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Résumé :
Nous présentons des simulations numériques directes de turbulence homogène qui ont pour but d’étudier
les effets de schémas de forçage à grande échelle sur l’anisotropie aux différentes échelles du champ de
vitesse. Cette anisotropie est caractérisée au moyen de spectres dépendant de l’orientation du vecteur
d’onde, pour l’énergie, l’hélicité, et la polarisation. Deux types de forçages sont étudiés : le forçage
ABC basé sur un seul nombre d’onde, et le forçage dynamique de type "équations d’Euler" aux nombres
d’onde infrarouges. Nous sommes ainsi en mesure de caractériser précisément les conditions de création
de l’anisotropie dans les échelles inertielles de la turbulence.

Abstract :

We performed DNS of homogeneous turbulence in order to investigate the effect of large-scale spectral
forcing schemes on the velocity field scale-dependent anisotropy, characterized by the measurement of
angle-dependent energy, helicity and polarization spectra. Two kinds of forcing are considered: the
ABC single wavenumber scheme, and the dynamical Euler infrared-range scheme. The conditions that
allow anisotropy to develop in inertial scales were identified.

Keywords : DNS; isotropic turbulence; large-scale spectral forcing; scale-
dependent anisotropy; angle-dependent spectra

1 Introduction
According to the classical K41 theory, in turbulent flows at asymptotically large Reynolds number, the
large-scale dynamics should affect small scales statistical properties only through the energy production
rate, i.e. small scales are statistically independent of large scales and have a universal behaviour. This
assumption, referred to as the local isotropy hypothesis, has been studied by many authors but may be
debated in actual implementations of turbulent flows, experimental or numerical. In particular Yeung
& Brasseur (1991) [5] observed small scale anisotropy in numerical simulations with anisotropic large-
scale forcing, and on the base of a small/large scale triadic interactions analysis it was argued that local
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anisotropy persists at asymptotically high Reynolds number. It is therefore clear that energy and helicity
production mechanisms can strongly influence the features of the produced turbulent field, and even
affect the dynamics of inertial and small scales.

In order to study statistically stationary turbulence, many velocity forcing schemes have been used in nu-
merical simulations so far. In particular, large-scale spectral forcing methods were used in homogeneous
spectral simulations and consist in providing energy to the low wavenumber modes, which is consistent
with the concept of Richardson cascade, see e.g. [3], [7], [10]. However in large-scale spectral forced
simulations, anisotropy may develop because of the intrinsic anisotropy of the Fourier representation of
velocity in a periodic box (only a finite number of discretized wavenumbers in a given spherical shell).
Detection of this kind of anisotropy requires angle-dependent statistics. The motivation of this present
study comes for instance from previous studies of freely decaying rotating turbulence, in which a refined
anisotropic characterization was absolutely required to understand the subtle effect of the Coriolis force
on each scale of the flow (see e.g. [16] or [14]). However, the drop in Reynolds number was severe due
to dissipation, so that forced rotating turbulence should be considered. The following question is there-
fore pregnant: what would be the respective anisotropic "trace" of the forcing with respect to "natural"
anisotropy creation due to rotation? This is why in this paper we analyze two forcing schemes repre-
sentative of large-scale forcing, the Euler and the ABC forcing methods [8, 13], through this kind of
anisotropy indicators. In particular the impact of these two forcing methods on the produced turbulence
scale-dependent anisotropy will be characterized by energy, helicity and polarization angular spectra.
We will first describe the Euler and the ABC forcing schemes in section 2, then in section 3 we will
compare them and show how the development of anisotropy depends on the forcing input parameters.
Finally in section 4 we will identify the conditions that allow anisotropy to develop in inertial ranges.

2 Forcing schemes
The goal of forcing turbulence is to represent, as a model force, the essential features of forcing mecha-
nisms in more complex turbulent flows. For instance, the well-known Von Karman experiment consists
of two counter rotating rotors, that not only inject momentum at large scales in the flow, but also involve
a helicity contribution. In other contexts, for instance in geophysical flows, one would like to model the
effect of a large scale instability that injects energy in the flow and trigger an energy cascade at smaller
scales. For this reason, we wish to investigate the possibility of representing these mechanisms through
simple models—here, the Euler and ABC forcing schemes— and to study their impact on the anisotropy
of the flow, including the possibility of injection of helicity.

