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Abstract : 
 

This paper presents a procedure for analyzing the instantaneous loaded contact of the spline joints. 

The process permits very fast computation of load sharing, including bending and contact effects. It 

uses the method of the influence coefficients resolving the equation of compatibility of the 

displacements. A study of the numerical model allows to show the influence of the deformation of the 

shafts and of the mounting errors on the contact pressure distribution. 
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1 Introduction 
 

Splines are used in mechanical drive systems to transfer rotatory motion from an input to an output. 

There are multiple applications for splines in mechanical drive systems which vary from the simple to 

the complex. In the bibliography, papers present studies with different FEM computations to 

determine the pressure distribution on the tooth flank [1, 2]. In order to accelerate the computations, 

Barrot et al propose an analytical method that is used to investigate the distortions of involute [3, 4]. 

The coefficients of the model have been calculated and benchmarked referring to a FEM model. 

V. Cuffaro et al [5, 6] studied the pressure distribution on spline coupling teeth that has been 

investigated by means of analytical approaches and experimental techniques. The experimental 

pressure distribution has been obtained thanks to a special film, capable of changing color intensity 

with pressure variation. 

 

In this paper, the proposed method can quickly calculate the contact pressure distribution taking into 

account the geometry of the shafts and different errors (manufacturing and assembling). A software 

has been developed to analyse the geometry and the quasi-static behaviour of external and internal 

splines. To do those analyses, it is necessary to provide the general geometrical informations of the 

splines and also the conditions of functionality. 

One of the objectives was to propose a numerical model to simulate the quasi-static behavior of the 

spline joints. The objectives of this paper are to present the computational model of a spline and to 

quantify the influence of the shaft geometry and of the assembly errors on the contact pressure results. 
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2 Theoretical analysis 
 

The procedure for analyzing a spline joint under torque was classically divided into three main steps 

(Fig. 1). The first one simulates manufacturing to obtain the tooth profiles of the teeth. The second one 

is an unloaded kinematics simulation to determine the potential contact zones, while the last one is the 

computation of the load sharing between all the teeth in contact. This stage comprises the computation 

of instantaneous pressure distribution and meshing stiffness. 

 

 
 

Figure 1: Analysis procedure. 

 

2.1 Spline profile and unloaded kinematics simulation 
 

Respect to the standard ANSI B92.1 – 1996 [7], the flank profile shape is an involute one. Profile 

modifications can be integrated: chamfer or fillet at the top (Fig. 2) and crown along the tooth width 

(Fig. 3). The tooth root can be defined by a radius or only by the root diameter.  At this step, different 

manufacturing errors can be integrated on each profile of the teeth (pitch error, helical error and local 

profile errors on the flank). The same global error on all the teeth or independent errors for each tooth 

can be imposed. 

 

 

 

 

 

 
 

Figure 2: Spline profile. Figure 3: Crowning width and chamfer. 
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The 3D geometry is generated automatically in a CAD software CATIA. Shafts (Fig. 4) can be 

integrated in the CAD part geometry, to take into account their deformation later in the calculation. In 

the step 2 of the process (Fig.1), the potential contact points are determined computing the gaps 

between the flank surfaces of the external and internal splines. It is possible to integrate assembling 

errors. Figure 4 presents also the direction of the axes of the 4 errors: 2 radial errors along the X and Y 

axes, one axial error along the Z axis and angular error about the X axis. Then, these potential contact 

zones are used to calculate the load sharing. 

 

 

 

 

 

Figure 4: Spline profile with shafts. 

 

 

2.2 Load sharing and pressure distribution 
 

The last and final step of the process is the loaded TCA (tooth contact analysis) (Fig. 1). The 

determination of tooth load sharing is above all a multi-contact problem. Potential contact zones are 

found and the load sharing in these areas must satisfy the displacement compatibility conditions of 

every point k [8]. 

