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Résumé : 
 

Cet article étudie les mécanismes de rupture et la fiabilité de la couche de métallisation d’une puce 

électronique d’un nouveau module de puissance, remplaçant les fils de connexion par un clip en 

cuivre. A la fois des tests de cycles actifs de puissance et des simulations thermomécaniques par 

éléments finis ont été réalisés. Cette étude utilise les simulations numériques pour analyser en détail 

les déformations plastiques et la propagation de fissures dans la métallisation de la puce sous 

différents cycles actifs de puissance. Les modèles de durée de vie sont ensuite déduits en corrélant la 

durée de vie des modules obtenue par expérimentation avec les déformations plastiques et les critères 

de propagations de fissures calculés correspondants.    

 

Abstract: 
 

This paper studies the failure mechanisms and the reliability of the chip-metallization of a new power 

module using a copper clip soldered on the top side of the chip, instead of aluminum wire bonds. Both 

power cycling tests and thermo-mechanical Finite Elements simulations are performed. This study 

takes advantages of the numerical simulations to analyze in details plastic strains and crack growth in 

the chip-metallization under different Active Power Cycling conditions. Lifetime models are then 

deduced by correlating the experimentally obtained lifetime with the corresponding calculated plastic 

strains and crack growth criteria.  

 

Mots clés: Module de puissance ; Propagation de fissure; Méthode 

Elements Finis (FEM) Simulations; MOSFET; cycles actifs de puissance; Al 

métallisation; thermomécanique; CTOD ; durée de vie. 

 

Keywords: Power module; Crack growth; Finite-Elements-Methods (FEM) 

Simulations; MOSFET; power cycling; chip-metallization; 

thermomechanics; CTOD; lifetime model. 
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1 Introduction 
 

In standard power module, the chip-metallization is a thin film of alloyed aluminum deposited onto 

the silicon substrate, forming bondable metal layer to establish electrical connections with the chip or 

with other chips via bond wires. Until now 2 different degradation phenomena have been encountered 

during power cycling: reconstruction and ratcheting.   

The reconstruction of the aluminum metallization was encountered in the early years of 

microelectronics [1], but has begun to be studied only recently [2, 3]. The Al reconstruction is one of 

the most frequent failure mechanisms observed to affect mainly power modules, with bond wire lift 

off and solder fatigue [4]. The root cause for Al reconstruction is the Coefficient of Thermal 

Expansion (CTE) mismatch between Si of chip (2ppm/K) and Al of metallization (25ppm/K). This 

CTE mismatch is responsible for the generation of high compressive stress within the Al metallization 

during pulsed operation. This stress is likely to exceed by large the elastic limit. Under these 

circumstances, the stress relaxation can occur by grain boundary sliding, or by plastic deformation 

through dislocation glide, depending on temperature and stress conditions [5]. Depending on the 

texture of the metallization, this leads either to the extrusion of the Al grains or to cavitation effects at 

the grain boundaries. A large amount of these plastic deformations leads to layer degradation with a 

subsequent open circuit. Reconstruction is more severe at the center of the chip, as the junction 

temperature reaches its maximum [3]. 

Microscopically, the degradation of an Al layer sputtered on Si without any heat treatment, is 

characterized by 2 phenomena happening in parallel [6]: intergranular cracking and grain size 

reduction. During heating phase, Al is under compression and its atoms emerge from the inner film 

through grain boundary and oxidize rapidly. They are forming hillocks. During cooling, the Al layer 

turns tensile and this causes grain boundary grooving, that is again stabilized by oxidation of bared Al 

surfaces. Repeating this grooving process leads to intergranular cracking with oxidized boundaries. 

The division of initially large Al columnar grains may be attributed to regular dislocation processes. 

Dislocations move easily at relatively low temperature in the Al metallization [7]. Repeated cycles are 

then prone to accumulate dislocations in the Al grains and therefore create cells that will transform 

into grains when the added misorientations are sufficient. This classic recovery process is helped by 

mixed dislocation and diffusion processes such as dislocation climb. The degradation of the Al layer is 

thus a combined effect of accelerated diffusion at grain boundaries and grains size division by 

dislocation- based plasticity.  

Another mechanism has been shown to induce Al extrusion: the ratcheting [8,9,10]. This ratcheting 

mechanism occurs because of the CTE mismatch between the Si (2 ppm/K) and the molding 

compound (~11 ppm/K). At high temperature, the CTE mismatch between mold and Si causes an in-

plane compression in Al which goes beyond the elastic limit and therefore induces a plastic flow of the 

Al. Conversely, at low temperature, the CTE mismatch causes an in-plane tensile strain in Al followed 

by a plastic strain of the Al when the yield stress is reached. In addition, a constant shear stress, 

usually due to packaging, is acting on top of the Al, always into the same direction: from the edge to 

the middle of the chip [11,12]. Independently from the temperature excursion, it gives rise to a shear 

flow or tilting of the metal every time the yield stress is reached. Consequently, each temperature 

cycle gives rise to a tilting in the direction to the middle of the chip, which, for many cycles, sums up 

to considerable amounts. This phenomenon is called ratcheting [13]. At the end, the Al film is not able 

to transfer the shear stress to the adjacent layers anymore, similarly to a viscous fluid. This can be 

observed by a wrinkling of the Al metallization.  

