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ВВЕДЕНИЕ / МОТИВАЦИЯ

Данная статья -продолжение серии работ, касающихся геометрических интеграторов, применяемых для компьютерного моделирования механических систем. Изучение геометрических интеграторов численных методов сохраняющих внутреннюю геометрическую структуру дифференциальных уравнений в свою очередь, является важной частью более глобально проекта по "геометризации механики".

Наиболее хорошо изученным примером этого подхода является использование симплектических и вариационных интеграторов для консервативных конечномерных механических систем. Динамика системы описывается в непрерывном случае либо Гамильтоновыми уравнениями, внутренняя структура которых задаётся симплектической формой, либо уравнениями Эйлера-Лагранжа, полученными применением вариационного принципа к некоторому функционалу (см. например, [START_REF] Арнольд | Математические методы классической механики // 3-е изд[END_REF]). При дискретизации этих уравнений в Гамильтоновом случае сохраняется симплектическая форма (см. обзор таких методов в [START_REF] Hairer | Geometric Numerical Integration // Springer Series in Computational Mathematics[END_REF]). Тогда можно показать ( [START_REF] Razafindralandy | A review of some geometric integrators // Advanced Modeling and Simulation in Engineering Sciences[END_REF]), что, так как динамика задаётся в точности функци-ей полной энергии системы, некоторая её дискретная версия будет тоже сохраняться -разницу между этой дискретной версией и исходной непрерывной функцией можно оценить и тем самым контролировать сохранение энергии в численном счёте. В Лагранжевой картине строится дискретный аналог вариационного принципа (ДВП, [START_REF] Marsden | Discrete mechanics and variational integrators[END_REF]), что позволяет не только выписать соответствующую разностную схему, но и подобрать шаг интегрирования для точного сохранения энергии.

В связи с эффективностью и надёжностью симплектических и вариационных методов возникло естественное направление исследований более общих геометрических интеграторов: цель этих работ -расширить класс механических систем, для которых такой подход применим, описать их внутреннюю геометрическую структуру и построить соответствующие разностные схемы. Мы приводим обзор таких методов (возможно, не исчерпывающий) в [START_REF] Salnikov | Generalized and graded geometry for mechanics: a comprehensive introduction[END_REF], обращая особенное внимание на так называемую обобщённую и градуированную геометрию.

Под обобщённой геометрией мы понимаем, в первую очередь, структуры Дирака, которые естественным образом возникают при описании -5 диссипативных и взаимодействующих систем, а также систем со связями. Последним и посвящена эта статья. В предыдущей работе по этой теме ( [START_REF] Сальников | Дифференциальная геометрия и механика -источник задач для компьютерной алгебры[END_REF]) мы сформулировали ряд открытых вопросов, для решения которых может быть полезна компьютерная алгебра. Один из них, а именно построение разностной схемы по заданной структуре Дирака, оказался концептуально более глубоким, чем просто применение существующих алгоритмов символьных вычислений -мы сформулируем его снова здесь и предложим алгоритмический метод его решения.

СОХРАНЕНИЕ СТРУКТУР ДИРАКА

Как мы уже упомянули, структуры Дирака возникают в достаточно общих ситуациях при качественном анализе механических систем. Они определены, в частности, с этой мыслью в оригинальной работе [START_REF] Courant | Dirac manifolds[END_REF], упрощённое изложение которой мы привели в [START_REF] Сальников | Дифференциальная геометрия и механика -источник задач для компьютерной алгебры[END_REF]. Для самодостаточности этой статьи напомним, что речь по-прежнему идет о двойственности описания механических систем: динамику можно рассматривать в терминах векторных или ковекторных полей на фазовом пространстве. Структуры Дирака дают геометрическое описание связи между двумя картинами: в каждой точке обобщенного фазового пространства выполняется некоторое линейное соотношение между объектами, а глобальная структура удовлетворяет дифференциальному условию инволютивности.

Структура Дирака для систем со связямивполне естественный пример, с точки зрения геометра, она является (деформированным) прообразом так называемого распределения связей. Её применение для построения численного метода, сохраняющего связи, по-видимому, впервые подробно описано в [START_REF] Yoshimura | Dirac Structures in Lagrangian Mechanics Part I: Implicit Lagrangian Systems[END_REF], основываясь на вариационном подходе ( [START_REF] Marsden | Discrete mechanics and variational integrators[END_REF]). В [START_REF] Salnikov | From modelling of systems with constraints to generalized geometry and back to numerics[END_REF] мы построили естественную модификацию этого метода, позволяющую улучшить точность интегрирования. Именно этот процесс построения разностной схемы мы и предложили автоматизировать в [START_REF] Сальников | Дифференциальная геометрия и механика -источник задач для компьютерной алгебры[END_REF].