On the potential contact area, load sharing is sought to satisfy this equation: 
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i i i i
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 on the contact area.     (1) 
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  out of the contact area.     (2) 

These two systems of equations can be reduced in just one relation:  
. 0ang

i iy p 
.  (3) 

With :  

- 1

ang

iU
 and 2

ang

iU
 are angular displacements of the bodies 1 and 2 at the point i, 

- 
ang

iei
 is the initial angular gap at the point, 

- 
ang

 is the global displacement of the contact area, 

- ip
 is the pressure at the point i. 

These parameters, with the final gap 
ang

ief
, are presented in the Figure 5. The set of the angular values 

is defined depending on the rotation axis of the internal splines. 
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a) Kinematics contact without 

load 

b) Displacements and gaps 

under load 

c) Contact under load after 

recalibration 

   

 Figure 5: Presentation of the displacements.  

 

The computation is carried out simultaneously on all the teeth (Fig.6). In order to calculate the 

displacements, it is necessary to split the contact zones to obtain local meshing (Fig.7). These 

calculations are performed on a local rectangular mesh defined in the tangent plane between the teeth 

of the internal and external splines. 

 

 

 

 

Figure 6: Meshing between all the teeth. Figure 7: Local meshing. 

 

 

The pressures calculated have to balance the applied global torque: 

 
1 1

N N
proj

i i i i i i

i i

Torque R F R p S r
 

           (4) 

With:  

- Si is the surface of the rectangle i, 

- pi is the pressure on the rectangle i, 

- Ri is the radius (distance between the point i and the axis of rotation of the internal splines), 

- 
proj

ir  is the ratio to project the load from the reference normal refn
 to lever arm ,rotat in

.  Then: 

,.proj

i ref rotat ir n n
. 

 

Furthermore, the elastic properties of the elements permit writing the displacement of point i of an 

element k such that: 

 1

N
k

ki ij j

j

U C p



 where 

k

ijC
 are the influence coefficients of element k. Considering both elements, we 

can write 

21

ijijij CCC 
, therefore the displacements can be expressed by: 
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If the angular distance between of the two bodies at the point i after loading is noted 
ang

iy
 (Fig.5-c), this 

parameter can be expressed by:  
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With 
ang ang ang

i ief y  
 (Figure 5-b), the system is:  
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After several manipulations, we finally obtain the equation of compatibility of the displacements: 
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      (8) 

 

This kind of equations can be solved using an iterative method in order to obtain the value of the 

pressure at all the points (fixed point iteration method). 

The coefficients of influence Cij take into account two kinds of coefficients: the contact coefficients of 

influence and the bending coefficients of influence. For contact coefficients of influence, since the two 

solids (internal and external splines) are approximated by two elastic half-spaces, the expression of the 

displacements is obtained by using the potential functions of Boussinesq and Cerruti [9]. This general 

expression depends on the combined constants of the two elastic half-spaces, the size of the grid 

elements of the tangent plane and the coordinates of the grid points. The solution of this integral is 

known for a rectangular surface, and the displacements at every point i can be computed due to a unit 

pressure at every point k.  

The method of defining the bending coefficients of influence is described in several papers [10, 11]. 

The different Cij coefficients have been deduced from FEM computations and interpolation functions. 

These functions were integrated in the calculation process to compute quickly the instantaneous load 

sharing of the spline. The FEM computations are carried out on nodes equally distributed on the flank 

of a tooth (Fig.8). It is possible to integrate the realistic conditions with the geometry of the shaft 

(length, diameter, variable sections…). 
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Figure 8: Conditions for FEM computations. 

 

We obtain two types of interpolation functions. It was decided to use H polynomial functions 

according to height of the tooth, because the behavior of the tooth along its height is similar to the 

behavior of a fixed-free beam: 

 1( ) i

iH u u            (9) 

 

Along the tooth width, its behavior is close to the behavior of a free-free beam. That is why we have 

chosen the resonance functions of such a beam for the L functions: 

        ( ) sin sinh cos coshj j j j j jL v v v v v        
 

    (10) 

 

Then, knowing the pressure distribution, the stiffness and the shear stress can also be calculated. The 

angular stiffness is obtained with the following equation: 

    
ang

ang

Torque
K


        (11) 

The maximum shear stress is a value estimated by the following equation: 

   max max0.315p 
       (12) 

 

The maximum depth is calculated by a chart that gives this value depending on the dimensions of the 

contact surfaces. 