In this paper, failure mechanisms occurring in an Al metallization of a new power module are 

investigated. This module is molded and does not have Al wire bonds but a copper clip as 



22
ème

 Congrès Français de Mécanique                                               Lyon, 24 au 28 Août 2015 
 

interconnect. This results in a more complicated internal structure than in standard modules and 

impedes the Al reconstruction or ratcheting. Indeed, here the surface of the Al metallization is not free, 

but recovered by a solder layer and a Cu clip on its top and surrounded by the molding compound. 

This new design leads to different failure mechanisms that have to be characterized. Thus, this work 

aimed at a better understanding of the thermo-mechanical behavior of the metallization layer in this 

new designed module under Active Power Cycling (APC) with varying load parameters by means of 

experiments and simulations.  This allows the determination of the lifetime of this new module. 

 

2 Design of power module 
 

The power module used in this study is a package made of 6 newly designed MOSFETs. Indeed, those 

MOSFETs have an electric connection achieved by a copper clip soldered on top of the chip instead of 

using wire bond (Erreur ! Source du renvoi introuvable.a). This structure is more reliable 

because it avoids wire bond fatigue failures, often the root cause for the device failure. The inner 

structure of this MOSFET is a bit more complicated than the one of standard power modules. It has 

some additional material layers on top of the others between the chip and the copper clip (Erreur ! 

Source du renvoi introuvable.1b).  

 

   

Figure 1: a) Inner structure of a MOSFET with a copper clip and b) scheme of layers composition between the 

chip and the copper clip of a MOSFET 

 

3 Experimental and numerical methodologies  

3.1 Experiments 
 

Active Power Cycling (APC) is the most important reliability test for power modules as it reproduces 

real working conditions.  This test was performed on power modules with copper clips, and only one 

MOSFET of the package was electrically loaded. The device under test is mounted onto a water-

cooled heat sink through the intermediary of a thermal film used as a Thermal Interface Material 

(TIM). Usually the load current is conducted by the power chip and the power losses heat up the 

package. Here, the heating current has opposite polarity and is conducted by the body diode of the 

MOSFET. When the maximum target temperature within the diode is reached, the load current is 

switched off and the system cools down to a minimum temperature. The end of the cycle is achieved 

when the minimal temperature is reached. The next cycle begins by starting the load current again. 

The characteristic parameters for Active Power Cycling tests are: the minimum junction Temperature 

Tjmin, the temperature swing ΔTj (given by the temperature difference between maximal junction 

temperature at the end of the heating phase and the minimal junction temperature at the end of the 

a) b) 
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cooling interval) and the power on-time ton. For power cycling the parameters are typically ranging as 

follow: 

- Current pulse, Iload: from 200A up to 600A 

- Temperature swing, ΔTj : from 60K to 130K 

- Minimum junction temperature, Tjmin: from 20°C to 90°C 

- Power on-time (or pulse width), ton: from 0.2s to 60s 

 About 30 samples were tested with varying test parameters. The current intensity as well as the 

duration of heating and cooling phase are determined at the beginning of the test and remain constant 

during the test. The test strategy used here consists in submitting the device to a loading current 

corresponding to a desired temperature swing ΔTj and then to repeat the cycle with constant pulse 

width ton and toff. So the temperature swing is defined at the start, but may vary with ageing effects of 

the device. This strategy is the most severe method but the closest one to application. 

During power cycling, the forward voltage Vf of the body diode and the junction’s temperature swing 

ΔTj are monitored as they are good indicators of modules health. Indeed, both parameters are likely to 

increase with ageing effects. Tj is measured via Vf which is a Thermo-Sensitive Parameter (TSP): a 

measuring current of 10 mA flows through the diode, the Vf is measured and converted into the 

corresponding Tj through the linear relation existing between both parameter Vf = f(Tj). No fixed End-

of-Life criterion was defined, as more knowledge is required on the fatigue resistance of this new 

designed module. Thus tests were stopped arbitrcarily when the increase of forward voltage Vf or 

temperature swing ΔTj was judged high enough. 

Before starting the test and at the end of it, power modules are electrically and thermally characterized 

by measuring leak currents, the resistance RDSon and the thermal impedance Zth. The goal is to evaluate 

the healthiness of modules after cycling. Metallographic specimens of tested modules were carried out 

and defects investigated into. 

 

3.2 Simulations 
 

A 2D Finite Element Model (FEM) has been created for a MOSFET with an axisymmetry condition 

(Figure 2). Such a simplified model of the power package is possible because MOSFETs included in 

the package are thermally decoupled, meaning that every MOSFET acts as a single one.  Moreover, 

this 2D axisymmetric model with chip-midpoint as symmetry axis provides reliable and precise 

results. Indeed, the electrical current flows through the center of the chip, thus the chip-midpoint 

corresponds to the neutral point in terms of thermal expansion. 