Чтобы понять трудность этого процесса, подчеркнём важное отличие метода, основанного на структуре Дирака от симплектического и некоторых других геометрических интеграторов. Для симплектических интеграторов, вне зависимости от порядка метода, соответствующая дифференциальная форма сохраняется точно, то есть можно ожидать, что её погрешность будет близка к машинному нулю. В таком случае повысить порядок разностной схемы можно стандартными подходами, например, методом сплиттинга: шаг интегрирования делится на меньшие интервалы, на каждом из которых применяется исходная разностная схема. В случае же структуры Дирака исходная схема получена применением ДВП, в котором некоторые приближения зафиксированы путём выбора, пусть даже естественного, но априори ничем не обусловленного. Это значит, что гарантировать сохранение структуры с машинной точностью нельзя: по крайней мере, соответствующее утверждение нам не известно и оно не подтверждается численным экспериментом.

Для случаев, когда точное сохранение геометрической структуры невозможно или технически неоправданно сложно, разумно допустить её сохранение приближённо. Сформулируем следующее естественное определение: Определение 1. Будем называть разностную схему псевдо-геометрическим интегратором порядка (k, m), если она определяет численный метод порядка k по решению и сохраняет геометрическую структуру с точностью до порядка m по шагу интегрирования.

Понятно, что интересные случаи соответствуют значениям порядка m > k. В этих обозначениях настоящий геометрический интегратор будет псевдо-геометрическим порядка (k, ∞).

Ниже мы объясним, как такие интеграторы строятся для структур Дирака, избегая, в частности, необходимости "угадывания" дискретизации. Построение основано на использовании обобщения семейства методов Рунге-Кутта.

АЛГОРИТМ

С учётом вышесказанного алгоритм построения разностной схемы выглядит вполне естественно. В качестве входных данных мы будем считать известными уравнения движения системы и некоторое явное (алгебраическое) описание их геометрической структуры в терминах динамических переменных. 

ИМПЛЕМЕНТАЦИЯ

Каждый пункт приведённого алгоритма -совершенно явное символьное вычисление, которое разумно производить средствами компьютерной алгебры. Единственный этап, который мы не описали, связан непосредственно с нахождением коэффициентов из условий пункта 3). Заметим, что по построению, эти условия полиномиальные, а некоторые даже линейные. Поэтому задача решается стандартными методами компьютерной алгебры. Заметим также, что если решение уравнений на коэффициенты неединственно, разумно выбрать наиболее явный метод, чтобы ускорить дальнейший численный счёт.

Основная цель данного алгоритма -построение разностных схем высокого порядка. То есть, число стадий методов Рунге-Кутта интересно сделать достаточно большим. С ростом числа стадий количество неопределенных коэффициентов растёт квадратично, и промежуточные приближения будут входить в условия нелинейно -это может вызвать технические трудности связанные с решением системы из пункта 3). Напомним, однако, что для каждой группы переменных результат будет представителем семейства методов Рунге-Кутта. Это значит, что даже если самое общее решение получить не удаётся, например, из-за нехватки вычислительных ресурсов, можно рассмотреть комбинации известных классических решений.

Для наших тестовых примеров мы использовали язык программирования Python с открытыми библиотеками символьного вычисления. Но для имплементации подойдёт любой программный пакет компьютерной алгебры с функциями решения систем полиномиальных уравнений.

ПРОГРАММИРОВАНИЕ
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ПРИМЕР СИСТЕМ СО СВЯЗЯМИ

Достаточно характерный пример применения приведенного выше алгоритма -изучение механических систем со связями. Речь идёт о механических системах, на координаты и скорости которых наложены некоторые ограничения. Уравнения, описывающие их динамику имеют вид:

d dt ∂L ∂ q - ∂L ∂q = m a=1 λ a α a , (5.1) 
где L(q, q) -Лагранжиан системы, а α a -генераторы идеала порождённого связями, λ a -соответствующие множители Лагранжа. Условия на принадлежность этому идеалу обычно заданы явно и имеют вид ϕ a (q, q) = 0. На практике такие системы решаются введением дополнительных переменных1 v := q, что позволяет переписать (5.1) как систему первого порядка. Систему можно численно интегрировать классическими методами, если множители Лагранжа явно вычисляются по координатам и скоростям в каждый момент времени. Подход с использованием структур Дирака подразумевает, в дополнение к v, введение переменных p, соответствующим импульсам системы. Они получаются при рассмотрении Гамильтонова описания системы, то есть после преобразования Лежандра. Отличие от классического подхода заключается в том, что переменные v и p теперь будут рассматриваться одновременно, а их соотношение через преобразование Лежандра, а также связи, наложенные на систему, будут учитываться отдельными условиями -эти условия в точности соответствуют определению структуры Дирака D ∆ для тройки (q, v, p) (см. [START_REF] Сальников | Дифференциальная геометрия и механика -источник задач для компьютерной алгебры[END_REF]). Опуская геометрические подробности, приведём явный вид описанных выше условий:

q = v, ṗ - ∂L ∂q ∈ ∆ 0 (5.2) q ∈ ∆, p = ∂L ∂v ; (5.3)
здесь ∆ обозначает распределение связей, то есть, в каждой точке конфигурационного пространства -множество совместных со связями скоростей, а ∆ 0 , как и в уравнении (5.1), соответствующий идеал. Таким образом, при условиях (5.3), уравнения (5.2) эквивалентны (5.1) в непрерывном случае. Рассмотрим для примера, согласно алгоритму выше, семейство двустадийных методов Рунге-Кутта с шагом h:

q n+1 = q n + h(b 1 l 1 + b 2 l 2 ) p n+1 = p n + h( b1 l1 + b2 l2 ),
(5.4)

v n+1 = v n + h( b1 l1 + h b2 l2 ),
где в правых частях разностной схемы стоят стандартные приближения правых частей дифференциальных уравнений:

l 1 = RHS q (q n + ha 11 l 1 + ha 12 l 2 ), l 2 = RHS q (q n + ha 21 l 1 + ha 22 l 2 ),
и аналогично для l, l, с очевидными изменениями. Подчеркнём ещё раз, что методы могут быть неявными, то есть изначально все коэффициенты a ij , ãij , āij не равны нулю. Вспомним также, что все переменные системы многомерные, но коэффициенты мы различаем лишь для трёх групп: для координат, скоростей и импульсов системы. Теперь подставим разложения (5.4) в условия (5.3) на принадлежность структуре Дирака, которые в данном случае распадается на два: импульсы определены преобразованием Лежандра: ψ(q, p, v) := (p -∂L ∂v ) = 0, и скорости удовлетворяют связям: ϕ a (q, v) = 0. Выпишем, как и предполагает пункт 2) алгоритма соответствующие ряды Тейлора для ψ и ϕ a , с учётом уравнений движения (5.1) и (5.2). Приравняв к нулю коэффициенты при разных степенях h, получим следующее утверждение.

Теорема 1. Разностная схема (5.4) определяет численный метод по крайней мере второго порядка, если выполнены следующие условия на коэффициенты:

b 1 + b 2 = 1, b1 + b2 = 1, b1 + b2 = 1, (5.5) b 1 a 11 + b 2 a 21 + b 1 a 12 + b 2 a 22 = 1 2 , b1 ã11 + b2 ã21 + b1 ã12 + b2 ã22 = 1 2 , b1 ā11 + b2 ā21 + b1 ā12 + b2 ā22 = 1 2 . ПРОГРАММИРОВАНИЕ N o 2 2022
Этот численный метод сохраняет структуру Дирака D ∆ и, как следствие, преобразование Лежандра и связи системы, по крайней мере с точностью до третьего порядка, если к тому же выполнены следующие условия:

b1 a 11 + b2 a 21 + b2 a 22 + b1 a 12 = 1 2 , (5.6) 
b1 ā11 + b2 ā21 + b2 ā22 + b1 ā12 = 1 2 , а также: В качестве иллюстрации метода мы применили данную теорему для системы описывающей движение математического маятника на плоскости в поле силы тяжести, подробно описанной в [START_REF] Salnikov | From modelling of systems with constraints to generalized geometry and back to numerics[END_REF]. Динамика системы описывается в конфигурационном пространстве Q = R 2 , q = (q x , q y ), она задаётся свободным Лагранжианом L = m 2 ( q2

b 1 ā11 + b 1 ā12 + b 2 ā21 + b 2 ā22 = 1 2 , (5.7 
x + q2 y ) -mgq y и связью ϕ = q 2 -l 2 . Структура Дирака D ∆ задаётся стандартным условием p = ∂L ∂v и идеалом, порождённым α := dϕ.

Таблица ниже показывает сравнение двух разных псевдо-геометрических методов порядка (2, 3) (RKD-2), построенных по нашему алгоритму, с двухшаговым методом из [ В рамках универсального подхода он позволяет воспроизвести результат [START_REF] Yoshimura | Dirac Structures in Lagrangian Mechanics Part I: Implicit Lagrangian Systems[END_REF] -предложенный там метод в наших обозначениях будет псевдогеометрическим порядка (1, 2) для структуры Дирака. Кроме того, когда структура Дирака строится по симплектической структуре (случай описанный здесь, но без связей), метод позволяет восстановить симплектический метод описанный в [START_REF] Salnikov | Revisiting geometric integrators in mechanics[END_REF] и всё семейство методов Рунге-Кутта ( [START_REF] Razafindralandy | Some robust integrators for large time dynamics[END_REF]).

С точки зрения приложений в геометризации механики, наш подход обладает важным преимуществом: он применим как для Лагранжева формализма, так и для Гамильтонова описания. Первый важен, например, в контексте вариационной формулировки динамики на структурах Дирака ( [START_REF] Cosserat | On Dirac structures admitting a variational approach // final preparation[END_REF]), второе естественно возникает при построении разностных схем, сохраняющих структуры Пуассона ( [START_REF] Cosserat | Discretizations respecting Poisson structures // in preparation[END_REF]). А для конкретных задач компьютерного моделирования применение псевдо-геометрических интеграторов позволяет более точно различать динамические режимы даже для потенциально хаотических систем ( [START_REF] Loziienko | Pseudo-geometric integrators -some applications in mechanics // in preparation[END_REF]).
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Все переменные (q, v, ...), естественно, многомерные. Но чтобы не перегружать уравнения дополнительными обозначениями, мы опускаем соответствующие индексы, если это не создаёт неоднозначности.