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Résumé :

La dynamique et l’évolution des fluctuations de température induites par la dissipation visqueuse dans

une turbulence isotrope sont étudiées utilisant des Simulations Numériques Directes. Les résultats de

ces simulations sont en désaccord avec les prédictions de deux études théoriques récentes. Les résultats

sont expliqués par des arguments phénomenologiques.

Abstract :

The dynamics and the evolution of temperature fluctuations generated by viscous dissipation in isotropic

turbulence are studied using Direct Numerical Simulations. It is shown that the results are at odds with

two recent theoretical studies on this subject. Phenomenological arguments are presented which explain

the observed results.

Keywords : Turbulence, Temperature fluctuations, DNS

1 Introduction

The dynamics of a passive scalar in isotropic turbulence has been the subject of many recent studies

in the field of fluid mechanics. Two recent studies treated the generation of temperature fluctuations

by viscous dissipation, the wavenumber dependence of them and their Reynolds number scaling[1, 2].

Even though the models are based on different heat production terms, they predict the same scaling of

the wavenumber spectrum of the heat fluctuations. In the present investigation, we will study this subject

using Direct Numerical Simulations.

2 Basic equations

We consider the Navier-Stokes equations for an incompressible fluid,

∂u

∂t
+ (u.∇)u = −

∇p

ρ
+ ν∆u+ f (1)
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where the last term is a negative viscosity forcing term f = −νf∆u, p the pressure, ρ the density and

ν the viscosity.

The evolution of the temperature field is given by an advection-diffusion equation with an additional

term related to the heat generated by viscous friction.

∂Θ

∂t
+ ui

∂Θ

∂xi
= α

∂2Θ

∂x2i
+

ν

cp

(
∂ui
∂xj

∂ui
∂xj

+
∂ui
∂xj

∂uj
∂xi

)

︸ ︷︷ ︸

viscous friction term

, (2)

with α is the fluid diffusivity and cp the specific heat.

Introducing the Reynolds decomposition Θ = Θ+ θ will lead to the following equation for the temper-

ature fluctuations,

∂θ

∂t
+ ui

∂θ

∂xi
= α

∂2θ

∂x2i
+

ν

cp

(
∂ui
∂xj

∂ui
∂xj

+
∂ui
∂xj

∂uj
∂xi

)

−
ν

cp

∂ui
∂xj

∂ui
∂xj

. (3)

3 Theoretical studies using closure theory

In recent studies De Marinis et al.[2] and Bos[1] have developed models relying on the eddy-damped

quasi-normal Markovian (EDQNM) theory to investigate the dynamics of the temperature fluctuations

induced by viscous friction.

Both models predict the occurence of a spectral region with a k1/3 slope in the temperature fluctuations

spectrum Eθ(k). More precisely, the temperature fluctuations spectrum at high Reynolds numbers is

(Fig.1),

E
(1)
θ (k) ∼

(
ν

cp

)2

ǫ2/3k1/3 (4)

where ǫ is the mean dissipation rate.

This scaling implies the following relations for the temperature fluctuations and the dissipation of heat

fluctuations,

θ2
(1)

∼
ǫν

c2p
, ǫ

(1)
θ ∼

ǫ3/2ν1/2

c2p
. (5)
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Figure 1: Normalized temperature spectrum in Kolmogorov units, for three different Taylor-scale

Reynolds numbers. From reference [1]

4 Temperature fluctuations and their relation to dissipation rate

fluctuations

We recently proposed a phenomenological theory [3], which relates the scalar spectrum to the spectrum

of the fluctuations of the dissipation rate Eǫ(k). Relying on the temperature fluctuations equation (3)

and the following evolution equation of Eθ(k),

∂Eθ(k)

∂t
= Tθ(k)−Dθ(k) + Pθ(k) (6)

they derived the production term to be

Pθ(k) ∼
τ(k)

c2p
Eǫ(k) (7)

where τ(k) is a correlation time. It is known that the scaling of Eǫ(k) is not determined by small scale

quantities only, as could be expected from Kolmogorov-like arguments. Yaglom proposed a model which

fits the data of experiments on the dissipation rate qualitatively, taking into account the non-Gaussian

character of its fluctuations [4, 5]. His model predicts the following dissipation spectrum:

Eǫ(k) ∼ ǫ2L(kL)−1+µ, (8)

where L is a large-scale length, and µ is an intermittency parameter of order 1/3 (in reference [4] values

are reported 0.3< µ <0.5). In a steady state, at high Reynolds number, a balance will be observed

between Tθ(k) and Pθ(k) in the inertial range. The scalar transfer is assumed to be given by a Kovaznay-
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type scalar transfer model [6]

Tθ(k) ∼
∂

∂k

(

Eθ(k)E(k)1/2k5/2
)

. (9)

Substituting (8) in (7) and equating the resulting equation with (9) lead to the the temperature fluctuations

spectrum

E
(2)
θ (k) ∼

ǫ4/3L2/3k−5/3

c2p
, (10)

where we assumed that τ(k) ∼ ǫ−1/3k−2/3 .

Considering the case of unity Prandtl number, ν = α, the variance of temperature fluctuations can

be computed by integrating the previous spectrum between kL and kη, where kL ∼ 1/L and kη ∼

ǫ1/4ν−3/4.