 

In this FEM model, a fine mesh is defined using quadratic plane elements with 8 nodes. The thinnest 

layers have a minimum of 4 elements in their thickness, which means that the smallest elements have 

a size of about 1 µm. Attention was also paid to refine the mesh in the most critical areas of the 

 

Figure 2: Schematic 2D section of the power device used for simulation 
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module (Figure 3). Both solder layers have fine elements with an aspect ratio of 2.8 and critical areas 

of the metallization and the intermetallic layer have elements with an aspect ratio of 6.5, which 

guarantee reliable results. Some elements have a bigger aspect ratio, up to 35, but these elements are 

not located in critical areas and thus did neither affect the convergence nor results. 

 

 

Figure 3: Global view of the mesh with a zoom at a critical area 

 

Thermo-mechanical analysis is performed, which means that thermal results of the transient thermal 

simulation are imported as loads in the thermo-mechanical simulation. In the thermal analysis, the 

module is mounted onto a heat sink of aluminum with a constant temperature assumed at its bottom 

line. Free convection and radiation coming from the air are also taking place on the exterior surfaces 

of the module. During Active Power Cycling, the chip generates heat which is then dissipated in the 

entire module. In the mechanical analysis, the power module is not subjected to any pure mechanical 

loads, the module is only fixed at one point and loads are thermally induced. Three cycles are 

simulated after an initial cooling down from the stress free temperature of the module to the ambient 

temperature (Figure 4).  

 

Figure 4: Schematic of the three cycles simulated 

 

The elasto-plastic properties of the copper of the lead frame and the clip were characterized and 

modeled by a bilinear kinematic hardening. To describe the solder behavior a Garofalo model which 

defines the secondary creep rate as a function of stress and temperature with a hyperbolic sine was 

chosen. The SnAgCu solder alloy used was characterized by [14], as follow: 

𝜀 𝑐𝑟 =  𝐶1 𝑠𝑖𝑛ℎ 𝐶2𝜎  𝐶3𝑒
𝐶4

𝑇  Eq. 1 

Where 𝜀 𝑐𝑟  is the steady-state creep strain rate, T the temperature (K), σ the von Mises stress in MPa, 

and C1 through C4 are constants defined as follow in Table 1:  
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Table 1: Table of values for the constants of the Garofalo creep law for the SAC solder alloy 

 

The brittle silicon of the chip has linear elastic properties. The chip-metallization is made with an 

AlCu alloy containing 0.1 % up to 1% Cu. No measurements could have been performed to determine 

its behavior, but a literature study on the mechanical properties of ~99wt% Al alloys (Al, AlSi, AlCu, 

AlSiCu) thin film on Si substrate was performed. According to the thickness of our metallization a 

model with temperature dependent properties was chosen. This model was inspired by [9] and uses a 

bilinear kinematic hardening to describe the elasto-plastic behavior of the metallization (Erreur ! 

Source du renvoi introuvable.). A literature study was also done for the properties of the 

intermetallics. They were considered to be pure Cu6Sn5 and have a linear elastic model.  

 

 

Figure 5: Bilinear kinematic hardening of Aluminum 

 

The commercially available epoxy-based molding compound is a polymer, and has thus a viscoelastic 

behavior. The material is restricted to be thermorheologically simple. It master curve was 

implemented through the use of Prony series and the shift operation was defined with the Williams-

Landel-Ferry (WLF) shift function (Figure 66).   

In the Prony series, the shear modulus is defined as follow: 

𝐺 𝑡 =  𝐺∞ +  𝐺𝑖

𝑁

𝑖=1

𝑒
−𝑡

𝜏𝑖  
Eq. 2 

Where G(t) is the shear modulus at time t, 𝐺∞ is the long term modulus once the material is totally 

relaxed, and 𝜏𝑖  are the relaxation times. 

The Williams-Landel-Ferry shift function is an empirical equation: 

log 𝑎𝑇 =  
−𝐶1(𝑇 − 𝑇𝑟)

𝐶2 + (𝑇 − 𝑇𝑟)
 Eq. 3 

Where T is the temperature, Tr is a reference temperature chosen to construct the master curve, and C1 

and C2 are empirical constants adjusted to fit the values of the superposition parameter aT.   
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During the assembly process, just after the encapsulation, a post mold cure process takes place. It 

consists in exposing the module to elevated temperatures, in general 175°C, to speed up the curing 

process and expedites the cross-linking process of the polymer’s molecules. Thus in order to take into 

account residual stresses due to post mold cure, the stress-free temperature of mold is assumed to be 

higher (195°C), than the one of the other materials (175°C). 

