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Résumé :

Une approche micromécanique et multi-échelle pour la modélisation des tissus mous
explique la non-linéarité de leur réponse au chargement mécanique, la dépendance de
leur réponse mécanique vis-a-vis de la trajectoire de déformation ainsi que 1’éventuelle
énergie stockée, comme conséquences du changement de morphologie de la microstruc-
ture.

Abstract :

A micromechanics multi-scale approach to soft tissues modeling explains the non-
linearity of their response to mechanical loading, as well as path dependence and pos-
sible frozen elastic energy, as a consequence of change in microstructure morphology.

Key words : modeling, multi-scale, microstructure, reorientation

1 Introduction

Soft tissues are biological unmineralized tissues, such as arteries, tendon, or skin,
made of variously oriented and crimped elastic and collagen fibers embedded in a soft
hydrogel-like matrix. Mechanically, these tissues exhibit a highly non-linear, anisotro-
pic behavior, with the ability to sustain large strains. Modeling this complex constitutive
behavior has been the topic of abundant literature, mainly focused on macroscopic, phe-
nomenological, large strain hyperelastic models [2,3,4], inspired from rubber mecha-
nics [5,8,9]. However, the recent development of 3D multiphoton confocal microscopy
techniques has open the way to image the collagen and elastic fiber bundles allowing
correlation of the highly non-linear behavior of soft tissues with significant microscopic
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geometrical rearrangements. In deforming soft tissues, such rearrangements encompass
progressive decrimping and realignment of the fibers along the load direction [10]. The
pressing need to correctly capture the relations between microscopic mechanisms and
macroscopic mechanical response drives forward the development of multiscale ap-
proaches [7]. We here propose an explicit consideration of microstructure evolutions
of soft tissues through adaptation of the framework of continuum micromechanics [12]
and extension of the Eshelby’s inclusion problem [1,6]. In particular, we investigate the
ability of the proposed model to capture, through microstructure morphology changes,
the non-linear mechanical response of soft tissues, the possible path dependence of their
response to multiaxial loading, and the presence of a remaining frozen elastic energy
after complete unloading.

2 Methods

2.1 Micromechanical representation of soft tissues

a- b. Axial
\ . direction
1 €3
€>
——— e, Circumferential
Radial direction
direction

Ficure 1 — (a) Collagen bundles of unloaded rabbit carotid artery imaged with confo-
cal bi-photon microscope (IVTV Platform, ANR-10-EQPX-06-01, FR) - window size :
250 x 250 um. (b) Associated representative volume element with 6 fiber families sho-
wing different fiber orientation angles 6.

Since the model is developed in the framework of continuum micromechanics, we
do not resolve each and every detail within the soft tissue microstructure, but we in-
troduce homogeneous subdomains called material phases. Accordingly, we consider a
simplified representative volume element (RVE) of a few hundreds micrometer size
made of soft tissue material (see Figure 1), which hosts variously oriented, infinitely
long fiber-like inclusions (labeled by index f) with a volume fraction f;, embedded
in a matrix (labeled by index m), with a volume fraction f,, = 1 — f;. The six fiber
families considered in the present work, with a total volume fraction of fy = 0.70, all
belong to the plane (es, e3) ; their inclination is therefore characterized by only one
angle 6, defined as the angle between the axial direction of the artery, es, and the fiber
axis. In this work, the initial inclination of the six fiber families is chosen in the interval
0 € [r/4;3m/4]. Each phase i is characterized by a hypoelastic constitutive relation,
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reading as :
Gi=Ciidi (i€ {f,m}) (1)

In the previous equation, C; is the fourth-order stiffness tensor of phase . Since both
phases exhibit an isotropic behavior, their stiffness tensor is characterized by two scalar
parameters : the bulk modulus k; and the shear modulus p;. The fibers bulk and shear
moduli are both taken equal to 1 GPa, and the matrix bulk and shear moduli are taken

A
equal to 10 kPa. d; is the averaged second-order Eulerian strain rate tensor, and o ; is an
objective derivative of the averaged second-order Cauchy stress tensor. The objective
derivative is defined, for a quantity a, as :

S—data-0-o-a @)

with @ as the spin tensor defining the rotation of the point. Finally, uniform strain rate
boundary conditions are considered, i.e. the RVE is subjected to uniform strain rate
boundary conditions, applied in terms of velocity vectors € at the boundary 02 of the
RVE:

£(x)=D-x Vae N (3)
with the dot as the time derivative, & as the displacement vector, D as the applied (ma-
croscopic) Eulerian strain rate tensor and x as the location vector, labeling positions of
microscopic points within and on the boundary of the RVE.