Helicity density is the scalar product between velocity and vorticity, H = u · ω, and its integral is an
ideal invariant [1, 6]. Since H is a pseudoscalar quantity, any turbulent flow with non-vanishing mean
helicity < H > lacks mirror-symmetry. The wavenumber-dependent helicity spectrum is

H(k) =

∫
ω̂ · û∗ δ(|k| − k) dk (1)

By the Schwarz inequality one can find

|h(k)| ≤ 2 |k| e(k) (2)

where h(k) = ω̂(k) · û∗(k) is the helicity associated with a wavevector k, and e(k) = 1
2 û(k) · û(k)

∗
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is the kinetic energy density associated with k. Relative helicity can be defined as

Hrel =
< H > Lh

K
(3)

whereK =
∫∫∫

e(k) dk is the total turbulent kinetic energy and Lh is the integral length scale, defined
from the spherically integrated kinetic energy spectrumE(k) =

∫∫
S(k)e(k) dk (S(k) is the sphere with

radius k) as

Lh =
1

2

∫ kmax
0 E(k) dk∫ kmax
0 k E(k) dk

(4)

From the Schwarz inequality (2),Hrel ≤ 1.

Another quantity that will be used in section 3 for characterizing the flow anisotropy is the polarization,
which can be easily defined as a function of the Fourier coefficients components in the Craya-Herring
frame of reference. The Craya-Herring frame is a frame of reference in Fourier space that allows to
express a solenoidal field through only two components in the plane normal to the wavenumber (see e.g.
[12])

û(k) = u(1)(k)e(1)(k) + u(2)(k)e(2)(k) (5)

once an a priori base "vertical" direction n is chosen to define

e(1) =
k × n

|k × n|
, e(2) = e(3) × e(1), e(3) =

k

k
. (6)

The decomposition (5) is particularly adapted to examine flows statistically axisymmetric about n, but
can still be used as a first step towards characterizing anisotropy of turbulence through angle-dependent
statistics, the angle being the polar angle θ of k about n. If |k × n| 6= 0, e(1) and e(2) are directed
respectively along parallels and meridians of spheres of radius |k| and u(1) and u(2) are the toroidal and
the poloidal components. The polarization is defined as (see [12] for details)

Z(k) =
1

2
(< u(2)∗u(2) > − < u(1)∗u(1) > +i<< u(1)∗u(2) >). (7)

Z(k) quantifies the difference and correlation between toroidal and poloidal velocity components, as
a refined tool for characterizing the anisotropy of turbulent statistics in spectral space. In the coming
figures of section 3, the difference between Epol and Etor, the respective spectra of the toroidal and
poloidal components (the real part of Z), is normalized by the energy spectrum.

We performed DNS with two different large-scale spectral forcing schemes: Euler forcing and ABC
forcing (see e.g. [8] and [13]). In Euler-forced simulations, the lowest modes (0 ≤ |k| ≤ kF , where kF
is the maximum forcing wavenumber) obey the three-dimensional incompressible Euler equations and
are independent of the other modes (|k| > kF ) which are solutions of the incompressible Navier-Stokes
equations. Some important physical and mathematical problems related to the Euler equations are still
open, but the study of these problems is beyond the aim of this paper. The nonlinear term is computed
directly in Fourier space (no pseudospectral method is used in the forcing scheme) so that dealiasing
is not needed. Importantly, the velocity field corresponding to the truncated Euler dynamics mantains
constant energy and helicity. Note that, with respect to previous works using Euler forcing [15, 8], our
implementation allows to vary kF arbitrarily, so that it is not restricted to kF = 1.5.

The ABC forcing consists in adding in the Navier-Stokes equations an external volume force F ABC
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corresponding to an Arnold-Beltrami-Childress flow (see e.g. [9])

F ABC = [B cos(kF y) + C sin(kF z)] î+ [C cos(kF z) +A sin(kF x)] ĵ

+ [A cos(kF x) +B sin(kF y)] k̂, (8)

for a given chosen large scale wavenumber kF . Since the force (8) is an eigenfunction of the curl operator
with eigenvalue kF , the ABC forcing injects helicity (in addition to energy) in the flow. For the ABC-
forced runs described in section 3, A = B = C. For the sake of simplicity let the constants A, B and
C be equal to 2. Then in Fourier space the expression (8) becomes

F̂ ABC = [0 ±i 1] if k = [∓kF 0 0]

F̂ ABC = [1 0 ±i] if k = [0 ∓kF 0]

F̂ ABC = [±i 1 0] if k = [0 0 ∓kF ]

F̂ ABC = [0 0 0] otherwise.