 

   

Figure 6: a) Master curve for stress relaxation and b) shift function of the molding compound 

 

With the thermo-mechanical simulation, evolutions of stress and strain in the Al metallization are 

monitored during power pulses. A study of the sensitivity of various test parameters (minimum 

junction temperature Tjmin, temperature swing ΔTj, and pulse width ton) is also simulated and the 

influence of those parameters on the mechanical behavior of power metallization is quantified.  

Additionally a fracture mechanic study was performed on the 2D axisymmetric FEM with a crack 

included in the middle of the thickness of the Al metallization layer. The crack starts under the top 

solder meniscus and propagates through Al to the center of the module. This crack has a fixed length 

of 150 µm and was defined using contact and target elements with a friction coefficient to prevent 

material penetration. Here simulations were performed with varying coefficients of friction and results 

were not found to be dependent on this value. Thus, the coefficient of friction was arbitrary fixed to 

0.2. As the main focus of this study is the crack growth, the global mesh of the module is coarser than 

in the FEM without cracks. On the other hand, the mesh is refined at the crack tip. In this area, 

elements are square with a length of about 0.83 µm (Figure 7Erreur ! Source du renvoi 

introuvable.). In the model, the delamination between the molding compound and solder meniscus, 

which appears after some power cycles, is also taken into account.  

 

Figure 7: Global view of the mesh with a zoom at the crack tip area 

 

a) b) 
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To interpret the crack growth a fracture mechanical criterion was defined. As the Al is an elastoplastic 

material, a criterion supporting non linear material properties was required.  Thus, only the J-integral, 

the Crack Tip Opening Displacement (CTOD) and the cohesive zone element methods were 

applicable. The criterion should also work for cyclic loading and has to be compatible with an 

axisymmetrical model. The J-integral and the cohesive zone element methods are not fulfilling these 

requirements, as they are not working for cyclic loading and are only defined for plane stress or plane 

strain conditions. On the other hand, the CTOD criterion allows cyclic loading and axisymmetric 

conditions. Thus, a mixed mode fracture criterion using the CTOD at a fixed distance behind the crack 

tip as the fracture parameter was manually implemented. The CTOD criterion [16] states that crack 

growth occurs when the current CTOD reaches a critical value and the direction of crack growth is the 

direction that leads to the maximum opening or shearing CTOD component value at the new crack tip. 

For this study the critical value of the CTOD is not known, but the crack growth will probably be 

subcritical and it is still interesting to see the influence of the various test parameters from the 

sensitivity study on the evolution of the CTOD component value.  

 

4 Degradations of the Al metallization under APC 
 

Some Active Power Cycling tests were performed on MOSFETs with different experimental 

parameters: Tjmin ranges from -30°C to 60°C, ΔTj varies from 60K to 120K and ton ranges from 0.2s to 

10s. Some representative cases were taken out of the 30 tests performed and are presented in the Table 

2 in order to have a general idea on tests and results in terms of Al degradations.  

 

Table 2: Recap chart of 13 of the 30 APC tests performed with the resulting Al degradations 

 

Tests were stopped arbitrarily when an important increase in the body diode forward voltage Vf or in 

the temperature swing ΔTj was noticed. There was no fixed End-of-Life criterion defined for this 

module at this stage of the study. Tests were stopped usually after 100.000 to 2 million cycles, and 

modules were always electrically functional at the end of tests. This proves the high reliability of such 

power modules with double sided soldered chips. Despite this very good endurance, modules are 

submitted to degradation phenomena. Metallographic specimens of tested devices were prepared and 

defects investigated into using optical microscope and Reflection Electron Microscope (REM). 

Different types of degradation in Al were highlighted (Figure 8): deformation of the layer (a), 

migration of Al in the top solder (bErreur ! Source du renvoi introuvable.), delamination 

between Al and top solder (c), and cracks within the layer (d). Those degradations appear at the area of 

Al located under the top solder meniscus. Cracks and delamination between top solder and Al often 
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start at this solder meniscus area, and then propagate to the center of the MOSFET. This differs from 

standard modules, where reconstruction occurs preferably at the center of the chip and wrinkles due to 

ratcheting develop from the edge to the middle of the chip. 

Degradations of the Al metallization were sometimes accompanied by a slight increase in thermal 

impedance Zth at the beginning of the measurement. This can be explained by the fact that a degraded 

Al metallization affects the top side cooling path of the module, which represents 5% of the total 

cooling of the MOSFET and evacuates the heat from the chip, through the metallization, the top solder 

the Cu clip and the mold to the air.   

 

 

  

Figure 8: Images of a) a strong Al deformation, b) migration of Al in the top solder, c) delamination at the 

interface Al/ top solder and d) a crack inside the Al metallization 

 

By looking at the table, it appears that the presence of degradations in the Al metallization is almost 

always accompanied by a significant increase in RDSon. This originates from the fact that a degraded Al 

disturbs the distribution of current to the chip. Moreover cracks and deformations in Al are reported 

for all cases except for tests performed with ΔTj = 60K and stopped after several million of cycles. So 

increasing the temperature swing ΔTj seemed to accelerate the degradation of the Al layer.  From these 

experimental results, it can be concluded that the Al metallization degradation is a systematical failure 

mechanism leading to the degradation of the electrical behavior of the module.  

