with the one used for the derivation of the fluid
momentum balance equation. We use the definition of Jackson [16] with a step weighting function of
the size of the system in the streamwise and spanwise directions. The wall-normal length scale is limited
by the strong mean fields gradients in this direction. Therefore, the streamwise and spanwise sizes of
the system has to be taken such that statistical convergence of the averaged quantities is ensured.

The model was compared satisfactorily to existing particle-scale experiments [19], and showed to be
robust with respect to the numerical parameters [20].

3 Dense granular flow rheology in bed load transport
In the dense granular flow regime, the µ(I) rheology is a consistent constitutive law for the shear and
normal stresses [4, 5]. The dimensional analysis shows that the particle shear (τpxz) to normal (P p = τpzz)
stress ratio µ is a function of a single dimensionless number I = γ̇d√

P p/ρp
, where γ̇ is the shear rate.

This dimensionless number can be viewed as the ratio between a macroscopic timescale tmacro = 1/γ̇,
and a local re-arrangement timescale tff = d√

P p/ρp
. The latter corresponds to the time needed for a

particle to settle over a distance d under a confining granular pressure P p. With these definitions, the
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Table 1: Definition and characteristic values of the main dimensionless numbers associated with the
problem, where d the particles diameter, u∗ the shear velocity, and ūf the average fluid velocity in water
depth h.

θ Rep Fr ρp/ρf St

ρfu2∗
(ρp − ρf )g cosα d

d||
〈
uf
〉
− 〈vp〉 ||
νf

ūf√
gh

-
d
√
ρpP p

ηf

0.25-0.5 103 & 1 2.5 102 − 103

stress ratio or friction coefficient has been shown to follow a law of the type:

τpxz
P p

= µ(I) = µ1 +
µ2 − µ1
I0/I + 1

, (8)

where µ1, µ2, and I0 are phenomenological constants. Similarly, the solid volume fraction is a unique
function of I that can be described by the following formulation:

φ = φ(I) =
φmax

1 + aI
, (9)

where φmax is the maximum solid volume fraction.

The analysis has been generalized to dense granular flow with non-negligible intersticial fluid effects
[6, 7, 8], by modifying the re-arrangement timescale according to the fluid flow regime at the particle
scale: viscous or inertial. Three regimes have been identified depending on the ratio between the re-
arrangement timescales associated to respectively viscous (tvisc), turbulent (tturb), and free-fall regime
(tff ). The different regimes can be defined using the two dimensionless numbers St = tvisc/tff , and
r = tturb/tff . For St >> 1 and r >> 1 the system is in the free-fall regime corresponding to dry
granular flows for which the influence of the interstitial fluid is negligible. The viscous (St << 1 and
r << 1) and turbulent regimes (St >> 1 and r << 1) correspond to re-arrangement timescales domi-
nated respectively by the viscous and turbulent drag contribution. For the viscous and free-fall regimes,
the dense granular flow has been shown to follow a µ(I)/φ(I) rheology. The dimensionless number
being different for the different regimes [6, 7, 8, 9, 10, 13, 21]. The authors are aware of a single contri-
bution on the turbulent regime [21].

Applying the volume averaging operator to the particle stress tensor allows to compute from DEM the
average particle phase tensor for each slice of volume V

〈
σpij

〉
[4, 22]:

〈
σpij

〉
= −P pδij + τpij = − 1

V

∑
α∈V

mαv
′α
i v

′α
j −

1

V

∑
c∈V

f ci b
c
j , (10)

where the sum are respectively over the particles and the contacts contained in the volume V , v′α
k =

vαk − 〈vk〉 is the k component of the spatial velocity fluctuation associated with particle α of massmα,
f c the contact force applied by particle 1 on particle 2, and bc the branch vector from particle 1 to par-
ticle 2.
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Figure 1: Momentum balance of the mixture as a function of the depth for the case θ ∼ 0.5.

Two bed load simulations have been carried out corresponding to rather intense sediment transport. The
turbulent fluid flow is driven by gravity, the slope is fixed to 0.1, and the water depth is varied to modify
the fluid bed shear stress imposed on the granular bed τ fb . The dimensionless number describing bed
load is called the Shields number θ = τ fb /∆ρgd and corresponds to the ratio of the force exerted by
the fluid on the granular bed to the buoyant weight of a single particle. The two bedload configurations
considered here corresponds to Shields numbers of θ ∼ 0.25 and θ ∼ 0.5. Table 1 presents the different
characteristic dimensionless numbers associated with these two cases. Mono-disperse spherical beads
are considered and periodic boundary conditions are used for the granular phase in the streamwise and
spanwise directions. The domain size is taken as lx = ly = 30 d, with 10 layers of grains. To resolve
accurately the wall-normal gradients, lz is taken as d/30 [20]. For each simulation, the particles are
deposited under gravity and the fluid flow profile is resolved approximately every 100 DEM timesteps
with no-slip boundary condition at the bottom and imposed free-surface position. After reaching equi-
librium, results are averaged over 100 seconds and the different averaged variables are obtained for each
layer as a function of the depth.