2.2 Homogenization methodology

The mechanical response and the morphology changes of the RVE are computed
within the framework of continuum micromechanics under finite strains, by means of
an incremental algorithm. For each increment of the applied velocity field, the local
(microscopic) strain rate and vorticity tensors (respectively the symmetric and skew-
symmetric parts of the microscopic velocity gradient) quantify the rate of deformation
and of rotation of the different phases. As it can be derived from Eshelby’s 1957 re-
sults [1], the microscopic velocity gradient within the inclusion is linearly related to the
macroscopic loading applied at the boundary of the RVE. Semi-analytical expressions
are derived for the linearity operators relating the applied macroscopic strain rate D to
the microscopic vorticity tensor w; (Eshelby fourth-order rotation tensor R;) and to the
microscopic strain rate tensor d; (Eshelby fourth-order strain concentration tensor .4;) :

di=A;:D (ie{f,m}) “

These relations quantify load-induced micro-configurational changes and allow to com-
pute in each phase the local spin tensor &;, its precise expression depending on the
choice of the objective derivative according to (2). Then, the rate of rotation €; of the
local base vectors e; associated to the fibers is given by :

e =ws-e; (j={r0,06}) (6)
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with @y as the local spin tensor in the fiber-like inclusions. For sake of simplicity, we
here choose the Jaumann derivative with the spin tensor Wy taken equal to the vorticity
tensor w . The microscopic stress rates are then computed by means of the local consti-
tutive relations (1) and integrated over time. Finally, the macroscopic Cauchy stress 3
is determined by the stress average rule.

2.3 Loading paths : closed elastic strain cycles

We investigate different uniaxial and biaxial loading-unloading trajectories, and
study the evolution of the morphology along these trajectories, the associated macro-
scopic responses and the absorption and release of elastic strain energy density.

We here focus on three trajectories, all starting from and returning to zero deforma-

tion state.

— Trajectory 1 : uniaxial tensile loading-unloading test along direction e5 ;

— Trajectory 2 : tensile loading along e- followed by tensile loading along e3 (with
maximum tensile strain along e, maintained) and unloading successively along
directions e3 and e ;

— Trajectory 3 : tensile loading along es followed by tensile loading along es (with
maximum tensile strain along e, maintained) and unloading successively along
directions es and eg.

3 Results

The resulting micromechanical model for soft tissues allows to qualitatively repro-
duce the macroscopic response of soft tissues, with the progressive stiffening of the
response being driven by the progressive reorientation of the fiber-like inclusions wi-
thin the RVE, as seen on Figure 2a-b. Uniaxial loadings are fully reversible, and both
the mechanical response (Figure 2b) and the orientations of the inclusions (Figure 2a)
follow the exact inverse trajectory and return to their initial states. The response of the
model to multiaxial loading cases is however more complex, and contrary to usual hy-
perelastic phenomenological models, the present micromechanical model allows rea-
ching multiple stress states for the same deformation state, depending on the choice of
the deformation trajectory. More precisely, the path dependence originates in the pro-
gressive micro-configurational changes occurring within the RVE and resulting in a
history-dependent microscopic configuration of the fibers orientations. As a result, the
reversibility of the mechanical response is preserved only if the unloading path follows
the exact reverse path (Figure 2c & 2d); in this case, fibers return to their exact initial
configuration and the macroscopic mechanical state is free of residual stresses. All the
elastic energy stored in the system during loading is released during unloading. On the
contrary when unloading follows a path different to the loading one, fibers do not reach
their initial configuration although the final macroscopic deformation state is forced
identical to the initial macroscopic configuration. As a consequence, the macroscopic
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FiGure 2 — All quantities are represented as functions of the norm of the Euler-Almansi
strain. a. Trajectory 1 - Orientation angle 6 of a given fiber family ; b. Trajectory 1 -
macroscopic Cauchy stress. c. Trajectory 2 - Orientation angle 6 of a given fiber family
and macroscopic Cauchy stress ; d. Trajectory 2 - Macroscopic and microscopic strain
energy densities ¢ ; e. Trajectory 3 - Orientation angle 6 of a given fiber family and
macroscopic Cauchy stress ; f. Trajectory 3 - Macroscopic and microscopic strain energy

densities ¢.

Cauchy stress does not return to zero, there is an insufficient release of absorbed elastic
energy (observed hysteresis), resulting in final “frozen” elastic energy in the material
as a consequence of the change in microstructure morphology (Figure 2e & 2f).
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4 Conclusion

This is the first hypoelastic micromechanical model for soft tissues introducing a li-
mited number of physical parameters. The modeled mechanical behavior exhibits path-
dependence of the response and possible frozen elastic energy remaining in the system
after complete unloading. This behavior originates in the micro-configurational changes
occurring in the microstructure due to the application of loads and resulting in history-
dependent configurations of fiber orientations. Future work will focus on the evolution
of residual stresses after successive closed deformation loops, and the possible stabi-
lization of residual stress accumulation, including the use of logarithmic rather than
Jaumann-type stress rates, as the former prove to be fully consistent from kinematic as
well as energetic viewpoints [11].
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