 

5 Lifetime prediction 
 

As the Al metallization degradation is a main failure mechanism in our module, an End-of-Life (EoL) 

criterion could be based on the RDSon increase. The definition of an EoL criterion is important and 

would allow us to compare tests results in function of the different tests parameters. Until now, the 

only EoL criterion available is used for standard IGBT module and defines the EoL by an increase in 

Vce of 5% (corresponding to an increase in 1% in Vf for our module) as it usually corresponds to a wire 

a) b) 

c) d) 
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lift-off. As our module does not have wire bonds but a Cu clip, this criterion does not correspond to a 

specific failure mechanism occurring in the module and thus may be too severe. For example, some 

devices which had reached an increase in Vf greater than 1% were still electrically functional and did 

not show critical degradations inside the package.  

On the Figure 9a is plotted the percentage of degraded area in the Al metallization in function of the 

increase in RDSon. A trend line emerges out of the results, thus a correlation exists between the 

percentage of area degraded in the Al metallization and the increase in RDSon. This confirms that an 

appropriate EoL criterion for our module can be defined based on the RDSon increase. Moreover, it 

means that we have now a non destructive method to determine the amount of degradations in the 

module, simply by measuring the RDSon. But as the RDSon increase was not continuously monitored, 

another relation as to be found between a parameter continuously monitored during the test (Vf or ΔTj) 

and the increase in RDSon in order to be able to determine the new EoL criterion.  

 

The increase in Vf in function of the increase in RDSon is plotted Erreur ! Source du renvoi 

introuvable.9b. Results are quite scattered, thus the correlation between the increase in Vf and RDSon 

is not really good.  The poor quality of this correlation suggests that an optimization of our test method 

could be to regularly measure the RDSon in good thermal conditions during the tests. Thus the RDSon 

could be directly used to define an EoL criterion. Despite the poor quality of the correlation between 

the increase in RDSon and Vf, this one will still be used to define a new EoL criterion. 

 
In a first approach an acceptable limit of degradation in our module is a degraded area of 40% in the 

Al metallization. Indeed, tested modules which had such a degraded area in the Al were still 

electrically functional. This 40% of degraded area is correlated to an increase in RDSon of about 40% 

(Figure 9), itself correlated to an increase of 3% in Vf (Erreur ! Source du renvoi 

introuvable.). So a first suggestion for a more appropriate EoL criterion could be an increase in Vf 

of 3%. A better adjusted EoL criterion can certainly be found by performing some more experiments 

and by regularly measuring the RDSon. But this is already a first step in the determination of an 

appropriate EoL criterion for our module. The lifetime of modules tested was calculated based on the 

new EoL criterion and is plotted and compared to the lifetime based on the standard EoL criterion in 

function of ΔTj (Figure 10). Fewer results are obtained for the lifetime based on the new criterion as 

for some samples the test was stopped before that an increase in Vf of 3% was observed. But this 

already gives an idea of the gain of lifetime with the new EoL criterion. And the gain of lifetime is non 

negligible as changing from an EoL criterion of an increase in Vf of 1% to an increase of 3% already 

double the lifetime prediction of the module.  

 

  

Figure 9: a) Percentage of degraded area in the Al metallization versus the increase in RDSon and b) the increase 

in Vf versus the increase in RDSon 

a) b) 
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Figure 10: Nf cycles to failure in function of ΔTj with EoL Vf +3% and EoL Vf +1% 

 

6 Simulation results 
 

A path was defined in the middle of the Al metallization, from its center to one of its extremity, to be 

able to observe the evolution of stresses and plastic strain in function of the position in Al. One 

simulation case (Tjmin= -40°C, ΔTj=120K, ton= 10s) is taken as a representative example to describe 

mechanisms that are taking place in the metallization layer. The different stresses were analyzed [17] 

and it was found that the “in-plane” stress drives the von Mises stress and that at high temperatures, Al 

is under compressive stress, whereas at low temperatures tensile stress is dominant.  

 

 

Figure 11: Plastic strain along a path in Al for the case Tjmin= -40°C, ΔTj=120K, ton= 10s 

 

Now the plastic strain curves is plotted along the path at different times of the pulse period (Figure 11) 

and the importance of the zone under the top solder meniscus is highlighted as a peak of plastic strain 

is observed exactly at this positionErreur ! Source du renvoi introuvable.. In order to better 

understand the mechanisms Al is submitted to in this critical area, it is interesting to analyze the 

correlation between the evolution of the temperature, the accumulated plastic strain and the von Mises 

stress during one cycle. Therefore, the accumulated plastic strain per cycle was calculated by 

averaging the plastic strain obtained along the path in the area beneath the top solder meniscus, and 

was then plotted together with the evolution of temperature and von Mises stress (Figure 12Erreur ! 
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Source du renvoi introuvable.). More precisely, the plastic strain average was calculated for the 