 

3. Pressure distribution results 
 

The general characteristics of the spline used in this work are summarized in Table 1. For the two 

splines, the tooth root is defined by a fillet radius. The external spline has a fillet at the top tooth 

(0.3mm). The profile crowning is defined on the two sides of the face width. The length and the 

diameter of the shafts are presented in Figure 9. This figure presents also the clamping conditions at 

the extremity of the shaft. In the case 1, the two sides of the external splines are clamped, as the 

external cylinder of the internal spline. In the case 2, only an end of the shaft is clamped. The torque 

applied is 1500Nm. Young’s modulus is 210 GPa and Poisson’s ratio is 0.3 for the two splines. 
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 External Internal 

Number of teeth  24 

Module (mm) 1.27 

Pressure angle (°) 30 

Face width (mm) 26 26 

Profile crown (μm) 20  

Major diameter (mm) 31.75 32.918 

Minor diameter (mm) 27.788 29.21 

Circular thickness (mm) 1.995 1.995 

Table 1 : Geometrical characteristics of a spline. 

 

 

 

 
 

 

  
Case 1: without shaft. Case 2: with shaft. 

Figure 9: Geometry of shafts and clamping. 

 

 

3.1 Example of results: influence of the geometry of the shaft 
 

Figure 10 shows the comparison of the pressure distribution on the 24 teeth for the two different cases 

(Fig.9). In the case 1, with a more rigid structure, the pressure distribution is centered on the tooth 

flanks with a maximum of 798MPa. In the second case, the pressure distribution is delocalized on the 

side of the face width (946MPa). The difference between the two maximum pressures is equal to 18%. 

This difference is explained only by the bending of the shafts. 
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Case 1 

 

Case 2 

 
Figure 10: Pressure distribution for two conditions of shaft geometry. 

 

Figure 11 presents for the two conditions, the load sharing shared on the 24 teeth in contact. Each 

tooth is loaded with approximately 4735N. 

 

Case 1 

 

Case 2 

 
Figure 11: Load sharing for two conditions of shaft geometry. 

 

 

3.1 Influence of the mounting errors 
 

Figure 14 presents the pressure distribution and the load sharing with a radial mounting error along the 

axis X (Fig.4). The error is equal to 0.05mm. The results are presented only for the most realistic 

conditions of the case 2 (Fig.9). The radial error increases the contact in a zone of the spline (between 

the teeth 0 and 10). The maximum pressure is 1486MPa. It is a pressure peak on a very small contact 

surface. In the other part of the spline the pressure are less than 1000MPa, but the contact surfaces are 
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greater than in the other part of the spline. The load sharing shows that the maximum load is 5600N on 

a tooth for a minimum of 4000N on another tooth. 

 

 
 

 
Figure 14: Pressure distribution and load sharing with ΔX=0.05mm 

 

Figure 15 presents the pressure distribution and the load sharing with a mounting angular error around 

the axis X (Fig.4). The error is equal to 0.1 degree. The results are presented only for the most realistic 

conditions of the case 2 (Fig.9). The maximum pressure is 1061MPa. The load sharing shows that the 

load varies between 4600N and 4900N. 

 

 
 

 
Figure 15: Pressure distribution and load sharing with X=0.1 degree 

 

4. Conclusion 
 

In this paper, the pressure distribution along the teeth of spline couplings has been analysed by a 

numerical model. This one is based on three steps: definition of tooth geometry, kinematics simulation 

and calculation under load. The latter step is used to calculate the load sharing between the teeth. It 

takes into account the bending and contact deformations with the method of coefficient of influence. 
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The advantage of this method is its fast computation combined with the accuracy of the results. A 

study has been presented to show the influence of the geometry of the shafts on the results. The 

deformation of the shafts and the mounting errors modify the contact pressure distribution. The model 

allows also to take into account different tooth flank errors. 
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