From the knowledge of the particle and fluid stress tensor profiles, it is possible to back compute the mix-
ture momentum balance profile. With unidirectional, uniform and steady assumptions, the streamwise
component of the average momentum balance of the mixture reads:

0 =
dτ fxz
dz

+
dRfxz
dz

+
dτpxz
dz

+ g sinα(ρpφ+ ρf ε) (11)

Integrating between z and the surface h leads to:

0 = −τ f (z)−Rfxz(z)− τpxz(z) + g sinα

∫ h

z
(ρpφ+ ρf ε)dz. (12)
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Figure 2: Average depth profiles of solid volume fraction φ, particle velocity vp and shear rate γ̇, and
inertial number I , for the case θ ∼ 0.5.

This gives valuable informations on the mechanisms at work for the different vertical positions in the
flow. Figure 1 shows the vertical profile of the mixture momentum balance and the different contribu-
tions for case θ ∼ 0.5. The first important comment is that the momentum balance is closed, i.e. the
particle and fluid shear stress tensors equilibrate the gravity contribution. This is consistent with the
steady flow assumption and it also suggests that the particle stress tensor profile is accurately evaluated.
Regarding the different profiles, the lower part is dominated by the particle shear stress, while the upper
part is dominated by the turbulent one. In the middle part a competition between these two contributions
takes place. The viscous stress tensor appears to be negligible at all vertical positions in agreement with
the high value of the Reynolds number.
Figure 2 presents average depth profiles of solid volume fraction φ, particle velocity vp, shear rate γ̇
and inertial number I , using the fluid mechanics convention. We recover the decomposition in two parts
observed in the momentum balance. The particle shear rate shows a clear transition with a peak at the
interface. Based on the position of this peak, the results are highlighted with two different symbols:
• in the grain-dominated part, and + in the fluid-dominated one. The solid volume fraction profile φ
shows a typical variation from the random loose packing fraction inside the fixed bed to zero above the
bed. The decreasing trend is marked by the presence of a concentration shoulder. The velocity profile
follows an exponential increase at the transition from the fixed, quasi-static, bed with an inflexion point
around the concentration shoulder. Above, the fluid flow exhibits a logarithmic profile (not shown here)
characteristic of a turbulent boundary layer. In the right panel, the inertial number profile is presented in
log scale, the values ranges from very low value in the lower part, corresponding to a quasi-static regime,
to order 10 in the upper part, corresponding to very inertial regime. The µ(I) rheology is expected to
apply for inertial number values lower or equal to unity at most.

Figure 3 presents the particle shear to normal stress ratio and solid volume fraction versus the inertial
number for two the bedload simulations (θ ∼ 0.5 and θ ∼ 0.25). The points corresponding to the lower
part, represented by •, nicely collapse on a single curve that can be fitted by a µ(I)/φ(I) (8,9) law. A
best fit gives the following phenomenological constants µ1 = 0.35, µ2 = 0.97, I0 = 0.69, φm = 0.6
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Figure 3: The particle shear to normal stress ratio µ and the solid volume fraction φ are plotted as
functions of the inertial number. The two parts shows different behavior with a clear trend in the dense
flow, and a more chaotic one in the fluid-dominated part. The dense part can be fitted by a law of type
µ(I)/φ(I) (8,9) with phenomenological constants µ1 = 0.35, µ2 = 0.97, I0 = 0.69, φm = 0.6 and
a = 0.31 (fit).

and a = 0.31. These values are slightly different from those obtained for dry granular flows. The col-
lapse observed as a function of the inertial number confirms that the bedload cases considered here are
in the free-fall regime. In the fluid-dominated layer, the results do not collapse versus the inertial number
and other mechanisms than contacts/collisionial interactions come into play. Future work will focus on
this point.

4 Conclusion
The results presented herein shows that the proposed methodology allows to study the local granular
rheology in bed load transport from numerical simulations. The main conclusion is that a µ(I)/φ(I)

rheology allows to describe the granular rheology in bed-load transport for two different Shields numbers
at least in the denser part of the granular flow. In the upper part, the inertial number alone can not
represent the simulations and further work has to be done to determine if it is dominated by binary
collisional interactions (kinetic theory) or driven by the fluid flow. The present results will be extended
in a near future to investigate the influence of the particle properties: density and diameter.
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