values obtained between 1.983mm to 1.993mm along the path in the Al. At the beginning of the 

temperature pulse, the von Mises stress originates from the initial conditions: a 175°C stress free 

temperature is defined and the module is cooled down to room temperature. This gives the frozen 

internal stresses within the package. Now, when the system heats up, these inner stresses decrease and 

reach a minimum value. By continuing the heating up process, the stress changes its direction and the 

von Mises stress and the plastic strain increase simultaneously. Then the temperature remains 

constant, and a stress relaxation without an increase in the plastic strain can be observed. The stress 

relaxes under constant plastic strain because of the solder layer on top of the Al metallization, which 

transfers its stress relaxation behavior. In the following cooling phase the same behavior is repeated, 

with the opposite deformation direction. The accumulated plastic strain follows the temperature 

changes and increases by heating up or cooling down, and stays constant at constant temperature. One 

can also notice that the accumulated plastic strain is higher during the cooling phase than during the 

heating phase.  

 

 

Figure 12: Evolution of temperature, von Mises stress and accumulated plastic strain in Al at the critical area 

beneath the top solder meniscus during 1 cycle for the case Tjmin= -40°C, ΔTj=120K, ton= 10s 

 

Then, results of the fracture mechanical simulation are analyzed. First of all, the crack zone shows a 

large scale yielding. Then, in order to have a better understanding of crack growth in Al, the evolution 

of the CTOD criterion in function of time has to be plotted for both opening mode (Figure 13) and “in 

plane” shear mode (Figure 14). For the opening mode, a negative displacement represents a crack 

closing and a positive displacement represents a crack opening. At high temperatures the crack is 

closed while at low temperatures the crack is open. The crack opening remains narrow as the 

maximum displacement observed is under 0.01 µm. This may be explained by the fact that the Cu clip 

soldered on top of the Al metallization and the mold are restricting out of plane displacements and 

thus crack opening. A slight shift in the maximum and minimum displacement values is noticeable 

with an increasing number of cycles for both opening and shearing mode. This shift comes from the 

rate dependent properties of the top solder. The CTOD needs a few more cycles to stabilize, but its 

amplitude stays constant. As the study do not focus on the evolution of displacement’s extremums but 

on the amplitude of displacement, calculating 3 cycles is sufficient for our analysis. 
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Figure 13: Evolution of the CTOD criterion for the opening mode in function of time for the case  

Tjmin= -40°C, ΔTj=120K, ton= 10s 

 

For the shear mode, a negative CTOD represents a displacement to the left and a positive CTOD 

represents a displacement to the right for the layer above the crack compared to the layer underneath. 

In this case, the layer above the crack is always shifted to the left in comparison to the layer 

underneath. At low temperatures, the layer above the crack is moving further to the left, and at high 

temperatures, the layer above the crack is coming back to the right.  Shear displacements are quite 

important as the maximal CTOD value reached is about 0.4 µm. This means that the maximum 

shearing component of CTOD is 40 times higher than the maximum opening component. So the 

absolute maximum value of CTOD component at the new crack tip is obtained by the shearing 

component, and thus crack growth will occur along a local mode 2 direction.  

 

 

Figure 14: Evolution of the CTOD criterion for the “in plane” shear mode in function of time for the case 

Tjmin= -40°C, ΔTj=120K, ton= 10s 

 

7 Sensitivity study 
 

A sensitivity study of tests parameters (Tjmin, ΔTj, and ton) was simulated and the influence of those 

parameters on accumulated plastic strain and CTOD component is quantified. With both experiments 

and simulations, it was pointed out that there is a critical region in the chip metallization: the area 

located just beneath the top solder meniscus. The accumulated plastic strain in this zone for one cycle 

was calculated and plotted for different sets of parameters (Figure 15). The influence of test 

parameters on plastic strain is quite clear. First of all, the lower Tjmin is, the higher the percentage of 

plastic strain will be. Then, high temperature swings are needed for the accumulation of plastic strain 

in one cycle. 
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Figure 15: Histogram of  accumulated plastic strain in Al in 1 cycle for different sets of test parameters 

 

For small temperature swings like ΔTj=60K which corresponds to field load, there is no accumulated 

plastic strain. This correspond with what was already observed in experiments, as several modules did 

not shown any degradations in Al after several million of power cycles with ΔTj=60K. This raises the 

question to know if the same failure mechanisms are taking place under ΔTj=60K and under ΔTj=90K 

or 120K.  By looking more closely at the histogram, it is noticeable that for ΔTj=60K, there is no 

accumulated plastic strain at all with Tjmin = -40°C and really small amount of accumulated plastic 

strain of about 1e
-6

 with Tjmin = 10°C and 60°C. Thus, for the Al metallization it is not exactly the same 

failure mechanism occurring under ΔTj=60K and ΔTj =90K or 120K, as there is no plastic 

deformations for ΔTj=60K. Finally, short pulses also generate more accumulation of plastic strains in 

Al. Indeed, power pulses lead to spatially inhomogeneous temperature distribution in the module. 