No matter the value of kF , only six modes are directly excited by the ABC force.

In terms of flow structure, the ABC forcing is verymuch like Taylor-Green vortices, but extended to three
dimensions, so that it consists of permanent large scales rotors associated with a single wavelength. The
Euler forcing has different properties, since the corresponding 3D large scale vortices evolve in time and
interact in a manner closer to actual turbulent nonlinear dynamics, although in a non dissipative way.
Moreover the forcing energy is distributed over a given range of large length scales.

2.1 Helical Euler forcing and helicity-free Euler forcing
In Euler-forced runs, Fourier coefficients for the forcing wavenumbers are initialized as a random
solenoidal velocity field with energy spectrum proportional to

E(k) ∝ kc1 e−(k/c2)2 (9)

where c1 and c2 are constants linked to the energy spectrum peak wavenumber kp. For the simulations
reported in section 3, kp = kF . In order to control the helicity injection with the Euler forcing we imple-
mented both a helicity-free and a helical modified initialization. The mean helicity can be computed as∑

k h(k), where the helicity density h(k) = ω̂(k) · û∗(k) can be re-expressed as a scalar triple product
of the wavenumber and the real and imaginary parts of the velocity Fourier coefficient,

h(k) = 2k · (ûR × ûI). (10)

In helical Euler-forced simulations, the initial values of the forced modes have been computed in order
to obtain the maximal achievable helicity densities without changing the energy densities, i.e.

û = e(k)1/2 [cos(α) e(1) − sin(α) e(2)] + i e(k)1/2 [sin(α) e(1) + cos(α) e(2)] (11)

where α is a random angle and e(k) is the energy density. In helicity-free Euler-forced simulations, even
if the initial Eulerian velocity field described above already has nearly vanishing net helicity, we slightly
modified the angles between the real and imaginary parts of all the forcing modes by the same quantity
so that the net helicity is exactly zero, i.e.

∑
k h(k) = 0. Since the relative helicity in a helical forced
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Run Forcing kF kmaxη kη Reλ ReL Hrel
1 hel.-free 5.5 1.20 142 82.4 239 -2.74E-3
2 helical 5.5 1.22 140 81.3 219 0.451
3 helical 5.5 1.19 143 81.7 210 0.617
4 ABC 5 1.38 123 81.9 216 0.643
5 helical 3.5 1.22 139 115 396 0.617
6 ABC 3 1.45 117 116 397 0.622
7 hel.-free 1.5 1.29 132 184 1119 2.19E-2

Table 1: Parameters used in the simulations. kmax is the maximum resolved wavenumber (after dealias-
ing), η is Kolmogorov length scale and kη = 1/η. Reλ and ReL are the Taylor Reynolds number and
the Reynolds number based on the longitudinal integral length scale L.

simulation depends on the prescribed energy spectrum, we used different shapes for the initial energy
spectrum in order to achieve different relative helicities.

Note that, for instance, when net helicity is injected in a rapidly rotating (small Rossby number) turbulent
flow, an inverse energy cascade takes place so that it can be impossible to reach a statistically stationary
state. Unlike the ABC forcing, the Euler forcing is free from this drawback because of the conservative
dynamics of the lowest modes |k| ≤ kF .

3 Numerical results
We solved the incompressible Navier-Stokes equations in a periodic cube of side 2π with a classical
Fourier pseudo-spectral approach. The code uses the 2/3-rule for dealiasing and a third-order Adams-
Bashforth scheme for time marching. Since we are looking for non uniformity of statistics in a shell
we have to introduce angular dependence in spectra [4, 11]. Angle-dependent energy spectra as well as
modal decomposition of the energy spectra into poloidal and toroidal contributions were recently used
in [16], permitting to study the scale-by-scale anisotropy of decaying (unforced) rotating homogeneous
turbulence. Here, in non rotating forced homogeneous turbulence, we will study the anisotropy induced
by Euler and ABC forcing on the generated turbulence by means of energy, helicity and polarization
angle-dependent spectra with 5123 resolution simulations. We considered variations with the angle
θ between the vertical direction and the wavenumber, and divided evenly the interval [0, π/2] in five
sectors in order to compute five different spectra for every studied quantity. Of course the spectra have
been normalized so that they collapse on the isotropic spectrum if anisotropy is absent.