θ2
(2)

=

∫ kη

kL

Eθ(k)dk ∼
(ǫL)4/3

c2p
. (11)

The destruction rate of temperature fluctuations is given by

ǫ
(2)
θ =

∫ kη

kL

2αk2Eθ(k)dk ∼
ǫ5/3L2/3

c2p
. (12)

5 Numerical results

We solve the Navier-Stokes equations with a large scale forcing and the equation of the total temperature

in a cubic three-dimensional periodic domain of size 2π, using a standard pseudo-spectral solver. The

forcing is introduced by a negative viscosity, acting on the modes with wavenumbers smaller than 2.5.

The initial temperature field is zero and the initial velocity field consists of random noise. All results are

evaluated once a statistically steady state is reached where the velocity and temperature fluctuate with a

constant variance.

5.1 Results on the scaling of the velocity and dissipation rate

spectra

Taylor [7] has pointed out the independence of the dissipation rate of the viscosity at high Reynolds

number. The following equation shows the dissipation rate dependence on the large scale quantities L

and U , where U is the root-mean-square value of a velocity component:

ǫ ∼
U3

L
. (13)

The normalized energy spectrum using quantities ǫ, L is:

Ẽ(k) =
E(k)

ǫ2/3L5/3
∼ (kL)−5/3. (14)

Figure 2 shows that the data of the normalized energy spectra collapse at low values of k, which means
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Figure 2: Spectra at different Reynolds numbers, normalized using the quantities ǫ, L. Left: kinetic

energy spectra, Right: dissipation fluctation spectra.

that the large scales are independent of the Reynolds number. Combining this hypothesis with equation

(8), we can derive the normalized dissipation rate spectrum:

Ẽǫ(k) =
Eǫ(k)

ǫ2L
∼ (kL)−1+µ (15)

It is shown also in figure 2 that the data in the normalized dissipation spectra collapse well at large scales.

We mention that the value of µ is considered here 1/3. So these results confirm the sufficient accuracy

of the model proposed by Yaglom to describe the Reynolds number dependency of the dissipation rate

fluctuation spectrum.

5.2 Results on the scaling of the temperature fluctuations

In order to verify which of the previous theoretical models is correct, we will normalize the different

scalar spectra as we did in the previous section. Normalizing the scaling (4) leads to,

Ẽ
(1)
θ (k) =

c2pL
1/3

ǫ2/3ν2
E

(1)
θ (k) ∼ (kL)1/3 (16)
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Figure 3: Temperature spectrum for different Reynolds numbers. Left: normalized using expression

(16), Right: normalized using expression (17).
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Using scaling (10), we have:

Ẽ
(2)
θ (k) =

c2p

ǫ4/3L7/3
E

(2)
θ (k) ∼ (kL)−5/3 (17)

As figure 3 shows, the results are in far better agreement when using the second scaling (17), proving

the accuracy of the model (10).

5.3 Reynolds number dependence of θ2 and ǫθ

We normalize the different predictions (5) (11) and (12) in order to study their accuracy. The normalized

dissipation and variance are then defined by

θ̃2
(1)

∼ θ2
c2p
ǫν

, ǫ̃θ
(1) ∼ ǫθ

c2p

ǫ3/2ν1/2
, (18)

θ̃2
(2)

∼ θ2
c2p

(ǫL)4/3
, ǫ̃θ

(2) ∼ ǫθ
c2p

ǫ5/3L2/3
, (19)

These quantities should become constant at large values of the Reynolds number, if the underlying as-

sumptions are correct.

In figure 4 we show the Reynolds number dependence of the previous normalized quantities. It is clear

that for the second case θ̃2
(2)

becomes independent of the Reynolds number. Also for the dissipation of

the temperature fluctuations, the normalization ǫ̃θ
(2) is closer to a constant value than the first normal-

ization.
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Figure 4: Reynolds number dependence of the normalized temperature variance and the normalized

dissipation of temperature fluctuations, normalized using expressions (18) and (19).
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6 Discussion

The intermittent character of the dissipation rate fluctuations affects dramatically the spectrum of the

temperature fluctuations. The wavenumber dependence of the temperature spectrum is shown to be

strongly correlated at large scales, whereas the Gaussian estimate and closure expressions of the Eddy-

Damped Quasi-Normal Markovian type predict this spectrum to have a single correlation-length, of the

order of the dissipation scale.

In figure 5 we present flow visualizations, where we show iso-vorticity surfaces and iso-temperature

fluctuation surfaces. We notice that these surfaces are relatively smooth. This illustrates qualitatively

that the temperature fluctuations induced by the fluctuations of viscous dissipations are correlated at

large scales. We can speculate by comparing the two pictures that the positive fluctuations exist in the

zones of high vorticity. A tentative explanation is that the correlation length is of these temperature

fluctuations corresponds to the length, rather than to the width of vortical structures. Further research

is needed to elucidate this picture.

Figure 5: visualizations of (left) the temperature field (red isosurfaces correspond to positive heat

fluctuations: θ/θrms = 0.83; (right) the vorticity field (iso-surfaces of the enstrophy for ‖ω‖/ωrms =
2.77). The Reynolds number is Rλ = 77. Visualizations by VAPOR [8],
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