With short pulses, the spatial temperature gradient is even more important inside the module, thus 

generating more Al plastic deformation. Consequently, low start temperatures with large temperature 

swings and short pulses are the most critical tests parameters in terms of plastic metallization 

deformation. 

For both opening and shearing component of CTOD  (Figure 16 and Figure 17), 3 values are to be 

taken into account: the minimum and maximum value of CTOD component reached in one cycle, and 

the amplitude of CTOD variation which is the difference between the maximal and minimal values of 

the CTOD component. The amplitude is of main interest, and the minimum and maximum allow 

understanding in which direction the crack is moving. For mode 1 (Figure 16), at high temperatures, 

displacements are minimal, so the crack is closed. At low temperatures, displacements are maximal 

and the crack is open. Looking at the histogram, one can notice that all minimal and some maximal 

values of CTOD for mode 1 are negative. Those negative values depend on the definition of contact 

stiffness in simulations and thus don’t have a real physical meaning. That is why the interpretation of 

those results is still in question. Despite that fact, it is possible to identify some main trends regarding 

the influence of test parameters on the crack opening mode. In terms of crack opening amplitude in Al: 

low Tjmin with large temperature swings ΔTj are the most critical parameters. The pulse width ton does 

not seem to have a big influence on the crack opening amplitude. Results of shearing mode are also 

influenced by the closed crack situation, as the closed contact with friction coefficient has effects on 

stress distribution.   
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Figure 16: Histogram of opening component of CTOD in 1 cycle for different sets of test parameters 

 

For mode 2 (Figure 17), at high temperatures, the CTOD reaches it absolute minimum, meaning that 

the layer above the crack is moving to the right side. At low temperatures, the CTOD reaches it 

absolute maximum, so the layer above the crack is moving to the left side.  First, one notices that the 

amplitude of displacement for mode 2 follows the same trend as for mode 1. Thus, to summarize: low 

Tjmin with large temperature swings ΔTj are the most critical parameters in terms of shearing amplitude 

for the crack in Al. The influence of the pulse width ton on the shearing amplitude of crack is difficult 

to determine.  

 

 

Figure 17: Histogram of shearing component of CTOD in 1 cycle for different sets of test parameters 

 

Comparing values of CTOD’s components for mode 1 and mode 2, it is noticeable that shearing 

displacements are clearly dominant (approximately 10 time higher than opening displacements) for all 

loading cases of the sensitivity study. This large predominance of shearing CTOD component 



22
ème

 Congrès Français de Mécanique                                               Lyon, 24 au 28 Août 2015 
 

compared to the opening one, added to the difficulties to properly interpret results for opening CTOD 

component, lead us to conclude that the shearing mode is the most critical one and therefore the only 

one to be taken into account. 

Based on experiments it can also be deduced that the crack growth probably remains subcritical as no 

catastrophic failures were observed even after high number of cycles. Then, the Erreur ! Source du 

renvoi introuvable. presents the worst set of test parameters (Tjmin, ΔTj and ton) for each output 

parameter analyzed (plastic strain and both CTODs) for Al metallization. It appears that large ΔTj with 

low Tjmin are critical for plastic deformation and crack growth. The only difference is concerning the 

power on-time ton. For plastic strain, short pulses are critical, whereas for both CTODs, ton does not 

seem to have a significant influence. 

 

Table 3: Recap chart of the worst sets of parameters regarding plastic deformations and crack propagation in 

the Al metallization 

 

8 Lifetime models 
 

With the experimental APC tests, a lifetime prediction in function of different sets of test parameters 

was obtained. With the FEM simulations, amounts of plastic strains and CTODs, also called output 

parameters, were calculated for different sets of test parameters. Combining the results obtained from 

both experiments and simulations, allow plotting a lifetime prediction correlating the experimentally 

obtained lifetime with the corresponding calculated plastic strain and CTODs… Then a power trend 

line fitting the best the scattered points was determined.  The trend line equation defines then the 

lifetime model in the form of a Coffin Manson model: 

𝑁𝑓 = 𝑎 ∙ (𝑥)−𝑏  
Eq. 4 

Where Nf  is the number of cycles to failure, a a coefficient and b an exponent determined with 

experiments and x the output parameter.  

Then regarding the lifetime requirements under APC, these ones are strongly dependent on the 

application of the module. However it can be roughly consider that with ΔTj= 80-90K, a lifetime of 

100 000 cycles is a minimum required while a lifetime of 1 million of cycles characterized already a 

robust module. 

 

First the lifetime is predicted in function of the acc plastic strain in the Al metallization Figure Erreur ! 

Il n'y a pas de texte répondant à ce style dans ce document.18. Some tests were stopped 

before reaching the EoL, hence a lack of reliability observed for the trend lines. The values of acc 

plastic strain are ranging from 0.13% to 2.2%, and the lifetime decreases quite rapidly in this interval. 