Table 1 reports the parameters of the performed runs. In runs 1-4 we used kF = 5.5 for Euler-forced
simulations (which leads to 738 forcing modes in the Euler sphere) and kF = 5 for the ABC-forced
simulation, and we have made sure that the flow regimes, in terms of Reynolds numbers, are the same,
so that a close comparison is permitted. Runs with helical forcing may have different relative helicities
even if the other parameters are equal because the initial Eulerian velocity fields have different energy
spectra. However, since we are interested in the statistically stationary solution (the so-called absolute
equilibrium, see [2] for details), from now onwewill refer to this solution for the spectrally truncated Eu-
ler equations. While in run 1 (helicity-free forcing) the largest wavenumber forcing modes hold roughly
the same energy as the lowest ones, in run 2 (helical Euler forcing) the 48 largest wavenumber modes
(over 738 forcing modes) hold 15 percent of the total energy. In run 3 (helical Euler forcing) the 48
largest wavenumber modes hold 92 percent of the kinetic energy in the Euler sphere so that the relative
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Figure 1: Relative helicity spectra for runs 2-4.
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Figure 2: Ratio of horizontal to vertical sectors
energy spectra for runs 1-4.

helicity is nearly equal to that of run 4 (ABC forcing). Runs 5 to 7 permit to investigate the effect of
reducing the forcing wavenumber kF .

In fig. 1 relative helicity spectra of runs 2-4 are plotted. A slope close to k−1 indicates that energy
and helicity spectra scale with roughly the same power of k. The maximum value of relative helicity
is nearly 1 and corresponds to the shell containing wavenumbers with modulus kF for all of the three
simulations. Fig. 2 shows the horizontal to vertical sector energy ratio for runs 1-4. Anisotropy develops
at large scales in all runs, in particular for the ABC-forced run the horizontal sector energy is smaller than
the vertical sector energy. This is consistent with the number of excited modes and the volumes of the
sectors in Fourier space. In fact, the ABC force excites directly four modes in the horizontal sector and
one mode in each vertical sector, but the volume of the horizontal sector is much greater than the volume
of the vertical sector. Such a kind of computation is not suitable for helical Euler-forced simulations if
some of the forcing modes in the largest shell have energy densities much greater than the other modes
in the same shell. For example in run 3, none of the 48 most energetic modes is included in the vertical
sector, while the horizontal sector contains 16 of them. Only in the ABC-forced simulation substantial
anisotropy develops at small scales too. In particular the tendency is opposed to that at large scales,
i.e. the horizontal sector energy is greater than that of the vertical sector. A more detailed description
of the induced directional anisotropy can be achieved through angle-dependent energy spectra, which
are shown in fig. 3. The Reynolds number is too low for an extended inertial range to exist in runs
1-4. However, the following runs are forced at lower wavenumbers so that the Reynolds number is
higher. Since the departures from the isotropic energy spectrum are not clear on logarithmic scales, the
directional anisotropy has to be investigated by plotting the spectra differences on a linear scale, see fig.
4. Large-scale directional anisotropy develops more or less in all runs. As expected, for run 4 (ABC
forcing) the kF -centered horizontal and vertical sectors hold more energy than the others, neverthless
the opposite happens at small scales. A hint of small scale anisotropy is present in run 3 (helical Euler
forcing, high relative helicity), but for run 4 it is definitely more important. Practically no small-scale
directional anisotropy can be detected in runs 1 (helicity-free forcing) and 2 (helical Euler forcing, low
relative helicity). Similar observations can be done for angular helicity spectra and helicity directional
anisotropy of runs 2-4, see fig. 5 and 6. Finally, fig. 7 shows the angular dependence of the real part of
polarization for runs 1-4. Again run 4 (ABC forcing) is the most anisotropic one and a hint of anisotropy
is visible in run 3 (helical Euler forcing, high relative helicity) too. In every simulation, however, the
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Figure 3: Angular energy spectra for: (a) run 1; (b) run 2; (c) run 3; (d) run 4.
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Figure 4: Directional anisotropy for: (a) run 1; (b) run 2; (c) run 3; (d) run 4.
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Figure 5: Angular helicity spectra for: (a) run 2; (b) run 3; (c) run 4.
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Figure 6: Helicity directional anisotropy for: (a) run 2; (b) run 3; (c) run 4.
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Figure 7: Real part of polarization for: (a) run 1; (b) run 2; (c) run 3; (d) run 4.