For the lowest amount of acc plastic strain, a lifetime of 2.4 million of cycles is reached, and for the 

highest amount of acc plastic strain the lifetime is divided by 45 and attains only 53 500 cycles. This 

lifetime of 53 500 cycles is quite short and was obtained by testing under ΔTj=170K.  
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The Coffin Manson lifetime model deduced has the form: 

𝑁𝑓 = 164309 ∙ (𝜀𝑎𝑐𝑐  𝑝𝑙 )−1.317  
Eq.5 

With εacc pl the acc plastic strain in the Al metallization.  

Thus in order to have a lifetime equal or superior to 500 000 cycles, the acc plastic strain has to stay 

equal or inferior to 0.43%. Thus 0.43% of acc plastic strain could define a critical limit for the Al 

metallization lifetime.  

 

 

Figure Erreur ! Il n'y a pas de texte répondant à ce style dans ce document.18: Nf  cycles to failure in function 

of the acc plastic strain in the Al metallization 

 

 

Figure 19: Nf  cycles to failure in function of the CTODI and CTODII amplitudes in the Al metallization 

 
Concerning the crack growth in the Al metallization, the lifetime is predicted in function of both 

CTODI and CTODII amplitudes Figure 19. For both CTODI and CTODII, their trend lines are only 

moderately reliable. Then it appears clearly on the graphic that the opening mode generates smaller 

amplitude of displacements than the shearing mode. Trend lines of both CTOD have similar profile 
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with a quite rapid lifetime decrease with increasing amplitude of CTOD, but still do not have the same 

slope and equation.   

With a CTODI amplitude of 0.011µm a lifetime of 2.4 million of cycles can be reached, whereas a 

CTODI amplitude about 2 times higher, of 0.025 µm induces a lifetime approximately divided by 5, 

with  450 000 cycles. These results are describing a very reliable module, as the worst case described 

was
 
reached under

 
ΔTj=120K and has a lifetime already close to 500 000 cycles.  

Regarding results of the mode II, with a CTODII amplitude of 0.08 µm a lifetime of 2.4 million of 

cycles can be reached, and a CTODII amplitude 2 times higher (0.16 µm), divides the lifetime by 8, 

with  292 000 cycles. Here also results are really good, as the worst case described was reached under
 

ΔTj=120K and still has a lifetime already above 100 000 cycles. The Coffin Manson lifetime model 

deduced has the form: 

𝑁𝑓 = 2445 ∙ (∆𝐶𝑇𝑂𝐷𝐼𝐼)−2.68 
Eq.6 

With ΔCTODII the amplitude of CTODII at the crack tip in the Al metallization.  

Thus in order to have a lifetime equal or superior to 500 000 cycles, the amplitude of CTODII has to 

stay equal or inferior to 0.14 µm. Thus 0.14 µm of CTODII amplitude could define a critical limit for 

the Al metallization lifetime. 

 

9 Conclusion 
 

After power cycling, deformations and cracks in the chip-metallization of a new designed MOSFET 

module are found to appear in the area beneath the top solder meniscus. These degradations in Al 

metallization are found to correlate with an increase in the RDSon of the MOSFET. This allows the 

definition of an appropriate EoL criterion for our module. This criterion states that the EoL is reached 

when the RDSon has increased of 40%, which corresponds to 40% of degraded area in the Al 

metallization.  Thanks to this EoL definition, the influence of the test parameters on the module’s 

lifetime can be analyzed.  

Finite Elements simulation, confirms that the area beneath the top solder meniscus is critical, as a peak 

of plastic strain occurs exactly at this location. Based on the evaluation of plastic deformation at the 

critical area, a numerical sensitivity study on tests parameters is conducted. Low Tjmin with large 

temperature swings ΔTj and short pulses ton are the most critical test parameters. It was also 

determined that it is actually not the same failure mechanism occurring under field loads ΔTj=60K and 

under accelerated tests with ΔTj=90K or 120K. Indeed, for small temperature swings ΔTj 

corresponding to field loads, no plastic deformations of Al occurs neither in simulation nor in 

experiments. Thus, it is actually not possible to accelerate the failure mechanism of the Al 

metallization.  

Then, crack growth is numerically investigated with the help of a mixed mode fracture criterion based 

on Crack Tip Opening Displacement. There is opening and shearing of the crack at low temperatures, 

whereas at high ones, the crack is closed. So, as expected, low Tjmin with large temperature swings ΔTj 

are the most critical test parameters for both opening and shearing criteria. The pulse width ton does 

not seem to have a significant influence on crack propagation. The clear predominance of shear mode 

must be noted, thus indicating that the Al crack growth occurs along a local mode 2 direction.  

Finally lifetime models were deduced by correlating the experimentally obtained lifetime with the 

corresponding calculated plastic strains and CTODs. The lifetime models deduced from this study 

could be further improved by carrying out more experiments with an improved test stand. Indeed, in 

order to improve the EoL criterion of the module, the RDSon should be regularly measured during the 

APC tests and in adequate thermal conditions.  
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