polarization directional anisotropy decreases with the wavenumber and vanishes at the smallest resolved
scales.

Also if stronger anisotropy was observed in the ABC-forced simulation (run 4), an Euler-forced sim-
ulation can show a similar behaviour if kF is low enough and the relative helicity is large enough. A
helicity-free Euler-forced simulation cannot develop strong directional anisotropy. In fact, even the low-
est possible forcing wavenumber, kF = 1.5, leads to 18 forcing modes, which would have roughly the
same energy densities in a helicity-free run. We performed a helical Euler-forced run with kF = 3.5

and large relative helicity (run 5), an ABC-forced run with kF = 3 (run 6) and a helicity-free Euler-
forced run with kF = 1.5 (run 7), see table 1. Similarly to run 3, in run 5 the 8 largest wavenumber
modes (over 178 forcing modes) hold 81 percent of the Euler field energy. In fig. 8-13 some of the
same statistics already plotted for runs 1-4 (kF = 5.5, 5) are plotted for runs 5-7. For these figures, the
helical Euler-forced run and the ABC-forced run have similar anisotropy levels (slightly lower than run
4, which was ABC-forced with kF = 5), and directional anisotropy develops at all scales for run 5 too.
The opposite tendencies between run 5 (helical Euler forcing) and run 6 (ABC forcing) in fig. 8-10 de-
pend on the different orientation of wavenumbers corresponding to the most excited modes. By looking
at fig. 4(d), 6(c), 8 and 9, that represent energy and helicity directional anisotropy for the ABC-forced
runs with kF = 5 and kF = 3 and the helical Euler forced run with kF = 3.3, one observes that the
anisotropy for each angular sector is almost constant down to the smallest dissipative scales. Regarding
run 7 (helicity-free forcing, kF = 1.5), no anisotropy can be detected through the polarization angle-
dependent spectrum, see fig. 13, and really small directional anisotropy arises at small scales, see fig.
12.
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Figure 8: Directional anisotropy for: (a) run 5; (b) run 6.
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Figure 9: Helicity directional anisotropy for: (a) run 5; (b) run 6.
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Figure 10: Real part of polarization for: (a) run 5; (b) run 6.
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Figure 11: Angular energy spectra for run 7.
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Figure 12: Directional anisotropy for run 7.
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Figure 13: Real part of polarization for run 7.
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4 Summary and conclusions
The effect of two large-scale spectral forcingmethods, the Euler and theABC forcing schemes, on refined
two-point statistics, namely directional and polarization anisotropy, has been investigated through angle-
dependent spectra. We showed that energy and helicity directional anisotropy can arise at all scales when
the number of excited modes is too low or when few of the forcing modes hold much more energy than
the others. Polarization anisotropy can develop too, but it gradually decreases as wavenumber increases
so that small scales have no polarization anisotropy. Clearly, the ABC forcing scheme always affects the
directional anisotropy because, regardless of kF , only six modes are excited by the ABC force. Unlike
ABC forcing, Euler forcing is not bound to exciting a rather limited number of modes. In fact, one can
always set a large enough kF , although it does not need to be very large. On the contrary, the requirement
for the Euler forcing scheme to excite a low number of modes is setting up a low value for kF , i.e. the
Euler sphere in the Fourier space has to be small enough, and keeping the energy concentrated in the
higher wavenumbers part of the spectrum, which can be achieved through a high value of the relative
helicity.

This study is of strong importance when one will tackle the refined characterization of anisotropic forced
turbulence submitted to external distorsions, such as rotating turbulence, stratified flows, or conducting
fluid turbulence submitted to external magnetic field. All these contexts are important for modelling
turbulent phenomena in geophysical or astrophysical flows.
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